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Abstract

The context in conversation is the dialog his-
tory crucial for multi-turn dialogue. Learning
from the relevant contexts in dialog history for
grounded conversation is a challenging prob-
lem. Local context is the most neighbor and
more sensitive to the subsequent response, and
global context is relevant to a whole conversa-
tion far beyond neighboring utterances. Cur-
rently, pretrained transformer models for con-
versation challenge capturing the correlation
and connection between local and global con-
texts. We introduce a local and global con-
versation model (LGCM) for general-purpose
conversation in open domain. It is a local-
global hierarchical transformer model that ex-
cels at accurately discerning and assimilating
the relevant contexts necessary for generating
responses. It employs a local encoder to grasp
the local context at the level of individual ut-
terances and a global encoder to understand
the broader context at the dialogue level. The
seamless fusion of these locally and globally
contextualized encodings ensures a comprehen-
sive comprehension of the conversation. Exper-
iments on popular datasets show that LGCM
outperforms the existing conversation models
on the performance of automatic metrics with
significant margins.1

1 Introduction

The role of context is significant in the similarity
of words in a language. The contexts of a word are
the neighboring tokens or grammatical structures.
Contextualized embeddings encode both words and
their contexts and generate contextualized represen-
tations. Language modeling captures distributed
semantics embedded within these contextualized
representations. The transformer-based pretrained
language models (LMs) have become a foundation
for NLP-like tasks (Bommasani et al., 2021). A

1Our codes are available at https://github.com/
PKUAI-LINGroup/LGCM.

well-established best practice in the field has con-
sistently demonstrated that the utilization of large
language models (LLMs) tends to yield superior
performance in a wide range of NLP tasks, includ-
ing conversational applications (say (Wolf et al.,
2019; Adiwardana et al., 2020; Roller et al., 2021;
Reed et al., 2022; Thoppilan et al., 2022), among
others).

Conversation models (CMs) are generative
sequence-sequence models for general-purpose
conversations and learn the multi-agent distribu-
tion of utterances simultaneously. Most existing
CMs are based on LMs, in which the LMs are
used for accomplishing conversation by collabora-
tion between agents that own their LMs or share a
single LM in the spirit of parameter sharing (PS),
where multiple models share the parameters in part
or whole. In this paper, we consider the CMs with
a single LM for two-agent conversation, such as
human-machine dyadic dialogue.

More specifically, CMs use either vanilla Trans-
former (Vaswani et al., 2017) as single-turn dia-
logue, such as question answering, where only the
current utterance is considered as the history at
any given turn, or for multi-turn dialogue adapt the
Transformer architecture by concatenating multi-
ple turns sequentially to capture the evolving con-
text (Wolf et al., 2019; Oluwatobi and Mueller,
2020; Zhang et al., 2019a). Prominent examples
of such CMs include TransferTransfo (Wolf et al.,
2019), Meena (Adiwardana et al., 2020), Blender
(Roller et al., 2021), Athena (Reed et al., 2022) and
LaMDA (Thoppilan et al., 2022), among others.

The context in conversation is the dialog history
crucial for multi-turn dialogue. CMs require an un-
derstanding of the dialog history, in the context of
previous pairwise utterances and the current query
at any turn. For example, as humans in everyday
dialogue, the speaker’s intent often cannot be de-
tected by looking at the utterance level. In contrast,
the speaker’s acts are specific to each utterance and
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Figure 1: The architecture of LGCM: The encoder is hierarchical attention consisting of the local and global encoders.
The local encoders are standard transformer modules with PS (depicted the same color as Self-Attention) for each
utterance in context. The global encoder consists of Inter-Attention and Gate for contextualized representations,
which are sent to the cross-attention in the decoder. The decoder is a standard transformer decoder.

change throughout a whole dialog history at the
dialogue level. One of the key challenges faced
by CMs lies in striking the right balance between
staying current which involves giving preference
to recent utterances, and drawing from the past ef-
fectively accumulating a prior understanding of the
dialogue. The process of learning the relevant his-
torical contexts necessary for fostering grounded
and meaningful conversations remains a challeng-
ing problem in this domain.

A criticism of the existing CMs is their inabil-
ity to effectively utilize the available dialog history
and gain a comprehensive view of a conversation
(Sankar et al., 2019). A common problem of those
CMs is their failure to establish meaningful corre-
lations and connections between individual utter-
ances. They often treat all the words as a single
sequence and concatenate multiple turns in history
into a single sequence, which neglects the distinct
contexts of individual utterances within the broader
dialogue history.

