
Findings of the Association for Computational Linguistics: EACL 2024, pages 17195–17202
November 12-16, 2024 ©2024 Association for Computational Linguistics

Stochastic Fine-Tuning of Language Models Using Masked Gradients

Mohammad Akbar-Tajari 1,2 † Mohammad Taher Pilehvar 3

1Sharif University of Technology 3Cardiff University, United Kingdom
2Tehran Institute for Advanced Studies, Iran

m.akbarTajari@gmail.com mp792@cam.ac.uk

Abstract

Large Language Models (LLMs) have emerged
as the dominant paradigm in Natural Language
Processing owing to their remarkable perfor-
mance across various target tasks. However,
naively fine-tuning them for specific down-
stream tasks often requires updating a vast
number of parameters, resulting in high com-
putational costs and overfitting when training
data is limited. In this paper, we propose a
novel approach, called Stochastic Tuning, that
addresses these challenges by selectively updat-
ing a small subset of parameters in each step
of the tuning process. Our approach is charac-
terized by its customization of updates based
on task-specific partial gradients with respect
to stochastic sub-networks. The advantage
of Stochastic Tuning over existing solutions
lies in its ability to consider both parameter
weights as well as forward values which guar-
antees a context-sensitive fine-tuning. Our ex-
periments demonstrate that Stochastic Tuning
outperforms existing lightweight fine-tuning
methods, improving average performance by
over two points on RoBERTa across sev-
eral tasks in the GLUE benchmark while
updating merely 0.08% of the model’s pa-
rameters. The code for our implementation
can be found at https://github.com/
m-Tajari/StocTuning_LLMs.

1 Introduction and Related Work

Full fine-tuning of a pre-trained language model
(PLM), a widely adopted approach in modern NLP,
can be computationally expensive due to the need
for updating all parameters of the model. By lim-
iting the number of updatable parameters during
the fine-tuning process, lightweight mechanisms re-
duce the computational cost by a large factor while
retaining the performance. A class of lightweight
methods augments models with small trainable
modules. Adapters (Houlsby et al., 2019) are a

†Research conducted during my time as a Research As-
sistant at Tehran Institute for Advanced Studies, Iran.

prominent technique in this category. They inject a
few modules into the transformer blocks, enabling
comparable performance to the full fine-tuning sce-
nario. Instead of introducing new modules, Prefix-
Tuning (Li and Liang, 2021) optimizes virtual to-
kens, called the Prefix, which are prepended to the
normal activation vectors of transformers. This
method excels in low-data settings. In contrast to
both these techniques, Low-Rank Adaptation (Hu
et al., 2022, LoRA) avoids adding new parame-
ters. Instead, it freezes the pre-trained ones and
optimizes low-rank weights inserted into existing
layers, achieving better results across various tasks.
However, a drawback of all these methods is that
they still require extra parameters to be injected
into already large models.

According to the lottery ticket hypothesis (Fran-
kle and Carbin, 2019), large transformer-based
models consist of sparse sub-networks, fine-tuning
of which results in competitive performance to
the full fine-tuning. Various studies have tried to
find optimal sub-networks which effectively trans-
fer knowledge from a pre-trained model to differ-
ent downstream tasks. Notably, BIas-Term FIne-
Tuning (Ben Zaken et al., 2022, BitFit) freezes
all the transformer-encoder parameters but the bi-
ases. Akbar-Tajari et al. (2022) take a step further
to generalize this approach by fine-tuning simi-
lar transformer modules across layers, including
LayerNorms, the expressive power of whose vari-
ants has been theoretically studied (Giannou et al.,
2023). The results suggest that each transformer
module can act as a winning ticket due to its abil-
ity in effectively transferring knowledge. How-
ever, while these localized fine-tuning techniques
achieve acceptable performance across a variety
of tasks, they rely too much on tuning predefined
modules and neglect the importance of adapting
parameters based on the specific requirements of
the task at hand. This limitation prevents more fine-
grained, task-specific parameter updates, which are

17195

https://github.com/m-Tajari/StocTuning_LLMs
https://github.com/m-Tajari/StocTuning_LLMs

crucial for optimal performance on diverse down-
stream tasks.

