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Abstract

Achieving precise semantic control over the
latent spaces of Variational AutoEncoders
(VAEs) holds significant value for downstream
tasks in NLP as the underlying generative mech-
anisms could be better localised, explained and
improved upon. Recent research, however, has
struggled to achieve consistent results, primar-
ily due to the inevitable loss of semantic infor-
mation in the variational bottleneck and limited
control over the decoding mechanism. To over-
come these challenges, we investigate discrete
latent spaces in Vector Quantized Variational
AutoEncoders (VQVAEs) to improve semantic
control and generation in Transformer-based
VAEs. In particular, We propose T5VQVAE, a
novel model that leverages the controllability of
VQVAEs to guide the self-attention mechanism
in T5 at the token-level, exploiting its full gener-
alization capabilities. Experimental results indi-
cate that T5VQVAE outperforms existing state-
of-the-art VAE models, including Optimus, in
terms of controllability and preservation of se-
mantic information across different tasks such
as auto-encoding of sentences and mathemat-
ical expressions, text transfer, and inference.
Moreover, T5VQVAE exhibits improved infer-
ence capabilities, suggesting potential appli-
cations for downstream natural language and
symbolic reasoning tasks.

1 Introduction

The emergence of deep generative neural networks
supported by Variational AutoEncoders (VAEs)
(Kingma and Welling, 2013) enables the locali-
sation of syntactic and semantic properties within
complex sentence latent spaces. By localising and
manipulating these generative factors within the
latent spaces, one can better control the properties
of the textual output, enhancing performance on
downstream tasks (Carvalho et al., 2023; John et al.,
2019a), and providing mechanisms for representing
and disentangling syntactic and semantic features
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Latent Traversal:

Latent Arithmetic: xA + xB

Data: scientific explanations,
Math expression

Baselines: Optimus, Della,
LSTM-base VAEs.

Metrics: BLEU, BLEURT,
Cosine, Loss, PPL.

Latent Interpolation: interpolation
smoothness (IS) metric

Data: explanatory inference, math
inference

Baselines: Optimus, Della, and
Transformers (T5, Bart, etc.).

Metrics: BLEU, BLEURT, etc.

Symbolic Evaluation: operate
vector to provide semantic control.

Training T5VQVAE:  

T5VQVAE architecture:  

Training Latent Spaces:  

Soft: k-mean, hard: Gumbel Softmax, Stable training: Exponential Moving Average (EMA) 

Figure 1: By controlling the token-level discrete latent
space in VAEs, we aim to explicitly guide the cross-
attention mechanism in T5 to improve the generation
process. We focus on three challenging tasks to assess
precise semantic control and inference.

within natural language (Zhang et al., 2023a, 2022;
Mercatali and Freitas, 2021).

Recent work (Carvalho et al., 2023; Zhang et al.,
2022, 2023a) investigated controllable text gener-
ation via latent sentence geometry based on the
canonical Optimus architecture (the first large pre-
trained language VAE, Li et al. (2020)). However,
the Optimus architecture brings its associated chal-
lenges since (i) the Optimus setup does not allow
for a fine-grained (i.e., token-level) semantic con-
trol as sentence-level representation features are
ignored by most attention heads especially in lower
layers, where lexical-level semantics is captured
(Hu et al., 2022); (ii) the sentence bottleneck in the
VAE architecture leads to inevitable information
loss during inference (Zhang et al., 2023b,d).

This work concentrates on addressing these ar-
chitectural limitations by aiming to minimise the
information loss in the latent space and effectively
control the decoder and its attention mechanism.

1434



The Vector Quantized Variational AutoEncoder
(VQVAE) (Van Den Oord et al., 2017), as a discrete
latent variable model, can be considered an ideal
mechanism to alleviate these issues since it pre-
serves and closely integrates both a coarse-grained
continuous latent sentence space and a fine-grained
latent token space that can preventinformation loss.
More importantly, its latent token space can directly
work on the cross-attention module (Vaswani et al.,
2017) to guide the generation in seq2seq models,
such as T5 (Raffel et al., 2020). Therefore, we hy-
pothesise that such a mechanism can enable better
generalisation and semantic control in Transformer-
based VAEs.

Following these insights, we propose a novel
approach named T5VQVAE, a model that lever-
ages the controllability of VQVAE to guide the
token-level self-attention mechanism during the
generation process. We evaluate T5VQVAE on
three challenging and diverse downstream tasks in-
cluding (1) language modelling, (2) text transfer
(guided text generation via the movement of latent
vectors), and (3) natural language and symbolic
inference tasks. An illustration of the complete
model architecture and experimental setup can be
found in Figure 1.

The overall contribution of the paper can be sum-
marised as follows:

1. We propose T5VQVAE, the first pre-trained
language Vector-Quantised variational Au-
toencoder, bridging the gap between VAEs
and token-level representations, improving
sentence-level localisation, controllability,
and generalisation under VAE architectures.
The experiments reveal that the proposed
model outperforms previous state-of-the-art
VAE models, including Optimus (Li et al.,
2020), on three target tasks, as well as deliv-
ering improved semantic control when com-
pared to the previous state-of-the-art.

2. We propose the Interpolation Smoothness
(IS) metric for quantitatively evaluating sen-
tence interpolation performance, a fundamen-
tal proxy for measuring the localisation of syn-
tactic and semantic properties within sentence
latent spaces. The experimental results indi-
cate that T5VQVAE can lead to better interpo-
lation paths (suggesting better interpretability
and control).

3. Experiments on syllogistic-deductive NLI and

mathematical expression derivation reveal that
a quasi-symbolic behaviour may emerge in
the latent space of T5VQVAE, and that the
model can be explicitly controlled to achieve
superior reasoning capabilities.

Our experimental code is available online1 to en-
courage future work in the field.

2 Methodology

In this section, we first present our model,
T5VQVAE, whose primary goal is to learn a la-
tent space by reconstructing input sentences. Next,
we illustrate its objective function, which consists
of three parts designed to improve semantic control:
reconstruction term, latent space optimization term,
and encoder constraint term. Finally, we highlight
the architectural advantages of T5VQVAE com-
pared to Transformer-based VAEs.