To address the inherent problem of current CMs,
we propose a more nuanced approach. In our
model, we define each utterance as local context
for tokens at the utterance level and whole a dia-
logue as global context for inter-utterances at the
dialogue level. Moreover, we find it valuable to
position the relationships among inter-utterances
within a dialog history relative to one another. In
our model, the conversation at different turns tells
on each other, and all together, they tell what we
talk about.

Namely, we introduce a local and global CM
(LGCM) for multi-turn dialogue in open domain.
It is a local-global hierarchical transformer model,
illustrated in Figure 1. It is an encoder-decoder
architecture in which the decoder is the same as
Transformer (Vaswani et al., 2017) with the cross-
attention between the encoder and the decoder, but
the encoder is a hierarchical attention structure.
The encoder of LGCM consists of local encoders
and global encoder. The local encoders are im-
plemented by a standard transformer module (Self-
Attention) for each utterance in the local context us-
ing absolute position encoding (APE). The global
encoder consists of Inter-Attention and Gate for
contextualized representations in the global con-
text, which are sent to the cross-attention in the de-
coder. The inter-attention is the attention between
the current and all the utterances using relative po-
sitional encoding (RPE) (Shaw et al., 2018). The
gate fuses the representations of the local encoders
and the inter-attention by a nonlinear transforma-
tion for local-global contextualized representation,
see explanation in the subsection 3.2.

In summary, the main contributions of this paper
are the following:

(1) We are first trying to propose a CM that makes
the connections between local context at the
utterance level and global context at the dia-
logue level in a coherent way.

(2) We propose a new attention mechanism (Inter-
Attention) between current and historic utter-

1409



ances using RPE, which can separately deal
with each utterance in a context. We extend
the RPE from a single sequence in the self-
attention to pairwise utterances within the con-
versation.

Experiments on popular datasets (DailyDialog,
MultiWOZ, PersonaChat) show that LGCM takes
advantage of the distinction between local and
global contexts and outperforms the existing CMs
on the performance of automatic metrics (PPL,
BLEU, METEOR, NIST, ROUGEL) with signifi-
cant margins (the best ratios range from 35.49% to
71.61%).

In the next section, we discuss the related works.
In Section 3, we present LGCM in detail. In Sec-
tion 4, we experiment on comparing LGCM with
strong baseline CMs. Finally, we make some con-
cluding remarks.

2 Related works

We concentrate on the CMs that use transformer-
based LMs (see surveys (Tay et al., 2022; de San-
tana Correia and Colombini, 2022) for transformers
and (Bommasani et al., 2021) for LMs). Most CMs
use LMs for multi-turn dialogue in open-domain
(Wolf et al., 2019; Adiwardana et al., 2020; Roller
et al., 2021; Reed et al., 2022; Thoppilan et al.,
2022). SOTA CMs were large LMs (LLMs) trained
specifically for conversation, such as ChatGPT2,
among other similar models.

Although LLMs can achieve the best practice
from time to time, they scale up the Transformer,
especially involving concatenating the dialog his-
tory into a single sequence. Small models are suit-
able for the study of CMs first, as the saying goes,
it is difficult for a big ship to turn around. Repre-
sentative CMs are strong baselines based on small
LMs such as GPT (Radford et al., 2018) and BERT
(Devlin et al., 2019). Among them (Wolf et al.,
2019; Zhang et al., 2020; Gu et al., 2021; Wu et al.,
2020a; Zhang et al., 2021), TransferTransfo (Wolf
et al., 2019) trained especially on the basis of GPT,
DialoGPT (Zhang et al., 2020) on GPT2 (Radford
et al., 2019), and DialogBERT (Gu et al., 2021) on
BERT for dialog response generation.