Another branch of research takes a non-localized
approach. These methods form sub-networks
where any parameter of the model can be updated,
without considering their role in different trans-
former modules. Influenced by Dropout (Srivas-
tava et al., 2014), Mixout (Lee et al., 2020) regular-
izes fine-tuning process by randomly freezing sub-
networks during sequential iterations, ignoring the
significance of parameters. In a more efficient way,
Dynamic Parameter Selection (Zhang et al., 2022,
DPS) adaptively selects promising sub-networks
composed of important parameters. Despite being
dynamically selected, these sub-networks usually
contain a substantial portion of model’s parameters.
In addition, DPS only utilizes gradients of back-
propagation without directly considering the value
of parameters, which have successfully been used
in similar pruning strategies (Lee et al., 2019).

To mitigate these issues, we propose Stochas-
tic Tuning, a method that estimates the impor-
tance of individual parameters by using gradients
of back-propagation and the value of parameters
together with forwarded values. Based on the im-
portance scores, our approach stochastically forms
a task-specific binary mask of a predefined size.
The optimization process is then constrained to
sub-networks of parameters with highest impor-
tance scores. Stochastic Tuning utilizes both task-
specific data and the encoded knowledge of pre-
trained models to select sub-networks. This ap-
proach enables PLMs to seamlessly adapt to di-
verse tasks while retaining their inherent general-
ization capabilities. Moreover, the randomness in
our method acts as a regularizer; therefore, it can
prevent models form overfitting, bringing about
better generalization.

Stochastic Tuning provides the following three
key advantages compared to existing solutions: (1)
It utilizes the encoded knowledge of PLMs by tak-
ing into account the value of parameters in the
masking process, which ultimately reduces the time
required for the fine-tuning process; (2) It tailors
its selection of update sub-networks to the specific
downstream task at hand; and (3) The stochastic-
ity in the selection of the binary mask ensures that
less important parameters also have the opportunity
to participate in the fine-tuning process, bringing
about regularization effect. Our experiments on the
GLUE benchmark (Wang et al., 2019) demonstrate

that Stochastic Tuning yields consistent improve-
ments of about two points on average over previous
state-of-the-art fine-tuning methods.

2 Stochastic Tuning

2.1 Background: Gradient Descent

Since the forward pass of our method and the re-
lated works being compared to in this study are sim-
ilar to the full fine-tuning scenario, we focus our
attention on back-propagation. Let fθ0 : X → Y
denote the PLM with parameters θ0 ∈ Rn. Fine-
tuning methods try to solve the following optimiza-
tion problem:

θ⋆ ∈ arg inf
θ∈Rn

L(θ,D),

where D ⊆ X ×Y denotes the labeled dataset used
for fine-tuning and

L(θ,D) =
1

|D|
∑

(x,y)∈D
ℓ (fθ (x) , y)

represents the training loss for the model with pa-
rameters θ and the loss function ℓ : Y ×Y → R+

1.
Stochastic Gradient Descent (SGD)2 tries to find a
solution by repeatedly updating parameters using
the following rule:

θt+1 = θt − η
∂L(θt,Bt)

∂θt
(1)

for t ∈ {0, 1, · · · , T − 1} and Bt ⊆ D. Note that
Equation (1) makes use of learning rate η ∈ R+

and in-batch training loss: L(θt,Bt).
Fine-tuning sub-networks corresponds to impos-

ing a restriction on the number of parameters that
are modified in each step of SGD. Under these
circumstances, the optimization problem can be
formulated as:

θ⋆ ∈ arg inf
θ∈Rn

L(θ,D)

s.t. ||θ||0 ≤ k,

with k ∈ R++
3 denoting the number of parameters

within the sub-network. Using indicator varibales

1R+ = {x ∈ R : x ≥ 0}.
2We employ the term SGD to denote its application in

deep learning as mini-batch Stochastic Gradient Descent with
momentum.