Model architecture. Van Den Oord et al. (2017)
first proposed the VQVAE architecture for learn-
ing a discretised latent space of images, showing
that it can alleviate the issue of posterior collapse,
in which the latent representations produced by
the Encoder are ignored by the Decoder (Kingma
and Welling, 2013). In this work, we propose to
integrate T5 encoder/decoder into the VQVAE ar-
chitecture for representation learning with natural
language. T5 was selected due to its consistent
performance across a large range of NLP tasks
and its accessibility. To cast T5 into a VQVAE
model, we first establish a latent token embedding
space, denoted as the codebook, represented by
z ∈ RK×I . Here, K refers to the number of tokens
in the codebook, and I represents the dimensional-
ity of each token embedding. When given a token
x, the Encoder E maps it into a vector represen-
tation, denoted as E(x). Then, the nearest latent
representation zk from the codebook z is selected
based on the L2 distance. The input of the cross-
attention module can then be formalised as follows:

x̂ = MultiHead
(
D(x)W q, zkW

k, zkW
v
)

Here, zk is the key and value and D(x), which rep-
resents the input token embedding of the decoder,
is the query. x̂ represents the reconstructed token,
while W q, W k, and W v are trainable weights of
query, key, and value.

1https://github.com/SnowYJ/T5VQVAE
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Training T5VQVAE The training of T5VQVAE
can be then considered as the optimisation of three
independent parts, including D(zk), zk, and E(x).
Starting from D, the model can be trained by max-
imising the reconstruction probability P (x|D(zk))
via the teach-forcing scheme. Next, the zk is opti-
mised by minimising the L2 distance between E(x)
and zk, which can be described as (sg[E(x)]−zk)

2

where sg is the stop gradient operation. Finally,
E(x) can be trained via the L2 distance. By ensur-
ing that E(x) can learn the latent embedding under
the constraint of RK×I rather than learning an em-
bedding directly, we can guide the model to achieve
better performance. A commitment weight β < 1
is used to constraint the E close to zk, which can
be described as: β(E(x)−sg[zk])2. β is set to 0.25
following the same setup as (Van Den Oord et al.,
2017) to preserve a behaviour consistent with their
findings. The final objective function of T5VQVAE
can be formalised as follows:

LV QV AE = P (x|D(zk))︸ ︷︷ ︸
(1)reconstruction

+(sg[E(x)]− zk)
2

︸ ︷︷ ︸
(2)LatentSpace

+ β (E(x)− sg[zk])
2

︸ ︷︷ ︸
(3)LatentSpaceConstraint

Training the latent space. There are two possi-
ble strategies to update the latent space: i. k-means
and ii. Gumbel softmax. Regarding k-means, for
each token embedding wi in a sentence, it selects
the nearest latent token embedding, zk, to its to-
ken embedding ewi . This process is equivalent to
classifying ewi using k-means and then choosing
the corresponding central point zk as the input for
D(zk). This can be expressed as follows:

zwi = zk, where k = argminj
∥∥ewi − zj

∥∥
2

To improve the stability of latent space training
(term 2), we adapted the Exponential Moving Av-
erage (EMA) training scheme to update z (Roy
et al., 2018). Figure 2 displays the training and
testing loss curves of T5VQVAE with EMA or not.
More details of EMA are provided in Appendix A.
Instead of using k-means, which performs a soft
selection of the index k, we can utilize the Gumbel
softmax trick (Jang et al., 2016) for a hard sam-
pling of the index k. This trick involves sampling
a noise value gk from the Gumbel distribution and
then using the softmax function to normalize the
output, resulting in a probability distribution. By
selecting the index with the highest probability, we

Figure 2: Loss curves of T5VQVAEs (base) with and
without EMA and Optimus on the WorldTree corpus.

obtain a discrete choice. This entire process can be
described as follows:

zwi = zk,where

k = argmaxk
exp(log(tk) + gk)/τ∑K
k=1 exp(log(tk) + gk)/τ

In this context, tk represents the probability of the
k-th token, which can be obtained through a linear
transformation before being fed into the Gumbel
softmax. The parameter τ serves as a temperature
hyper-parameter that controls the closeness of the
new distribution to a discrete distribution. As τ
approaches zero, the distribution becomes one-hot,
while a non-zero value of τ leads to a more uniform
distribution. In our experiments, we experienced
convergence issues when using the Gumbel soft-
max scheme, and therefore decided to adopt the
k-means mechanism which generally leads to bet-
ter results.

Advantages of T5VQVAE. Compared with
state-of-the-art Transformer VAEs such as Optimus
(Li et al., 2020), our model has the following archi-
tectural advantages: (i) efficient and stable latent
space compression. During the training of Opti-
mus, in fact, the KL term in ELBO is regularized
cyclically (Fu et al., 2019) to avoid KL vanishing
and posterior collapse, which leads to an unstable
training process (figure 2). In contrast, T5VQVAE
avoid the KL regularization term since it becomes
a constant value:

KL (q(zk|x)||p(zk)) =
∑

k

q(zk|x) log
q(zk|x)
p(z)

= 1× log
1

1/K
= logK

where the prior p(z) = 1/K is a uniform distri-
bution. (ii) Better controllability. Hu et al. (2022)
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revealed that in Optimus (Li et al., 2020), the la-
tent representation is concatenated into key and
value which is more likely to be ignored by most
attention heads especially in lower layers where
lexical-level semantics is captured. In contrast, the
latent representations of T5VQVAE are designed
to act on the attention heads directly.

3 Controllability Evaluation

Next, we put forward two metrics for quantitatively
evaluating the controllability of the proposed model
(T5VQVAE), which we refer to as semantic disen-
tanglement and interpolation smoothness. The for-
mer evaluates the controllability from the perspec-
tive of disentanglement of semantic factors (e.g.,
arguments and associated semantic roles). The lat-
ter evaluates the smoothness and coherence of the
latent space geometry during interpolation.

3.1 Semantic Disentanglement

Recent studies have attempted to adapt metrics
from the image domain to evaluate the semantic
disentanglement of sentences (Zhang et al., 2022;
Carvalho et al., 2023). Semantic information in a
sentence is more likely to be entangled, especially
in the context of stacked multi-head self-attention
models. As mentioned in (Zhang et al., 2022; Car-
valho et al., 2023), conceptually dense sentences
are clustered according to role-content combina-
tion over the VAE latent space. Each semantic role
is jointly determined by multiple dimensions rather
than one single dimension. Therefore, calculating
the importance of one dimension to that semantic
role as a disentanglement metric is unreliable. In
this work, we quantitatively evaluate the disentan-
glement of the semantic roles by: (1) calculating
the averaged Euclidean distance between different
content under that role, such as the distance be-
tween PRED-is and PRED-are, and (2) counting
the number of different indices of the same role-
content after the vector quantisation. The smaller
the distance or the less the number of indices, the
more concentrated the distribution of this semantic
role in the latent space, indicating better disentan-
glement.