Hierarchical encoders are a common framework
for conversation. HRED was first introduced as
two-level RNNs for multi-turn dialogue with a fuse
between utterance and context dependencies (Sor-
doni et al., 2015; Serban et al., 2016, 2017). Most

2https://chat.openai.com/

of the attention-based hierarchical models on multi-
turn dialogue followed HRED architecture (say
(Xing et al., 2018; Tian et al., 2017; Chen et al.,
2018; Zhang et al., 2019b,a; Santra et al., 2021),
among others). Hierarchical CMs can have dif-
ferent mechanism designs (Zhu et al., 2018; Yang
et al., 2019; Li et al., 2020), some of which need
an out-of-model mechanism such as learning-to-
rank for ranking responses (Cao et al., 2007), for
instance, DialogBERT (Gu et al., 2021). There was
confusion about the performance between hierar-
chical versus non-hierarchical (i.e. single level)
models. In Lan et al. (2020), hierarchical and non-
hierarchical models for open-domain multi-turn
dialog generation experienced: hierarchical models
were worse than non-hierarchical ones, but hierar-
chical models with word-level attention were better
than non-hierarchical ones. In Santra et al. (2021),
it was claimed that hierarchical transformer models
with context encoder are effective. Our work proves
that hierarchical transformer models are better than
non-hierarchical ones without any out-of-model
mechanism.

The effectiveness of combining local-global con-
texts was demonstrated in NLP and CV. It was
effective to combine the benefits of using the atten-
tion for global context and using the CNN-like or
the RNN-like for local context (Yang et al., 2016;
Zhang et al., 2019a; Gu et al., 2021; Wu et al.,
2020b; Gulati et al., 2020; Wu et al., 2021a; Peng
et al., 2022); or using the RNN-like for global con-
text and using the attention for local context (Li
et al., 2020). In earlier works, hierarchical trans-
former encoders use only one token (say [CLS])
as the hidden representation of sentence encod-
ing to be fused in the context encoder (say HIB-
ERT (Zhang et al., 2019b), DialogBERT (Gu et al.,
2021)). With the dominance of Transformer, it
is natural to use Transformer to combine local-
global contexts for sequence problems (say (Wu
et al., 2021b; Santra et al., 2021; Fang et al., 2022;
Hatamizadeh et al., 2023), among others). HIER
(Santra et al., 2021) is a strong baseline CM with
hierarchical transformer encoders for individual
utterances and context respectively, with some lim-
itations compared to our model. In HIER, although
contextual embeddings of all utterance tokens are
input to the context encoder, the context is a con-
catenated sequence of utterances in a dialog history.
In LGCM, we can separately deal with each utter-
ance in a context and capture full contextualized
representations of the local and global contexts by
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the attention and fuse mechanism.
In essence, the concept of a hierarchical local-

global architecture is not a novel one. However,
what sets our model apart is our innovative ap-
proach to establishing meaningful correlations and
connections between local and global contexts. We
achieve this by introducing the Inter-attention and
Gate mechanisms, which work in tandem to fa-
cilitate more coherent and contextually relevant
conversations.

3 Conversation models

3.1 Preliminaries

We write u = {u1, u2, · · · , uT } as a conversation
with turn length T ∈ N, where {u2k}⌊T/2⌋k=1 are utter-
ances from one speaker and {u2k−1}⌈T/2⌉k=1 are those
from the other speaker. We arrange that uT is the
current response and uT−1 is the last utterance. We
introduce LGCM as an autoregressive generative
model by the following equation of conditional
distribution for the response uT :

P(uT ) = −
|uT |∑

i=1

log P(ui
T |u<i

T , u<T ; fθ), (1)

where the conditional probabilities are computed
by a neural network that is a (differentiable non-
linear) function fθ with parameters θ, which we
shall take as a variant of Transformer (Vaswani
et al., 2017). The training objective is to maximize
the average negative log-likelihood according to
Equation 1.

Recall that we distinguish local context for to-
kens in an utterance at the utterance level and global
context for inter-utterances in a dialogue at the dia-
logue level. We encode local context for each utter-
ance to capture more sensitive information from the
neighboring tokens and global context for multiple
utterances to capture inter-turn relevance from a
dialog history. We obtain contextualized represen-
tations of utterances by fusing the local and global
contexts.

LGCM is implemented as a local-global encoder-
decoder transformer (see Figure 1). We modify
the standard transformer encoder as local encoders
with PS and global encoder and keep the decoder
the same as the standard transformer decoder.
Embeddings. Let e(ui

t) be a single token embed-
ding (i.e. the i-th token in the t-th utterance), e(ut)
an utterance embedding. We use APE for the token

and utterance respectively. Let p(i) be token posi-
tional embedding for the i-th token that is shared
for each utterance and input in the local encoder,
and pu(t) utterance positional embedding for the
t-th utterance that is input in the global encoder.
We use role embedding r(t) for the t-th utterance to
distinguish whether the speaker is a user or a bot.
As usual, we use [bos]and [eos] as the begin-
ning and end of each utterance to separate between
utterances.