3R++ = {x ∈ R : x > 0}.

17196

κ ∈ {0, 1}n, the optimization problem may be
expressed as:

κ⋆,θ⋆ ∈ arg inf
κ,θ∈Rn

L(κ⊙ θ,D)

s.t. κ ∈ {0, 1}n, ||κ||0 ≤ k,

where ⊙ is the Hadamard product. By formulating
the optimization problem as shown, we can easily
think of attributing some importance scores to indi-
cator variables, which will subsequently guide our
selection of sub-networks in the following subsec-
tion. To fine-tune sub-networks by SGD, we have
to use partial gradients. To do so, most methods
utilize a binary mask Mt ∈ {0, 1}n and change the
update rule as follows:

θt+1 = θt − η
∂L(θt,Bt)

∂θt
⊙Mt. (2)

2.2 Methodology
Algorithm 1 presents the procedure behind Stochas-
tic Tuning. Given a pre-trained language model
with parameters θ0 and a task-specific tuning
dataset D, Stochastic Tuning first forwards a batch
of data into the model and keeps track of the av-
erage value passing through each connection.4 At
iteration t, we denote these values belonging to
Rn with µt. After back-propagation, we use the
importance function I : R3n → Rn

+ to assign an
importance score to individual parameters of the
model as follows:

It = I(µt,θt,gt) = |µt ⊙ θt ⊙ gt|,

where gt denotes in-batch gradients with respect to
the parameters of the model: gt = ∂L(θt,Bt)/∂θt.
We use the absolute value of the elements in the
Hadamard product vector as the importance scores.
Subsequently, we perform a normalization layer
on the element-wise squared importance scores
vector (I2

t) to ensure that the sum of its elements
equals one, hence a probability distribution. Fi-
nally, leveraging this probability distribution over
the models’ parameters, we stochastically select a
sub-network of a pre-defined size, with elements
having higher probabilities being more likely to be
chosen in the selection process. The chosen sub-
network corresponds uniquely to a binary mask,
which is employed in Equation (2).

4Passing values through a connection denotes the value
linked to the neuron from which the connection originates. It is
worth noting that there exists an injective function connecting
the set of any language model parameters to the set of its
corresponding neural network connections.

Algorithm 1 Stochastic Tuning
Require: a PLM with parameters θ0 ∈ Rn, a tuning dataset

D, number of tuning steps T , learning rate η, and warm-

up ratio w

1: Initialize:
model←CREATEMODEL

SETPARAMETERS(model,θ0)

optim←CREATEOPTIMIZER(η,w)

2: for t = 0, · · · , T − 1 do
3: Bt ∼ D ▷ sample a mini-batch

4: µt ← model.forward(Bt) ▷ forward pass

5: θt ← model.get_params(t)

6: gt ←L(θt,Bt).backward() ▷ back-propagate

7: It ← |µt ⊙ θt ⊙ gt| ▷ compute importance scores

8: Mt ∼ norm_layer(It) ▷ select a sub-network

9: gt ←Mt ⊙ gt ▷ mask the gradients

10: optim.step(gt) ▷ update the selected sub-network

11: end for

Our approach enhances task-specific fine-tuning
by leveraging a stochastic selection process, in-
spired by principles from evolutionary algorithms.
This randomness in forming the binary mask mir-
rors natural selection, where diverse parameters
are stochastically chosen to participate, fostering
robustness and preventing overfitting. The com-
putation of importance scores using a multiplica-
tive function provides a refined strategy for select-
ing sub-networks, simultaneously accounting for
parameters with high magnitudes, gradients, and
passing values. While prior research has primar-
ily focused on selection based solely on parame-
ter values and gradients (Lee et al., 2020; Zhang
et al., 2022), our inclusion of passing values en-
ables a more targeted selection process, optimizing
for task-specific performance.