3.2 Interpolation Smoothness

Interpolation is a standard process for evaluating
the geometric properties of a latent space in both
image and language domains (Li et al., 2020; Liu
et al., 2021). It aims to generate a sequence of sen-

tences following a spatial trajectory from source
to target via latent arithmetics. For example, in
the VAE latent space, the interpolation path can
be described as zt = z1 · (1 − t) + z2 · t with t
increased from 0 to 1 by a step size of 0.1 where z1
and z2 represent latent vectors of source and target
sentences, respectively. In this case, each interme-
diate output D(zt) should change fewer semantic
concepts at each step if the latent space is smooth
and regular. In this work, we employ a similar
strategy, however follow the more granular token
level within the VQVAE. We directly manipulate
the interpolation within the latent token space. At
each step t, we obtain the intermediate latent token
embedding zwi

t within a sentence by calculating
the weighted minimal distance between its preced-
ing token embedding zwi

t−0.1 and the target token
embeddings zwi

2 . This process can be described as
follows:

zwi
1 = ek1 , zwi

2 = ek2 ,where i = [1, ..., L]

zwi
t = zk,where

k = argminj (1− t)×
∥∥zwi

t−0.1 − zj
∥∥
2

+ t×
∥∥zwi

2 − zj
∥∥
2

st = [zw1
t ; . . . ; zwL

t ]

where st represents the sentence embeddings at
step t. The final generated sentence can be de-
coded as st = D(st). Once we have obtained the
interpolation path, we introduce the interpolation
smoothness (IS) metric to quantitatively evaluate
its smoothness. This metric involves calculating
the aligned semantic distance between the source
and the target (referred to as the ideal semantic dis-
tance). Subsequently, we calculate the sum of the
aligned semantic distances between each pair of ad-
jacent sentences in the path (referred to as the actual
semantic distance). Finally, by dividing the ideal
semantic distance by the actual semantic distance,
we obtain a measure of smoothness. If the result is
1, it indicates that the actual path aligns perfectly
with the ideal path, suggesting better geometric
properties. Conversely, it suggests a less coherent
transformation path, indicating poorer geometric
properties. The metric is defined as follows:

IS = E(s0,...,sT )∼P
δ(align(s0, sT ))∑T

t=0 δ(align(st, st+0.1))

where δ and align are sentence similarity and align-
ment functions, respectively. In this experiment,
sentence similarity and alignment are performed
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via Word Mover’s Distance (Zhao et al., 2019)
since it can softly perform the semantic alignment.

4 Experiments

4.1 AutoEncoding Task

Pre-training Data. In this work, we focus on the
use of conceptually dense explanatory sentences
(Dalvi et al., 2021) and mathematical latex expres-
sions (Meadows et al., 2023b) to evaluate model
performance. The rationale behind this choice is
that (1) explanatory sentences provide a semanti-
cally challenging yet sufficiently well-scoped sce-
nario to evaluate the syntactic and semantic or-
ganisation of the space (Thayaparan et al., 2020;
Valentino et al., 2022a,b); (2) mathematical expres-
sions follow a well-defined syntactic structure and
set of symbolic rules that are notoriously difficult
for neural models (Meadows et al., 2023a). More-
over, the set of rules applicable to a mathematical
expression fully determines its semantics, allow-
ing for an in-depth inspection and analysis of the
precision and level of generalisation achieved by
the models (Welleck et al., 2022; Valentino et al.,
2023). Firstly, we conduct a pre-training phase,
evaluating the performance of T5VQVAE in re-
constructing scientific explanatory sentences from
WorldTree (Jansen et al., 2018) and mathemati-
cal latex expressions from the dataset proposed by
Meadows et al. (2023b).

Baselines. We consider both small and base ver-
sions of pretrained T5 to initialise the T5VQVAE,
where the codebook size is 10000. The effect of
different codebook sizes on its performance and the
optimal point within the architecture (different hid-
den layers of the encoder) to learn the codebook are
reported in Table 11. As for the large VAE model,
we consider Optimus with random initial weights
and pre-trained weights (Li et al., 2020) and Della
(Hu et al., 2022). We chose two different latent di-
mension sizes (32 and 768) for both of them. More-
over, we also select several LSTM language autoen-
coders (AE), including denoising AE (Vincent et al.
(2008), DAE), β-VAE (Higgins et al., 2016), ad-
versarial AE (Makhzani et al. (2015), AAE), label
adversarial AE (Rubenstein et al. (2018), LAAE),
and denoising adversarial autoencoder (Shen et al.
(2020), DAAE). Additional details on the training
setup are provided in Appendix A. The full source
code of the experimental pipeline is available at an
anonymised link for reproducibility purposes.

Explanatory sentences
Evaluation Metrics BLEU BLEURT Cosine Loss ↓ PPL ↓
DAE(768) 0.74 0.03 0.91 1.63 5.10
AAE(768) 0.35 -0.95 0.80 3.35 28.50
LAAE(768) 0.26 -1.07 0.78 3.71 40.85
DAAE(768) 0.22 -1.26 0.76 4.00 54.59
β-VAE(768) 0.06 -1.14 0.77 3.69 40.04
Optimus(32, rand) 0.54 0.14 0.92 1.08 2.94
Optimus(32, pre) 0.61 0.29 0.93 0.86 2.36
Optimus(768, rand) 0.49 -0.04 0.90 1.32 3.74
Optimus(768, pre) 0.68 0.48 0.95 0.65 1.91
DELLA(32, rand) 0.71 0.06 0.92 0.50 1.65
DELLA(768, rand) 0.72 0.21 0.95 0.41 1.51
T5VQVAE(small, soft) 0.81 0.62 0.97 0.46 1.58
T5VQVAE(base, soft) 0.82 0.62 0.97 0.75 2.11

Mathematical expressions
Evaluation Datasets EVAL VAR EASY EQ LEN
DAE(768) 0.94 0.50 0.80 0.74 0.58
AAE(768) 0.41 0.41 0.39 0.41 0.52
LAAE(768) 0.41 0.45 0.39 0.39 0.49
DAAE(768) 0.38 0.48 0.35 0.38 0.49
β-VAE(768) 0.39 0.48 0.37 0.39 0.50
Optimus(32, rand) 0.95 0.59 0.75 0.71 0.50
Optimus(768, rand) 0.96 0.61 0.79 0.75 0.54
DELLA(32, rand) 1.00 0.55 0.89 0.72 0.63
DELLA(768, rand) 1.00 0.55 0.93 0.79 0.64
T5VQVAE(small, soft) 0.97 0.65 0.95 0.90 0.69
T5VQVAE(base, soft) 0.98 0.62 0.95 0.85 0.68

Table 1: AutoEncoding task evaluation on the test set
(soft: k-means). The highest scores of large VAE mod-
els and LSTM-based VAE models are highlighted in
blue and in bold separately.