We write ui
t for input representation of token ui

t
as follow:

ui
t = e(ui

t) + p(i) + r(t). (2)

What follows, we write ut to denote the utterance
embedding e(ut) = (u1

t , · · · ,u|ut |
t ) for the sake of

convenience. We share the input and output embed-
ding matrices as usual done in past practice.
Local encoder. We use a standard transformer
module as a local encoder of LGCM for each utter-
ance in the local context. The transformer module
is stacked layers of the multi-head self-attention
followed by the feed-forward with layer normaliza-
tion in a standard way. For each utterance ut, an
utterance representation ct = {ci

t}|ut |
i=1 is produced

with the dimension of the value vector of ut, which
is a context vector from a self-attention module.
The locally contextualized representation ct essen-
tially summarizes the tokens in ut.

For utterance embeddings (u1, · · · ,uT−1) in the
context, the corresponding locally contextualized
representations (c1, · · · , cT−1) is the matrix of con-
text vectors by grouping all the obtained context
vectors together as columns.
Decoder. We use a standard transformer decoder
for LGCM. The decoder is stacked layers of the
multi-head self-attention followed by the cross-
attention with APE and the feed-forward with layer
normalization in a standard way.

3.2 Global encoder

We introduce a global encoder of LGCM at the
dialogue level. The global encoder comprises the
inter-attention and gate mechanism (Figure 1). The
hidden representations of the global encoder from
the local contexts (Self-Attention) and the global
context (Inter-Attention) are fused (via Gate) as the
fully contextualized representations of the encoder
of LGCM.

For locally contextualized matrix c =

(c1, · · · , cT−1), we write globally contextualized
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representation as the matrix C = (C1, · · · ,CT−1)
correspondingly. The global representation C mod-
els the transformation of global context at the di-
alogue level from the local representation c at the
utterance level as follows:

C =LayerNorm(MultiHead(

InterAttention(c, c, c) + c)),
(3)

where InterAttention(Q,K,V) is the inter-attention
mechanism as described in the following.
Inter-Attention. We introduce the inter-attention
to extend the attention mechanism to local-global
inter-utterance attention by using RPE. The basic
idea of InterAttention is that for any turn t, ct at-
tends to all the other css in the global context. Our
RPE extends the original one (Shaw et al., 2018)
from a single sequence in the self-attention to pair-
wise utterances for the conversation. We use RPE
in attention not just for arbitrary pairwise token
relations but also arbitrary pairwise utterance re-
lations, which helps capture the structure of con-
versation in the sense that it refers to the relations
between the tokens and utterances in input.

InterAttention(Q,K,V) is defined according to
the relation (relative distance) between the t-th ut-
terance and the s-th utterance as input in the fol-
lowing:

At,s =
1√
dout

ctWQ
(
csWK + 1|us |a

K
t,s

)⊤
,

Ct =

T−1∑

s=1

Softmax
(
At,s
) (

csWV
)
,

(4)

where WQ,WK ,WV ∈ Rdin×dout are matrices to
be learned for transforming ct, cs to their QKV-
representations, aK

t,s ∈ Rdout is a learnable vector
with the same dimension as c j

sWK according to the
relative distance between the t-th and the s-th ut-
terances of the input. Namely, for a query ci

t, the
inter-attention computes its globally contextualized
representation over all the tokens, c j

s, belonging to
their utterances that are locally contextualized rep-
resentations in the following:

Ci
t =

T−1∑

s=1

|us |∑

j=1

α
i, j
t,s(c j

sWV ),

α
i, j
t,s = Softmax(ei, j

t,s),

(5)

where αi, j
t,s is the weight of ci

t over c j
s. The logit ei, j

t,s
is computed by the relative distance as follows:

ei, j
t,s =

1√
dout

(ci
tW

Q)(c j
sWK + aK

t,s)
⊤. (6)

Notice that we only take the relative distance repre-
sentation for the key position, aK

t,s. As observed in
past experiences (Shaw et al., 2018; Huang et al.,
2020) and our ablation study, we observe that the
key position encoding is key.

