
Findings of the Association for Computational Linguistics: EACL 2024, pages 1872–1883
November 12-16, 2024 ©2024 Association for Computational Linguistics

Exploring the Best Practices of Query Expansion with Large Language
Models

Le Zhang1,2*, Yihong Wu2,∗, Qian Yang1,2, Jian-Yun Nie2
1 Mila - Québec AI Institute

2 Université de Montréal

Abstract

Large Language Models (LLMs) are founda-
tional in language technologies, particularly in
information retrieval (IR). In this paper, we
thoroughly explore the best practice of lever-
aging LLMs for query expansion. To this
end, we introduce a training-free, straightfor-
ward yet effective framework called Multi-Text
Generation Integration (MUGI). This approach
leverages LLMs to generate multiple pseudo-
references, which are then integrated with the
original queries to enhance both sparse and
dense retrieval methods. Additionally, we in-
troduce a retrieval pipeline based on MUGI,
which combines the strengths of sparse and
dense retrievers to achieve superior perfor-
mance without the need for costly pre-indexing.
Our empirical findings reveal that: (1) Increas-
ing the number of samples from LLMs ben-
efits IR systems; (2) A balance between the
query and pseudo-documents, and an effective
integration strategy, is critical for high perfor-
mance; (3) Contextual information from LLMs
is essential, even boost a 23M model to out-
perform a 7B baseline model; (4) Pseudo rel-
evance feedback can further calibrate queries
for improved performance; and (5) Query ex-
pansion is widely applicable and versatile, con-
sistently enhancing models ranging from 23M
to 7B parameters. Our code and all gener-
ated references are made available athttps:
//github.com/lezhang7/Retrieval_MuGI.

1 Introduction

Information retrieval (IR) is crucial for extracting
relevant documents from large databases, serving
as a key component in search engines, dialogue sys-
tems (Yuan et al., 2019; Qian et al., 2021), question-
answering platforms (Qu et al., 2020; Zhang et al.,
2023b; Yang et al., 2023), recommendation sys-
tems (Fan et al., 2023; Zhang et al., 2023a), and
Retrieval Augmented Generation (RAG) frame-

*equal contribution

work (Lewis et al., 2021; Izacard and Grave, 2020;
Zhang et al., 2022; Liu, 2022).

Query expansion, a key technique for enhanc-
ing IR efficacy (Abdul-Jaleel et al., 2004; Robert-
son and Jones, 1976; Salton, 1971), traditionally
employs Pseudo-Relevance Feedback (PRF) (Li
et al., 2022; Lavrenko and Croft, 2017) from ini-
tial retrieval results. However, its effectiveness is
constrained by the quality of these coarse results.
Recently, Large Language Models (LLMs), such
as ChatGPT, have demonstrated exceptional capa-
bilities in language understanding, knowledge stor-
age, and reasoning (Brown et al., 2020; Touvron
et al., 2023). Motivated by these advancements,
some studies have explored leveraging LLMs for
zero-shot query expansion (Ma et al., 2023b; Gao
et al., 2022; Wang et al., 2023b). While these meth-
ods have shown empirical effectiveness, they also
present certain limitations.

LameR (Shen et al., 2023) generates poten-
tial answers by utilizing LLMs to rewrite BM25
candidates for expansion. However, its perfor-
mance is highly dependent on the quality of the
initial retrieval. Both HyDE (Gao et al., 2022)
and Query2Doc (Wang et al., 2023b) leverage the
knowledge stored in LLMs. While HyDE demon-
strates effective performance with contriver, it per-
forms poorly with lexical-based retrievers (Shen
et al., 2023). Conversely, Query2Doc is effective
with both sparse and dense retrieval methods, but
strong models may not benefit as much as weaker
ones (Li et al., 2024; Weller et al., 2023). More-
over, the integration and balance between pseudo
references and queries are under-explored in these
studies.