Quantitative Evaluation. As for modelling ex-
planatory sentences, we quantitatively evaluate the
performance of the models using five metrics, in-
cluding BLEU (Papineni et al., 2002), BLEURT
(Sellam et al., 2020), cosine similarity from pre-
trained sentence T5 (Ni et al., 2022), cross-entropy
(Loss), and perplexity (PPL). As for modelling
mathematical expressions, we use BLEU to eval-
uate the robustness of models on the 5 test sets
proposed by Meadows et al. (2023b), one designed
to assess in-distribution performance, and four de-
signed to assess out-of-distribution generalisation.
Here we provide a full characterisation of the test
sets: (1) EVAL: contains mathematical statements
following the same distribution of the training set
(like U + cos(n)), including expressions with simi-
lar lengths and set of symbols (2) VAR: full mathe-
matical statements with variable perturbations (like
U + cos(beta)), designed to test the robustness
of the models when dealing with expressions con-
taining variables never seen during training; (3)
EASY: simpler mathematical expressions with a
lower number of variables, designed to test length
generalisation (like cos(n)), (4) EQ: full mathe-
matical statements with equality insertions (like
E = U+cos(n)), designed to test the behaviour of
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Role-content NUM centers AVG dis MAX dis MIN dis
ARG0-animal 3 0.28 0.52 0.35
ARG1-animal 3 0.28 0.52 0.35
ARG2-animal 4 0.33 0.55 0.35
PRED-is 24 0.60 1.08 0.22
PRED-are 6 0.31 0.64 0.21
MOD-can 5 0.40 0.82 0.28
NEG-not 2 0.25 0.51 0.51

Table 2: Semantic role disentanglement.

the model on equivalent mathematical expressions
with minimal perturbations (5) LEN: mathematical
statements with a higher number of variables (like
U + cos(n)) +A+B), designed to test generali-
sation on more complex expressions.

As shown in Table 1, the highest scores for large
VAE models and LSTM-based VAE models are
highlighted in blue and bold, respectively. Among
them, T5VQVAEs with the k-means scheme out-
performs Optimus and LSTM-based VAEs in both
corpora and compared with Della, it can deliver
better generation and generalization. We provide
examples with low BLEURT scores in Appendix C

Next, we quantitatively evaluate the disentangle-
ment of T5VQVAE following the semantic disen-
tanglement reference metric 3.1. As displayed in
Table 2, the number of central points for PRED is
higher than the remaining role-content, being 24 in
PRED-is and 6 in PRED-are. This indicates that
the semantic information of PRED is more widely
distributed in the latent space when compared to
other roles. This behaviour might be attributed
to the fact that the aforementioned predicates are
widely used across sentences in the corpus. The
full visualisation of the semantic disentanglement
achieved by T5VQVAE is provided in Figure 3.

4.2 Text Transfer Task

Next, we investigate the controllability of
T5VQVAE by manipulating the latent space via
geometric transformations. This is referred to as
the Text Transfer task. We compare the perfor-
mance of T5VQVAE (base, soft) and Optimus (32,
pretrain) - both trained in the AutoEncoding task -
as baselines. We evaluate the latent space using la-
tent traversal, interpolation, and vector arithmetics.

Latent Traversal. The traversal is inspired by
the image domain, only changing the feature in-
terpretation (Higgins et al., 2017; Kim and Mnih,
2018). Specifically, if the vector projection within
the latent space can be modified when traversing

(re-sampling) one dimension, the output should
only change well-defined semantic features corre-
sponding to that dimension. In this experiment,
the traversal is set up from a starting sentence. As
illustrated in Table 3, the T5VQVAE can provide
localised semantic control by operating the discrete
latent space. Different dimensions in the discrete
sentence space can control different parts of the
sentence. The traversal for Optimus is provided in
Appendix D.

Latent Interpolation. As described in section
3.2, interpolation aims to generate a sequence of
sentences from source to target via latent vector
arithmetic. An ideal interpolation should lead to
reasonable semantic controls at each step. In Ta-
ble 4, we can observe that compared with Opti-
mus’s interpolation (bottom) where the semantics
are changed redundantly, e.g., from some birds
to some species mammals to most birds and from
have to don’t have to have, T5VQVAE (top) leads
to a more reasonable (coherent/smoother) pathway.
E.g., from speckled brown color to speckled brown
feathers to speckled wings to wings. Additional
examples are provided in Appendix D.

More importantly, we quantitatively evaluate the
interpolation behaviour via the IS metric. We ran-
domly select 100 (source, target) pairs and interpo-
late the path between them. Then, we calculate the
averaged, maximal, and minimal ISs. As shown in
Table 5, T5VQVAE outperforms Optimus by over
43% in average, which indicates that T5QVAE in-
duces a latent space which can better separate the
syntactic and semantic factors when contrasted to
Optimus.

Latent Vector Arithmetics. Inspired by word
embedding arithmetics, e.g., king − man +
woman = queen, we explore the compositional
semantics via latent arithmetic with the target of
sentence-level semantic control. After adding
two latent vectors corresponding to two sentences
sc = sA + sB , we expect the resulting sentence to
express the semantic information of both sentences.
From Table 6, we can observe that T5VQVAE can
generate the outputs containing both inputs’ seman-
tic information. E.g., the output contains are likely
to and their environment from sA and to survive
and / from sB . In contrast, Optimus is not able
to preserve to support this behaviour. Additional
examples are provided in Appendix D (Table 16).
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an animal requires warmth in cold environments

dim0: an animal requires warmth in cold environments
dim0: a animal requires warmth in cold environments
dim0: the animal requires warmth in cold environments

dim1: an organism requires warmth in cold environments
dim1: an animal requires warmth in cold environments
dim1: an object requires warmth in cold environments

dim2: an animal needs warmth in cold environments
dim2: an animal must find warmth in cold environments
dim2: an animal brings warmth in cold environments
dim2: an animal wants warmth in cold environments

dim4: an animal requires warmth during cold tempera-
tures
dim4: an animal requires warmth in cold environments
dim4: an animal requires warmth to cold environments

dim5: an animal requires warmth in temperatures
dim5: an animal requires warmth in warm environments
dim5: an animal requires warmth in a warm environment

dim6: an animal requires warmth in cold temperatures
dim6: an animal requires warmth in cold climates
dim6: an animal requires warmth in cold systems

Table 3: T5VQVAE(base): traversals showing controlled semantic concepts in explanations. We also provide the
traversal of Optimus latent space for comparison in Table 13.