In the original RPE, it is assumed that the rel-
ative position information is not useful beyond a
certain distance and is clipped for the maximum
relative position. We take the whole context length
as the maximum; that is, we do not need to clip for
it. Contrarily, we claim that the relative position in-
formation in a dialog history is useful for grounded
conversation. The clipped maximum length possi-
ble does not allow the conversation to attend over
an informative enough context. The global context
depends on all the local contexts where information
about the relative position representations selected
by given attention heads is learnable.
Gate. In the global encoder, the Gate follows from
the inter-attention for the fusion of Self-Attention
in the local context and Inter-Attention in the global
context as fully contextualized representations. The
fused encoding C̃ is the fuse of the representation
c of the local encoders and the one C of the inter-
attention by a nonlinear transformation (Sigmoid)
for local-global contextualized representation as
follows:

H = Sigmoid([c; C]W),

C̃ = (1 − H) ⊙ C + H ⊙ c,
(7)

where [c; C] is the concatenation of c and C, W
is a learnable linear transformation, ⊙ indicates
element-wise (Hadamard) multiplication. Remem-
ber that the fused encoding C̃ outputs to the cross-
attention of the decoder.

Finally, a question may be asked whether the
structure of LGCM for combining local-global con-
texts for more informative distribution brings up
more computation burden than the Transformer.
Most likely, we point out that the computational
complexity of LGCM is less than Transformer. Let
L be the length of the input sequence and d the
dimension of the hidden state. The main computa-
tion burden for the single-head transformer encoder
layer comes from matrix multiplications of self-
attention and feed-forward network (FFN), namely
6Ld2 + 4L2d for self-attention and 16Ld2 for FFN,
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respectively. The local encoder of LGCM has the
same structure as the Transformer encoder. The dif-
ference between them is that the local encoder of
LGCM processes each utterance separately, while
the Transformer encoder processes the concate-
nated sequence of utterances. Assume that the in-
put sequence contains N utterances with the same
length the computation burden of the self-attention
in the local encoder of LGCM is 6Ld2+ 4L2d

N , which
is more efficient than the Transformer encoder. For
comparing the global encoder of LGCM and the
Transformer encoder, we first consider the compari-
son between Inter-Attention and Self-Attention. As
shown in Equation 4, the inter-attention adds a de-
viation about the relative distance to the key, which
is negligible compared with matrix multiplication.
Thus we consider that the computational complex-
ity of the inter-attention and the self-attention is
almost equal. We then consider the comparison
between the Gate of LGCM and FFN. Since the
computation burden of Sigmoid and element-wise
multiplication can be ignored concerning matrix
multiplication, the calculation amount of Gate is
4Ld2 according to Equation 7, which is more effi-
cient than FFN. To sum up, when the number of
layers of both the LGCM encoder and the Trans-
former encoder is the same, the computational com-
plexity of the LGCM encoder is less. This allows
us to scale up the model to a large one.

4 Experiments

4.1 Setup

Datasets. Experiments are conducted on three
public-available English multi-turn dialog datasets
as follows:

• PersonaChat (Zhang et al., 2018): This
dataset is randomly paired and asked to get
to know each other by chatting according to
the given profiles, consisting of 164,356 utter-
ances over 10,981 dialogs.

• DailyDialog (Li et al., 2017): This dataset
covers a variety of topics in daily life, consist-
ing of 102,979 utterances over 13,118 dialogs.

• MultiWoz (Budzianowski et al., 2018): This
dataset comprises human-human written con-
versations in multiple domains and topics,
consisting of 115,424 utterances over 8,438 di-
alogues. Although designed for task-oriented
dialogue, the dataset is a good benchmark for

open-domain response generation (Gu et al.,
2021).

Comparison models. We compare LGCM with
baseline Transformer (Vaswani et al., 2017), and
four strong baseline CMs: TransferTransfo (Wolf
et al., 2019), DialoGPT (Zhang et al., 2020), Di-
alogBERT (Gu et al., 2021) and HIER (Santra
et al., 2021). Both HIER and LGCM use hierarchi-
cal transformer encoders, the comparison between
them demonstrates the effectiveness of the global
encoder in our model. HIER-CLS (Santra et al.,
2021) is a variant of HIER that takes a single to-
ken as the embedding for each utterance. We also
include HIER-CLS for comparison.