3 Experiments

We assess the performance of Stochastic Tuning
on RoBERTaBASE and RoBERTaLARGE (Liu et al.,
2019).5 Following previous work (Zhang et al.,
2022; Akbar-Tajari et al., 2022; Ben Zaken et al.,
2022), we undertake an extensive set of experi-
ments on six datasets from the GLUE benchmark.
To provide a thorough analysis, we report the aver-
age and standard deviation of the results obtained

5We conducted all experiments using two NVIDIA RTX
6000-24G GPUs for approximately 376 hours.

17197

Model Method %Updated CoLA SST-2 MRPC STS-B QNLI RTE Avg.
R

oB
E

R
Ta

BA
SE

Full-FT 100.0% 62.94±0.7 94.06±0.2 92.52±0.4 90.81±0.1 91.76±0.1 77.38±1.5 84.91

DPSMix 50-90% 62.45±1.3 94.08±0.2 91.60±0.7 90.83±0.1 91.72±0.1 75.09±1.9 84.30

Multi-Head ∼ 23% 62.75±1.5 94.87±0.3 92.21±0.3 90.92±0.1 92.68±0.1 76.41±0.9 84.97

BitFit 0.08% 57.92±1.5 92.82±0.1 91.61±0.4 90.20±0.1 87.49±0.2 73.77±3.0 82.30

StocTuning 0.08% 62.97±0.9 94.70±0.2 91.98±0.6 91.10±0.3 91.93±0.2 78.65±1.6 85.22

TopTuning 0.08% 63.40±1.4 93.78±0.1 92.56±0.1 91.02±0.2 92.85±0.1 78.34±0.9 85.33

Random 0.08% 55.88±0.9 93.80±0.2 91.17±0.6 89.85±0.1 90.67±0.1 69.92±2.0 81.88

Frozen 0.00% 18.95±2.2 82.94±0.3 83.22±0.1 57.95±0.7 68.34±0.1 58.48±0.5 61.65

R
oB

E
R

Ta
L

A
R

G
E

Full-FT 100.0% 63.23±5.8 96.09±0.2 93.50±0.4 92.09±0.2 94.47±0.1 83.35±3.1 87.12

DPSMix 50-90% 68.34±1.3 96.12±0.2 92.47±0.8 92.09±0.3 94.53±0.1 84.48±3.1 88.00

Multi-Head ∼ 28% 67.56±1.4 96.26±0.1 93.09±0.7 92.37±0.2 94.69±0.1 83.51±2.2 87.91

BitFit 0.08% 67.53±0.9 95.23±0.1 91.75±0.5 91.72±0.1 93.10±0.1 80.27±1.9 86.60

StocTuning 0.08% 68.45±0.8 96.25±0.1 93.15±0.8 92.41±0.3 94.63±0.1 84.71±2.1 88.27

TopTuning 0.08% 68.34±1.4 95.60±0.3 93.72±1.0 92.19±0.1 94.77±0.1 83.37±2.4 88.00

Random 0.08% 64.45±1.4 95.72±0.2 92.30±0.6 91.60±0.1 93.68±0.0 73.43±2.6 85.20

Frozen 0.00% 26.47±3.6 86.04±0.3 82.86±0.2 68.33±1.1 72.45±0.3 65.44±2.4 66.93

Table 1: The performance comparison of RoBERTaBASE and RoBERTaLARGE across six tasks sourced from the
GLUE benchmark, utilizing a range of fine-tuning techniques. Evaluation metrics encompass Matthew’s correlation
for the CoLA task, F1 score for MRPC, Spearman’s correlation for STS-B, and Accuracy for the remaining tasks.
The table highlights the best and second-best results achieved for each individual task, shedding light on the efficacy
of different fine-tuning approaches.

from seven models trained with distinct random
seeds. We compare a range of fine-tuning methods
for language models, including but not limited to
DPSMix (Zhang et al., 2022), which dynamically
selects task-relevant sub-networks; Multi-Head
(Akbar-Tajari et al., 2022), which fine-tunes only
attention module parameters; and BitFit (Ben Za-
ken et al., 2022), which updates only the bias terms.
Detailed information on datasets and prior methods
is provided in Appendices.