Source: some birds have a speckled brown color

1. some birds have a speckled brown color
2. some birds do not have speckled brown feathers
3. some species mammals do not have speckled
wings
4. most species mammals do not have wings

1. some birds have scales
2. some birds have a speckled brown color
3. some species mammals have wings
4. most birds don’t have wings
5. most insects have wings
6. most species mammals don’t have wings

Target: most species mammals do not have wings

Table 4: Interpolation for T5VQVAE (top) and Optimus
(bottom) where blue, underline, and orange represent
subject, verb, and object, respectively. Only unique
sentences are shown.

Evaluation Metrics avg IS max IS min IS
Optimus(32, pretrain) 0.22 0.53 0.13
Optimus(768, pretrain) 0.21 0.50 0.10
T5VQVAE(base, soft) 0.65 1.00 0.18

Table 5: Interpolation smoothness.

4.3 Inference Task

Lastly, we move to downstream inference tasks,
in which we aim to explore the controllability of
T5VQVAE for reasoning with natural and sym-
bolic languages. Specifically, we focus on two
tasks including syllogistic-deductive natural lan-
guage inference in EntailmentBank (Dalvi et al.,
2021), where a natural language conclusion has
to be inferred from two premises, and mathemati-

sA: animals are likely to have the same color as
their environment
sB: animals require respiration to survive / use
energy

T5VQVAE: animals are likely to survive / to survive
in their environment
Optimus: animals have evolved from animals with
traits that have an animal instinct

Table 6: Latent arithmetic sA+sB for T5VQVAE(base)
and Optimus(32). blue, orange, and shallow blue in-
dicate the semantic information from both sA and sB ,
from sA only, from sB only, respectively.

cal expression derivation (Meadows et al., 2023b),
where the goal is to predict the result of applying a
mathematical operation to a given premise expres-
sion (written in latex).

Quantitative Evaluation. We quantitatively
evaluate several baselines following the same pro-
cedure as the AutoEncoding task. Table 7 shows
that T5VQVAE outperforms all VAE models on
both benchmarks.

Qualitative Evaluation. Next, we focus on
the NLI task to explore the controllability of
T5VQVAE for sentence-level inference traversing
the latent space. As illustrated in Table 8, traversing
the dimension corresponding to an individual word
(e.g., object from premise 1 (P1)) cannot preserve
the target word during the traversal along with the
semantic coherence of the transitions, indicating
that the inference is done entirely in the Encoder.
Therefore, we next explore how to manipulate the
latent representation to deliver a more controllable
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Natural Language Inference (EntailmentBank)
Evaluation Metrics BLEU Cosine BLEURT Loss ↓ PPL ↓
T5(small) 0.54 0.96 0.22 0.69 1.99
T5(base) 0.57 0.96 0.33 0.61 1.84
Bart(base) 0.54 0.96 0.17 0.63 1.87
FlanT5(small) 0.22 0.89 -1.33 0.99 2.69
FlanT5(base) 0.32 0.89 -0.31 0.95 2.58
T5bottleneck(base) 0.35 0.91 -0.20 1.24 3.45
Optimus(32) 0.07 0.74 -1.20 1.13 2.31
Optimus(768) 0.08 0.74 -1.21 0.82 2.27
DELLA(32) 0.08 0.85 -1.23 1.69 5.41
DELLA(768) 0.09 0.87 -1.09 1.54 4.66
T5VQVAE(small) 0.11 0.73 -1.23 0.85 2.33
T5VQVAE(base) 0.46 0.94 0.10 0.84 2.31

Mathematical Expression Derivation
Evaluation Datasets EVAL SWAP EASY EQ LEN
T5(small) 0.69 0.48 0.57 0.60 0.63
T5(base) 0.97 0.65 0.90 0.72 0.81
Optimus(32) 0.72 0.50 0.59 0.23 0.40
Optimus(768) 0.79 0.56 0.63 0.29 0.44
DELLA(32) 0.12 0.16 0.13 0.13 0.13
DELLA(768) 0.13 0.18 0.12 0.13 0.14
T5VQVAE(small) 0.75 0.57 0.77 0.48 0.50
T5VQVAE(base) 0.76 0.56 0.78 0.47 0.50

Table 7: Quantitative evaluation on inference tasks.

P1: a human is a kind of object
P2: a child is a kind of young human
C: a child is a kind of object

dim6: a young object is a kind of child
dim6: a boy is a kind of young object
dim6: a little boy is a kind of young human

Table 8: T5VQVAE (base): traversed conclusions.

inference behaviour.
Recent work (Zhang et al., 2023c) has provided a

granular annotated dataset of step-wise explanatory
inference types, which reflect symbolic (syllogistic-
style) operations between premises and conclu-
sions, including argument/verb substitution, fur-
ther specification, and conjunction. We leverage
this annotation to input two premises into the En-
coder to derive the latent token embeddings of in-
dividual arguments and guide the generation of the
conclusion via the Decoder. For example, for ar-
gument substitution and verb substitution, which
refers to the process of obtaining a conclusion
by substituting one argument/verb from the first
premise to an argument/verb of the second premise,
we substitute the respective token embeddings in
the latent space and feed the resulting representa-
tion to the decoder. Table 9 shows that by substi-
tuting the embeddings of the arguments, we can
control the behaviour of the model and elicit a sys-
tematic inference behaviour. We provide further

P1: a shark is a kind of fish
P2: a fish is a kind of aquatic animal
Pred: a shark is a kind of aquatic animal

P1: to move something can mean to transfer some-
thing
P2: flowing is a kind of movement for energy
Pred: flowing is a kind of transfer of energy

Table 9: T5VQVAE(base): quasi-symbolic inference ex-
amination in AutoEncoder (Top: argument substitution,
Bottom: Verb substitution).

specification and conjunction in Table 18. These
results show that the latent embeddings can be ma-
nipulated to deliver a syllogistic-style inference
behaviour. In particular, we demonstrate that the
distributed semantic information in the latent space
contains information about co-occurring tokens
within the sentence that can be systematically lo-
calised (within specific arguments, predicates or
clauses) and manipulated to generate a sound con-
clusion. This behaviour can be potentially lever-
aged as a foundation to build an interpretable and
multi-step natural language inference model. More
examples are reported in the Appendix E.