When comparing models, we aim to eliminate
the influence of pre-training data and model scale,
focusing the comparison on model design. Hence,
we re-implement these baseline models to match
the scale of LGCM, and then train them on each
dataset in a supervised manner. Based on the char-
acteristics of the baseline models, we divide them
into two categories. The first group consists of
Transformer, HIER, and HIER-CLS, which mainly
differ from LGCM in the design of the encoder.
To directly reflect the effect of our designs in the
LGCM encoder, for models in this group, we use
the same input embedding and decoder as LGCM
to eliminate the influence of irrelevant factors.3

The models in the second group, DialoGPT, Trans-
ferTransfo, and DialogBERT, all have their spe-
cial designs. For example, DialoGPT adopted a
decoder-only structure, while TranferTransfo em-
ploys a multi-task learning paradigm. For these
models, we make minimal modifications while re-
taining model-specific designs of the original mod-
els such as input embedding, multi-task learning,
and decoding strategy.
Implementation. We use the transformers library
to implement all the models (Wolf et al., 2020).4

Transformer consists of 6 encoder layers and 6
decoder layers. All the hierarchical models (Di-
alogBERT, HIER/HIER-CLS, and LGCM) consist
of 3 local (or so-called utterance) encoder layers, 3
global (or so-called context) encoder layers, and 6
decoder layers. The decoder-only models (Trans-
ferTransfo and DialoGPT) consist of 6 decoder

3A subtle distinction is that since the Transformer lacks
a hierarchical encoder structure, we add the utterance posi-
tional encoding in the input embedding when implementing
the Transformer encoder.

4https://github.com/huggingface/
transformers
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Model DailyDialog MultiWOZ PersonaChat

PPL BLEU METEOR NIST ROUGEL PPL BLEU METEOR NIST ROUGEL PPL BLEU METEOR NIST ROUGEL

Transformer 30.03 6.86 10.61 26.48 15.61 5.01 12.95 22.05 63.62 24.05 36.66 7.65 10.52 40.95 15.77

TransferTransfo 36.51 6.89 11.73 27.42 17.11 5.35 10.03 16.81 47.10 19.48 44.07 8.11 11.10 44.38 15.19
DialoGPT 42.90 7.36 12.78 29.04 17.86 5.25 12.59 21.24 61.75 23.23 40.74 7.74 10.38 41.58 15.21

DialogBERT 39.91 6.17 8.77 24.76 11.35 5.96 8.26 13.28 42.03 14.51 47.06 6.43 7.70 30.92 10.50

HIER 27.89 6.70 11.47 25.12 17.19 5.05 13.06 22.15 64.62 24.04 37.42 7.75 10.31 41.81 15.52
HIER-CLS 30.34 6.57 11.19 25.26 16.97 5.05 12.92 21.62 65.86 23.41 39.38 7.91 10.68 43.60 15.69

LGCM 26.48 8.36 14.08 35.56 19.17 4.99 13.26 22.79 67.66 24.24 35.87 8.41 11.79 47.07 16.73

Table 1: Automatic evaluation results on three datasets.

Model DailyDialog MultiWOZ PersonaChat
PPL BLEU METEOR NIST ROUGEL PPL BLEU METEOR NIST ROUGEL PPL BLEU METEOR NIST ROUGEL

LGCM 26.48 8.36 14.08 35.56 19.17 4.99 13.26 22.79 67.66 24.24 35.87 8.41 11.79 47.07 16.73
-w/o IA 26.87 7.74 13.45 32.14 18.65 4.98 13.15 22.24 65.83 24.00 35.63 7.85 10.52 43.03 15.08

-w/o gate 28.13 7.29 12.39 30.94 17.29 5.04 13.09 22.09 65.74 24.00 36.10 8.00 11.31 43.54 16.25

Table 2: Ablation study results on Inter-Attention and Gate. ‘- w/o IA’ refers to LGCM-w/o Inter-Attention, ‘- w/o
Gate’ refers to LGCM-w/o Gate.

layers. The number of attention heads is 8, and
the dimension of the hidden state is 512 for all the
models. The maximum number of utterances al-
lowed in the context is 7 (Adiwardana et al., 2020;
Gu et al., 2021).

The models are optimized by AdamW
(Loshchilov and Hutter, 2019). The learning
rate is tuned on the validation set, and the model
checkpoints that performed best on the validation
set are selected for testing. We adopt the sampling
strategy for TransferTransfo and DialogBERT
during generation as in the original papers. For the
other models, we use greedy search.
Metrics. The models are evaluated by automatic
evaluation metrics as follows:

• Perplexity is commonly used in NLP tasks,
which measures the ability of a model to pre-
dict real samples.