3.1 Experimental Setup

We opted for roberta-base and roberta-large, which
are readily available in the HuggingFace library for
PyTorch (Wolf et al., 2020; Paszke et al., 2019). To
handle sequences of varying lengths, we employ
a dynamic padding technique to set the maximum
input length to 128 and apply a longest-first trunca-
tion strategy, facilitating efficient processing of the

sequences.
During the fine-tuning process, we employ

a batch size of 16 and utilize the AdamW
(Loshchilov and Hutter, 2019) optimizer with an
epsilon value set to 1e-6, incorporating a linear in-
crease in the learning rate over the initial 10% of
steps followed by a linear decay to zero. Our hy-
perparameter tuning is solely focused on selecting
the learning rate from {1e-5, 3e-5, 1e-4, 3e-4, 1e-3,
3e-3}, ensuring a fair comparison with previous
work.

3.2 Results

Table 1 reports the results for RoBERTaBASE and
RoBERTaLARGE, where Full-FT represents the
full fine-tuning scenario, and Frozen indicates the
method that freezes all the model parameters ex-
cept for the classification head. To ensure a fair
comparison, the size of the selected sub-networks

17198

in Stochastic Tuning (StocTuning) was matched to
the number of tunable parameters in BitFit. To
check the regularization capabilities of our method,
we also report results for Top Tuning (TopTuning)
which forms sub-networks based on parameters
with the highest importance scores (instead of se-
lecting them stochastically as in our method). As a
baseline, we also report results for Random Tuning
(Random) which forms sub-networks by selecting
parameters uniformly at random.

Overall, both TopTuning and StocTuning outper-
form the Full-FT baseline by using a very small
fraction of the parameters. There is also a con-
sistent improvement over DPSMix and Multi-Head
despite using significantly fewer parameters in the
optimization process. The improvement comes
from the stable performance of these techniques
across different datasets (StocTuning is consistently
among the top-2 on all the datasets). Compared to
BitFit, our approach provides an improvement of
over two points on average. Among the two tech-
niques, the StocTuning shows to be more effective
in most tasks. This proves our assumption that the
stochastic selection of parameters can bring about
regularization effect. Conclusions are consistent
across both RoBERTaBASE and RoBERTaLARGE,
with results being generally better for the latter
model.

4 Conclusions

We introduce Stochastic Tuning, a novel approach
for highly efficient fine-tuning of pre-trained lan-
guage models (PLMs). By utilizing masked gradi-
ents to update stochastic sub-networks, our method
outperforms previous state-of-the-art fine-tuning
techniques in terms of overall performance across
multiple GLUE tasks. Notably, we achieve this
improvement by updating parameters solely within
a small sub-network during each iteration, result-
ing in substantial computational cost reduction.
The inherent randomness in our method acts as a
form of regularization, effectively mitigating over-
fitting and consistently promoting better generaliza-
tion. Our results demonstrate the significant perfor-
mance gains achieved with Stochastic Tuning on
two distinct PLMs. We anticipate that Stochastic
Tuning of PLMs holds promise for a wider range of
application scenarios like multimodal model fine-
tuning (Liu et al., 2023), leaving room for further
exploration for future research endeavors. In line
with the methodological choices of previous work,

our research did not include any generative mod-
els. However, it is worth noting that future studies
could broaden the scope of comparative analysis by
incorporating fine-tuning approaches using genera-
tive models such as GPT (Radford and Narasimhan,
2018), BART (Lewis et al., 2019), and T5 (Raffel
et al., 2020). Such an expansion would offer a
more comprehensive understanding of the capabili-
ties and trade-offs of different model architectures
in natural language processing tasks.