5 Related work

Semantic Control via Latent Spaces. Zhang
et al. (2022, 2023a) investigated the semantic con-
trol of latent sentence spaces, demonstrating the
basic geometric-semantic properties of VAE-based
models. Mercatali and Freitas (2021) defined dis-
entangled latent spaces focusing on the separation
between content and syntactic generative factors.
Moreover, some works focused on defining two
separate latent spaces to control natural language
generation on specific downstream tasks, such as
style-transfer and paraphrasing (Bao et al., 2019a;
John et al., 2019a). Comparatively, this work ex-
plores more granular control and a broader spec-
trum of tasks: from syllogistic to symbolic infer-
ence.

Language VAEs. Instead of Optimus (Li et al.,
2020) and its variation (Fang et al., 2022; Hu et al.,
2022) where the encoder and decoder are BERT
and GPT2, respectively, most of the language VAE
literature are based on LSTM architectures instan-
tiated on different text generation tasks, includ-
ing story generation (Fang et al., 2021), dialogue
generation (Zhao et al., 2017), text style transfer
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(John et al., 2019a; Shen et al., 2020), text para-
phrasing (Bao et al., 2019a), among others. Some
works also investigated different latent spaces or
priors to improve representation capabilities (Dai
et al., 2021; Ding and Gimpel, 2021; Fang et al.,
2022). Comparatively, this work contributes by
focusing on the close integration between language
models and vector-quantized VAE-driven granular
control, instantiating it in the context of a state-
of-the-art, accessible, and cross-task performing
language model (T5).

6 Conclusion and Future Works

In this work, we build a model for improving the se-
mantic and inference control for VAE-enabled lan-
guage model (autoencoding) architectures. We pro-
pose a new model (i.e., T5VQVAE) which is based
on the close integration of a vector-quantized VAE
and a consistently accessible and high-performing
language model (T5). The proposed model was
extensively evaluated with regard to its syntactic,
semantic and inference controls using three down-
stream tasks (autoencoding, text transfer, and infer-
ence task). Our experimental results indicate that
the T5VQVAE can outperform the canonical state-
of-the-art models in those tasks and can deliver a
quasi-symbolic behaviour in the inference task (via
the direct manipulation of the latent space).

As future work, we plan to further explore ap-
plications on symbolic natural language inference
via the direct manipulation of the latent space, and
to investigate the controllability of recent large lan-
guage models through the VQVAE architecture.
Moreover, additional research directions could be
informed by the current work:

Word-level Disentanglement. Our architecture
provides a foundation to explore token/word-level
disentanglement for more general sentence and in-
ference representation tasks. While sentence-level
disentanglement is widely explored in the NLP
domain, such as sentiment-content (John et al.,
2019b; Hu and Li, 2021), semantic-syntax (Bao
et al., 2019b; Zhang et al., 2023d), and negation-
uncertainty (Vasilakes et al., 2022), or syntactic-
level disentanglement (Felhi et al., 2022), this
mechanism is still under-explored in other NLP
tasks (Liao et al., 2020).

Interpretability. Discrete properties derived
from vector quantization can enable the further
probing and interpretability of neural networks by

discretizing continuous neural latent spaces, where
symbolic concepts are emerging in both images
(Deng et al., 2021; Li and Zhang, 2023) and natural
language (Tamkin et al., 2023) domains.

Limitations

While T5VQVAE can improve inference perfor-
mance and deliver inference control on syllogistic-
deductive style explanations, the application on
more complex reasoning tasks (e.g. involving
quantifiers and multi-hop inference) is not fully
explored. Besides, we still observe limitations in
out-of-distribution generalisation in the mathemat-
ical expressions corpus despite the improvement
over existing VAE models in terms of robustness.
This, in particular, is highlighted by the decrease in
performance obtained on the length generalisation
split (LEN) for both autoencoding and expression
derivation tasks.
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A Training setup

Datasets Table 10 displays the statistical informa-
tion of the datasets used in the experiment. As for
the AutoEncoder setup, we use the non-repetitive
explanations selected from both datasets as the ex-
perimental data. As for the Inference task, we use
the data from EntailmentBank and Math Symbol
Inference. The semantic roles of our data are an-
notated by automatic semantic role labelling tool
(Gardner et al., 2017).

Corpus Num data. Avg. length
WorldTree 11430 8.65

EntailmentBank 5134 10.35
Math Symbol 32000 6.84

Math Symbol Inference 32000 51.84

Table 10: Statistics from datasets.

T5VQVAE training We use T5VQVAE(small)
to choose the most appropriate codebook size be-
tween 2000 and 22000. In the experiment, the
maximal epoch is 100. The learning rate is 5e-5.
We use exponential moving averages (EMA) to up-
date the codebook. Besides, we also investigated
the optimal point within the architecture to learn
the codebook. As shown in Table 11, T5VQVAE
performs better when the codebook is learned at
the end of the Encoder. This observation suggests
that cross-attention is crucial in vector quantisation
(VQ) learning.

Metrics BLEU BLEURT cosine Loss ↓ PPL ↓
02000 0.73 0.21 0.93 0.79 2.20
06000 0.79 0.45 0.95 0.61 1.84
10000 0.81 0.62 0.97 0.46 1.58
14000 0.82 0.62 0.96 0.42 1.52
18000 0.83 0.64 0.96 0.38 1.46
22000 0.83 0.67 0.96 0.34 1.40

T5VQVAE(small) with different depth L in Encoder
T5VQVAE(L=05) 0.47 -0.80 0.80 0.91 2.48
T5VQVAE(L=04) 0.59 -0.56 0.84 0.76 2.13
T5VQVAE(L=03) 0.65 -0.42 0.85 0.68 1.97
T5VQVAE(L=02) 0.70 -0.21 0.88 0.65 1.91

Table 11: T5VQVAE(small): Different sizes of code-
book and optimal point.

1445

https://doi.org/10.18653/v1/2022.acl-long.574
https://doi.org/10.18653/v1/2022.acl-long.574
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/P17-1061
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053
https://doi.org/10.18653/v1/D19-1053


Expotential Moving Average (EMA) Let
{E(xk,1), ..., E(xk,nk

)} be the set of word embed-
ding xk,i belonging to the zk. The optimal value
for zk is the average of elements in this set, which
can be described as:

zk =
1

nk

nk∑

i

E(xi)

However, we cannot use this to update zk since we
usually work on mini-batches. Instead, we can use
EMA to update zk.

N
(t)
k := N

(t−1)
k × λ+ n

(t)
k (1− λ)

m
(t)
k := m

(t−1)
k × λ+

∑

i

E(xk,i)

zk :=
m

(t)
k

N
(t)
k

Where λ is 0.99 following the setup of (Van
Den Oord et al., 2017).