• BLEU shows the N-gram similarity between
the predicted results and the real ones (Pap-
ineni et al., 2002). We present BLEU-4 in our
experiments.

• NIST is an improved version of BLEU that
takes into account the amount of information
per N-gram (Doddington, 2002).

• METOR calculates recall in addition to preci-
sion and takes into account synonyms (Baner-
jee and Lavie, 2005).

• ROUGE-L measures the similarity between
the predicted text and the real one based on
the longest common subsequence (Lin, 2004).

4.2 Results

4.2.1 Evaluation
The automatic evaluation results are shown in Ta-
ble 1. We see that LGCM performs best on all
the metrics with significant margins. The best ra-
tios range from 35.49% to 71.61%, calculated from
the table. The results show the effectiveness of
LGCM through the fusion of local and global con-
texts. Therefore, we have positively answered that
the distinction between local and global contexts is
helpful in conversation.

4.2.2 Ablation study
To further examine the contributions of the two
main designs in the global encoder of LGCM, we
conduct ablation studies on Inter-Attention and
Gate, respectively. To ensure the computing power
of the model, when implementing LGCM-w/o
Inter-Attention, we replace Inter-Attention with
Self-attention, and when implementing LGCM-w/o
Gate, we replace Gate with FFN.

As shown in Table 2, LGCM outperforms
LGCM without Inter-Attention on DailyDialog. On
the other two datasets, LGCM performs better than
LGCM without Inter-Attention except for compa-
rable to PPL. Additionally, removing Gate from
LGCM results in a significant performance drop
across all the metrics and all the datasets. This
study shows that both Inter-Attention and Gate are
the proper mechanisms for processing local and
global contexts in conversation.

4.3 Weight visualization

To figure out how Inter-Attention and Gate help
the model understand the contexts, we visualize
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(a) DailyDialog (b) MultiWOZ (c) PersonaChat

Figure 2: The attention score visualization of the global encoder on the validation sets. The attention from ut to us is
calculated as at→s =

1
|ut |
∑|ut |

i=1
∑|us |

j=1 α
i, j
t,s.

(a) DailyDialog (b) MultiWOZ (c) PersonaChat

Figure 3: The gate threshold visualization of the global encoder on validation sets. The values in the heatmap
represent the proportion of the global information in the utterance representation, averaged across each token and
each hidden dimension.

the attention score and gate threshold in the global
encoder of LGCM.

Figure 2 shows the heatmap of the attention
weights between utterances. We see that the atten-
tion scores between utterances are greatly affected
by the utterance’s speaker. For example, on the Dai-
lyDialog, the last utterance gives greater attention
to utterances from partner utterances, especially
at deeper layers. Furthermore, historic utterances
tend to pay more attention to the latest utterances
(the last two turns in our case), which is reasonable
since the latest utterances are more relevant to the
current dialog topic. In addition, all the historic
utterances in PersonaChat have a high attention
weight for the persona span, which reflects that
the dialogs in the dataset are organized around the
given profiles of both participants.

Figure 3 shows the proportion of information
from the global representations of utterances. We
see that local and global contexts contribute con-
siderably to the representations held among his-
toric utterances and at different layers. This result
demonstrates the necessity of using Gate to fuse
local and global contexts dynamically. In addition,

since Gate has reserved a considerable part of the
information for each utterance, an utterance in the
attention module usually pays more attention to
the context other than itself, thus strengthening the
inter-utterance interaction in the entire context.

5 Conclusions

Pretrained transformer models are adjusted by con-
catenating contexts into a single lengthy sequence.
It is imperative to explore a variety of methods to
encode the context effectively.

We have introduced a local and global conversa-
tion model for multi-turn dialogues in open domain.
This model harnesses a hierarchical transformer en-
coder architecture, seamlessly integrating local and
global contexts to enhance the efficacy of conver-
sation. We have underscored the significance of
distinguishing between the local context for tokens
within an utterance at the utterance level and the
global context for inter-utterances within a dialogue
at the dialogue level. We hope that this study con-
tributes to the comprehension of language models
and conversational AI.
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Limitations

LGCM has some limitations. First, it is a small
model with limited capability of conversation. We
have not experienced scaling it up to a large one and
pretraining it on big data. Second, we have not ex-
perienced extending it to the cases of multi-modal
conversation and multi-task applications. These are
areas where LGCM has not been applied, and they
can be considered promising directions for future
research.
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