Limitations

Considering the constraints of computational re-
sources, our study focused on RoBERTa models
and limited the analysis to the six smallest tasks
from the GLUE benchmark. We encountered an ad-
ditional limitation in PyTorch’s lack of native sup-
port for random choice from large sets, which ne-
cessitated employing NumPy (Harris et al., 2020).
This workaround resulted in performance degra-
dation and compromised the overall efficiency of
GPU utilization.

Acknowledgment

We would like to thank the anonymous reviewers
for their valuable feedback during the review pro-
cess. Their constructive comments have greatly
helped in refining and improving the quality of this
work.

References

Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,
Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2021. Better fine-tuning by reducing representational
collapse. In International Conference on Learning
Representations.

Mohammad Akbar-Tajari, Sara Rajaee, and Moham-
mad Taher Pilehvar. 2022. An empirical study on the
transferability of transformer modules in parameter-
efficient fine-tuning. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 10617–10625, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

17199

https://openreview.net/forum?id=OQ08SN70M1V
https://openreview.net/forum?id=OQ08SN70M1V
https://aclanthology.org/2022.emnlp-main.726
https://aclanthology.org/2022.emnlp-main.726
https://aclanthology.org/2022.emnlp-main.726
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine learning challenges workshop,
pages 177–190. Springer.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. CoRR,
abs/1809.02922.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Jonathan Frankle and Michael Carbin. 2019. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning
Representations.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai
Lam, Lidong Bing, and Nigel Collier. 2023. On
the effectiveness of parameter-efficient fine-tuning.
Proceedings of the AAAI Conference on Artificial
Intelligence, 37(11):12799–12807.

Angeliki Giannou, Shashank Rajput, and Dimitris Pa-
pailiopoulos. 2023. The expressive power of tuning
only the norm layers.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernández del Río, Mark
Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E.
Oliphant. 2020. Array programming with NumPy.
Nature, 585(7825):357–362.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In
Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. In Interna-
tional Conference on Learning Representations.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
Torr. 2019. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIV-
ITY. In International Conference on Learning Rep-
resentations.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

17200

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
http://arxiv.org/abs/1809.02922
http://arxiv.org/abs/1809.02922
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1609/aaai.v37i11.26505
https://doi.org/10.1609/aaai.v37i11.26505
http://arxiv.org/abs/2302.07937
http://arxiv.org/abs/2302.07937
https://doi.org/10.1038/s41586-020-2649-2
https://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
https://openreview.net/forum?id=B1VZqjAcYX
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=w0H2xGHlkw
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

transformer. Journal of Machine Learning Research,
21(140):1–67.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Ming Tu, Visar Berisha, Martin Woolf, Jae-sun Seo, and
Yu Cao. 2016. Ranking the parameters of deep neural
networks using the fisher information. In 2016 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2647–2651.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Interna-
tional Conference on Learning Representations.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a child in large language model: To-
wards effective and generalizable fine-tuning. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9514–
9528, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Haojie Zhang, Ge Li, Jia Li, Zhongjin Zhang, YUQI
ZHU, and Zhi Jin. 2022. Fine-tuning pre-trained
language models effectively by optimizing subnet-
works adaptively. In Advances in Neural Information
Processing Systems, volume 35, pages 21442–21454.
Curran Associates, Inc.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Wein-
berger, and Yoav Artzi. 2021. Revisiting few-sample
{bert} fine-tuning. In International Conference on
Learning Representations.