Optimus and DELLA training setup Both
of them can be trained via the evidence lower
bound (ELBO) on the log-likelihood of the data
x (Kingma and Welling, 2013). To avoid KL van-
ishing issue, which refers to the Kullback-Leibler
(KL) divergence term in the ELBO becomes very
small or approaches zero, we select the cyclical
schedule to increase weights of KL β from 0 to 1
(Fu et al., 2019) and KL thresholding scheme (Li
et al., 2019) that chooses the maximal between KL
and threshold λ. The final objective function can
be described as follows:

LVAE =Eqϕ(z|x)
[
log pθ(x|z)

]

− βmax [λ,KLqϕ(z|x)||p(z)]

B Visualization

In Figure 3, we visualise the latent space of
T5VQVAE via t-distributed Stochastic Neighbor
Embedding (T-SNE) (Van der Maaten and Hinton,
2008) to analyse the organization of key semantic
clusters. Specifically, we visualize the clusters of
token embeddings with the same role-content, dif-
ferent roles, and the same content with different
roles, respectively. We can observe that under the
same role-content (left), the latent token embed-
dings are widely distributed in the latent space as
the representation of the role-content is affected by

the context, which indicates poor disentanglement.
For different roles (middle), there are big overlaps
between different semantic roles, which indicates
poor disentanglement of semantic role structure.
For the same content with different roles (right), it
can be observed that different semantic role clusters
are fully overlapped. Those visualizations indicate
that the semantic information is naturally entangled
after an attention-based Encoder.

Figure 3: t-SNE plot of the T5VQVAE latent space.
Left: same role-content(PRED-is, ARG2-animal). Mid-
dle: different role-content(ARG0-PRED-ARG1, ARG1-
PRED-ARG2). Right: different roles with same content
(ARG0, 1, 2 - animal, ARG0, 1, 2 - water).

C AutoEncoding Task

We provide more reconstructed explanations with
low BLEURT scores in Table 12. we manually
evaluate its performance and show the common
issues in the AutoEncoding setup. (1) repetition:
some explanations that describe the synonym are
suffered from information loss. E.g., the prediction
is the grand canyon is a kind of canyon where the
golden is the grand canyon is a kind of place. (2)
wrong numerical token: the model cannot precisely
reconstruct the numerical token. E.g., the speed of
the boat can be calculated by dividing the length
of a boat compared with the golden: the speed of
the sailboat can be calculated by dividing 35 by 5.

D Text Transfer Task

We provide more traversal, interpolation, and arith-
metic examples in Tables 13,14, 15, and 16.

E Inference Task

We provide more examples in Tables 17 and 18.
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Golden Explanations Predicted Explanations BLEURT BLEU
the grand canyon is a kind of place the grand canyon is a kind of canyon 0.26 0.87
a blood thinner can be used to treat people with
heart attacks and strokes

a heart thinner can be used to treat people with
blood and heart

-0.05 0.44

the plant offspring has yellow flowers offspring means offspring -1.30 0.12
lack is similar to ( low ; little ) little means ( little ; little ) in quality -1.18 0.44
preserved means ( from the past ; from long ago
)

preserved means used to be ( preserved ; pre-
served ) from a long time

-0.01 0.50

the plant offspring has yellow flowers offspring means offspring -1.30 0.12
electricity causes less pollution than gasoline gasoline causes less gasoline than gasoline -0.22 0.66
insulin is a kind of hormone insulin is made of insulin -0.31 0.49
living things all require a producers for survival living things all require a living thing for survival 0.03 0.77
gravity causes nebulas to collapse gravity causes a sleef of an artery to collapse -1.30 0.44
out is synonymous with outside outward is synonymous with out -0.36 0.80
to prevent means to make it not happen to make means to not happen -0.74 0.71
a branch is a kind of object a branch is a kind of branch -0.03 0.85
force requires energy force means amount -0.40 0.33
spot means location place means kind of place -0.14 0.20
gritty is similar to rough grease is similar to grease -0.80 0.60
sidewalk means pavement bike means bike -0.62 0.33
a gravel pit is a kind of environment a gravel pit is a kind of gravel 0.03 0.87
a electron has a negative ( -1 ) electric charge a electron has a negative ( electric charge ; nega-

tive charge )
0.23 0.75

fish is a kind of meat fish are a kind of fish -0.29 0.66
jogging is similar to running running is a kind of running -0.23 0.33
the speed of the sailboat can be calculated by
dividing 35 by 5

the speed of the boat can be calculated by divid-
ing the length of a boat

0.20 0.60

if an object has 0 mechanical energy then the
object will stop moving

if an object has a mechanical energy then the
object has to move to 0

0.09 0.66

Table 12: T5VQVAE(base): more examples with low BLEURT score.

Traversal

an animal requires warmth in cold environments

dim0: animals usually maintain a safe distance from
predators during the hibernation process
dim0: animals usually require warmth in cold tempera-
tures for survival
dim0: animals must sense prey to survive / find food
dim0: animals must sense food to survive in the cold
environment

dim1: animals must protect themselves ( against predators
; from predators )
dim1: animals with pacemakers must sense danger in
order to eat prey
dim1: animals with sensory organs provided shelter in
cold environments
dim1: animals with diabetes should be protected from
predators in the water

dim2: animals must sense ( predators ; food ) to survive
dim2: animals must sense other animals for food / shelter
dim2: animals must sense other animals for survival in
cold environments
dim2: animals with circulatory system have a positive
impact on themselves by breathing air

dim4: animals with cold cardiovascular systems can
survive in cold environments by breathing
dim4: animals must sense prey to survive in cold environ-
ments
dim4: animals must sense other animals for survival
while they are at sea; in an environment
dim4: animals usually nurse their offspring through the
winter

dim5: animals must sense prey to survive and reproduce
dim5: animals must sense food to find food
dim5: animals must sense prey in order to survive survival
in the cold environment
dim5: animals require warmth in cold environments to (
survive ; find food )

dim6: animals must sense food in order to survive in cold
environments
dim6: animals must sense prey in order to survive / find
food
dim6: animals with heat - circulatory system must cool
themselves in cold environments
dim6: animals must sense prey to survive in cold environ-
ments

Table 13: Traversal for Optimus latent space.
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Traversal

an astronaut requires the oxygen in a spacesuit backpack to breathe

dim1: an astronaut requires the oxygen in a spacesuit
backpack to breathe
dim1: an organism requires the oxygen in a spacesuit
backpack to breathe
dim1: an animal requires the oxygen in a spacesuit back-
pack to breathe
dim1: an student requires the oxygen in a spacesuit back-
pack to breathe

dim2: an astronaut requires the oxygen in a spacesuit
backpack to breathe
dim2: an astronaut can wear the oxygen in a spacesuit
backpack to breathe
dim2: an astronaut requires the oxygen in a spacesuit
backpack to breathe
dim2: an astronaut requires the oxygen in a spacesuit
backpack to breathe

dim1: astronauts wear spacesuits in the space station to
avoid the issue of heat loss after a space probe
dim1: astronauts wear spacesuits in the space environ-
ment to protect the astronaut from harmful chemical
reactions
dim1: astronauts wear spacesuits in the space station to
keep the body warm
dim1: astronauts wear spacesuits in the spacesuit worn
by the astronauts to take in oxygen

dim2: astronauts wear spacesuits in the space station in
space
dim2: astronauts conducting the orbit of the moon in
space during the last stage of a lunar cell might cause
direct sunlight to lands on the moon
dim2: astronauts wear on the body the oxygen in a space-
suit backpack after the spacecraft escapes the atmosphere
dim2: astronauts wear spacesuits in the space station to
protect the body of an astronaut

Table 14: Traversal comparison (left: T5VQVAE(base), right: Optimus).
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Traversal

pedals are a kind of object
dim0: pedals are a kind of pedal
dim0: pedaling is a kind of object
dim0: a pedal is a kind of object
dim0: leather is a kind of object

dim1: a pedal is a kind of object
dim1: pedals are a kind of object
dim1: pedals are a kind of object
dim1: a pedal is a kind of object

dim0: objects are a kind of kind of nonliving thing
dim0: rust is a kind of object
dim0: objects are a kind of kind of heavy object
dim0: rust is a kind of object

dim1: objects are a kind of kind of nonliving thing
dim1: rust is a kind of object
dim1: bones are a kind of object
dim1: objects are a kind of kind of small particle

travel means to move

dim2: travel means move
dim2: travel is similar to move
dim2: travel is used to move
dim2: travel is a kind of movement

dim3: travel means to move
dim3: travel means stay
dim3: travel means to withstand travel
dim3: travel means to be transported

dim2: to move means to move
dim2: to pedal means to move something faster
dim2: to move means to move
dim2: to move means to move

dim3: to raise means to move something
dim3: to pedal means to move faster
dim3: to move means to move
dim3: to pedal means to move quickly

Table 15: Traversal comparison (top: T5VQVAE(base),
bottom: Optimus). We can observe that T5VQVAE can
provide better semantic control than Optimus.

Arithmetic

xA: a forest is a kind of land
xB: a tornado is narrow in width

T5VQVAE: a tornado is small in land
Optimus: plants are a kind of resource

xA: a rabbit is a kind of animal that may live in a
meadow xB: december is during the winter in the
northern hemisphere

T5VQVAE: december is a kind of animal that may
be in a winter
Optimus: a animal can usually find something to eat

xA: fossil fuels are formed from dead prehistoric
organisms xB: orange is a kind of color

T5VQVAE: orange fossil fuels are formed from dead
prey
Optimus: prehistoric organisms developed defenses
against disease by compacting and burying large
amounts of remains

xA: waves travel outward from the source xB:
water is made of matter

T5VQVAE: water points away from the source
Optimus: transverse waves cause the person to move
perpendicular to the direction of the wave

xA: rotation is a kind of motion xB: Leo is a kind
of constellation

T5VQVAE: Leo is a kind of motion
Optimus: friction occurs when two object colliding
causes the speed of their movement to increase

xA: the milky way is a kind of galaxy xB: a rock
is usually a solid

T5VQVAE: the milky way is usually a solid
Optimus: x -sex cells are inherited characteristics

Table 16: Addition Arithmetic comparison. We can
observe that the T5VQVAE can hold the semantic infor-
mation of both sentences after addition arithmetic.
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Argument and Verb substitution

P1: heat is a kind of energy
P2: flowing can be a kind of transfer of energy
Pred: flowing can be a kind of transfer of heat

P1: aluminum is always nonmagnetic
P2: aluminum cans are made of aluminums
Pred: aluminum cans are nonmagnetic

P1: ground water is a kind of water
P2: a desert environment is low in availability of
water / availability of food
Pred: a desert environment is low in availability of
ground water / availability of food

P1: marine fossils are fossils of water animals
P2: marine fossils are found in mountains
Pred: marine fossils are fossils of marine animals
Gold: fossils of water animals are found in mountains

P1: in order to breath air you must take in air
P2: a lung is a kind of organ for breath air
Pred: a lung is a kind of organ for taking in air

P1: running is a kind of movement
P2: an animal requires energy to move
Pred: an animal requires energy to run

P1: eating is a kind of method for consuming
P2: decomposers obtain nutrients by eating waste
Pred: decomposers obtain nutrients by consuming
waste

P1: rolling on a surface is a kind of moving on a
surface
P2: the rubber ball is rolling across a surface
Pred: the rubber ball is moving across a surface

Table 17: T5VQVAE(base): quasi-symbolic inference
examination in AutoEncoder (Top: argument substitu-
tion, Bottom: Verb substitution).

Further specification and Conjunction

P1: a plant requires energy to make food
P2: plants get energy from sunlight
Pred: plants get energy from sunlight to make food

P1: a mountain is made of rocks
P2: a mountain range contains mountains
Pred: a mountain range contains mountains made of
rocks

P1: a dinosaur is a kind of animal
P2: dinosaurs are cold-blooded
Pred: dinosaurs are cold - blooded animals

P1: gravity causes orbits
P2: planets in the solar system orbit the sun
Pred: gravity causes planets in the solar system to
orbit the sun

P1: scattering light decreases visibility
P2: water droplets scatter light
Pred: water droplets scattering light decreases air
droplets
Gold: water droplets scattering light decreases the
visibility

P1: sound travels slowest through gas
P2: sound travels fastest through solid
Pred: sound waves travel fastest through gas and gas
Gold: sound travels fastest through solid and slowest
through gas

P1: matter in the solid phase has definite volume
P2: matter in the solid phase has definite shape
Pred: matter in the solid phase has definite shape and
volume

P1: a plant requires nutrients from soil to grow
P2: a plant requires water from soil to grow
Pred: a plant requires water and nutrients from soil
to grow

P1: a hurricane has high wind speed
P2: a hurricane has large amount of rain
Pred: a hurricane has high wind speed and large
amount of rain

P1: fungi can be multicellular
P2: fungi have no chlorophyll
Pred: fungi have no chlorophyll and can be
multicellular

Table 18: T5VQVAE(base): quasi-symbolic inference
examination in AutoEncoder (Top: further specification,
Bottom: conjunction).
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