A The General Language Understanding
Evaluation (GLUE) benchmark

Our experiments encompasses a range of tasks: lin-
guistic acceptability (Warstadt et al., 2019, CoLA),
sentiment prediction (Socher et al., 2013, SST-2),
paraphrase detection (Dolan and Brockett, 2005,
MRPC), sentence similarity (Cer et al., 2017, STS-
B), and natural language inference (Wang et al.,
2019; Demszky et al., 2018; Dagan et al., 2005,
QNLI, RTE). Given the restricted online submis-
sion quota for the test set, we adhere to the ap-
proach followed by several previous studies: fine-
tuning on the training data and reporting results
based on the development sets (Zhang et al., 2022;
Dodge et al., 2020; Aghajanyan et al., 2021; Zhang
et al., 2021; Fu et al., 2023).

CoLA. (Warstadt et al., 2019) The Corpus of
Linguistic Acceptability dataset comprises English
sentences annotated for grammatical acceptability,
using the Matthews correlation coefficient as the
evaluation metric on an unbalanced binary classi-
fication task. The performance is reported on the
combined in-domain and out-of-domain sections
of the standard dev set.

SST-2. (Socher et al., 2013) The Stanford
Sentiment Treebank comprises movie review sen-
tences with human-annotated sentiments. The ob-
jective is to predict sentence-level sentiment using
a binary (positive/negative) classification.

MRPC. (Dolan and Brockett, 2005) The
Microsoft Research Paraphrase Corpus dataset
consists of sentence pairs extracted from online
news sources, annotated for semantic equivalence.
Due to class imbalance, F1 score is reported for
evaluation.

STS-B. (Cer et al., 2017) Semantic Textual
Similarity Benchmark is a dataset consisting of sen-
tence pairs from various sources, annotated with
similarity scores. Evaluation is performed using
Pearson and Spearman correlation coefficients.

QNLI. (Wang et al., 2019; Demszky et al., 2018)
Question-Answering NLI transforms the Stanford
Question Answering Dataset into a sentence pair
classification task, involving question-paragraph

17201

http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1109/ICASSP.2016.7472157
https://doi.org/10.1109/ICASSP.2016.7472157
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://proceedings.neurips.cc/paper_files/paper/2022/file/869bfd807a513755bef25e3896a19a21-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/869bfd807a513755bef25e3896a19a21-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/869bfd807a513755bef25e3896a19a21-Paper-Conference.pdf
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF

pairs. The goal is to determine whether a given
context sentence contains the answer to the corre-
sponding question, removing the requirement for
the model to select the exact answer while chal-
lenging the assumption that the answer is always
present and that lexical overlap reliably indicates
the answer.

RTE. (Dagan et al., 2005) Recognizing Textual
Entailment datasets are a compilation of examples
from annual challenges, combining data from mul-
tiple sources. The datasets are based on news and
Wikipedia text, and are converted into a two-class
split for consistency.

B Comparison Methods

Here, we provide a brief overview of the baselines
to which we have compared our proposed method,
highlighting key approaches in efficient fine-tuning
techniques.

DPSMix. Proposed by Zhang et al. (2022), it is
an enhanced variant of Child-Tuning (Xu et al.,
2021), a dynamic sub-network optimization algo-
rithm aimed at efficient fine-tuning of LLMs. By
estimating the importance of parameters using em-
pirical Fisher Information (Tu et al., 2016) from
multiple mini-batches of downstream task data,
DPS dynamically selects the most task-related sub-
network for updating during fine-tuning, effectively
addressing the issue of overfitting.

Multi-Head. Akbar-Tajari et al. (2022) freeze all
the modules’ parameters to their pre-trained value,
except for those in the attention modules of the
transformer blocks during the fine-tuning process.
Their goal is to illustrate that each module func-
tions as a winning ticket, achieving performance
comparable to that of the full fine-tuning scenario.

BitFit. Proposed by Ben Zaken et al. (2022), Bit-
Fit is a baseline approach that focuses on updating
only the bias components in PLMs while keeping
the remaining parameters frozen. By isolating the
bias components for updating, BitFit aims to ex-
plore the impact of bias adjustments on the overall
performance of PLMs.

17202