To address these limitations, we explore best
practices for utilizing query expansion with LLMs
for information retrieval. In this paper, we delve
into several specific research questions: RQ1: Is
there a universal query expansion method that effec-
tively serves both lexical-based and neural-based

1872

https://github.com/lezhang7/Retrieval_MuGI
https://github.com/lezhang7/Retrieval_MuGI

retrievers, applicable to both weak and strong mod-
els without prior constraints? RQ2: Are multi-
ple pseudo-references more beneficial than a sin-
gle one? RQ3: How can the query and pseudo-
references be balanced for lexical-based retrievers?
RQ4: What is the most effective method for inte-
grating multiple pseudo-references with a query in
dense retrievers?

We introduce a framework named Multi-Text
Generation Integration (MUGI) to explore these
questions. MUGI employs a zero-shot approach to
generate multiple pseudo-references from LLMs,
integrating them with queries to enhance IR effi-
ciency. Our empirical experiments demonstrate
that: (1) Increasing the number of samples from
LLMs benefits IR systems. (2) MUGI demon-
strates versatility and effectiveness across both lex-
ical and dense retrievers and models of various
sizes. Remarkably, it enables a 23M-parameter
dense retriever to outperform a larger 7B baseline.
(3) MUGI proposes an adaptive reweighting strat-
egy that considers the lengths of both the pseudo-
references and the query, critically improving the
performance of lexical retrievers. (4) MUGI inves-
tigates different integration strategies and proposes
contextualized pooling, which has been overlooked
in previous methods. Additionally, drawing inspi-
ration from the Rocchio algorithm (Schütze et al.,
2008), MUGI implements a calibration module that
leverages pseudo relevance feedback to further en-
hance IR performance. Notably, using ChatGPT4,
MUGI significantly enhances BM25 performance,
with an 18% improvement on the TREC DL dataset
and 7.5% on BEIR, and boosts dense retrievers by
over 7% on TREC DL and 4% on BEIR.

2 Related Work

Information Retrieval focuses on the efficient
and effective retrieval of information in response
to user queries. Best Matching 25 (BM25) (Robert-
son et al., 1994) advances beyond earlier proba-
bilistic models by incorporating document length
normalization and non-linear term frequency scal-
ing, thereby enhancing the alignment of queries
with documents. Dense retrievers such as
DPR (Karpukhin et al., 2020) employ deep neu-
ral networks to identify semantic relationships be-
tween queries and documents by measuring the
cosine similarity of their text embeddings.

Existing efficient IR systems typically use a re-
trieval & rerank pipeline (Nogueira and Cho, 2020;

Karpukhin et al., 2020; Guo et al., 2022; Reimers
and Gurevych, 2019): Initially, a retrieval mecha-
nism, such as BM25 or a bi-encoder, identifies a
broad set of potentially relevant documents. Subse-
quently, a stronger ranker, usually a cross-encoder,
meticulously scores the relevance of these docu-
ments, enhancing the precision of the final results.

LLMs for IR The use of LLMs in IR falls into
two primary categories (Zhu et al., 2023): fine-
tuning LLMs as retrieval models and employing
them for zero-shot IR. This paper concentrates on
zero-shot IR, where typical approaches involve
leveraging the reasoning capabilities of LLMs for
direct document ranking (Sun et al., 2023; Ma
et al., 2023b) or relevance assessment (Sachan
et al., 2022). While effective, these methods are
limited by LLMs’ input length constraints, making
them better suited for the rerank phase.

Another line of research focuses on using
LLMs to synthesize additional high-quality train-
ing datasets to improve existing models (Bonifa-
cio et al., 2022; Izacard et al., 2021; Wang et al.,
2023a; Jeronymo et al., 2023). Other works, such
as HyDE (Gao et al., 2022), query2doc (Wang et al.,
2023b), and LameR (Shen et al., 2023), explore
query expansion. They leverage LLMs to create
pseudo-references or potential answers, enhancing
queries for better retrieval outcomes.

MuGI is a query expansion framework that lever-
ages LLMs to enhance queries. Unlike previous
works, which are limited by inherent constraints,
MuGI offers broader applicability and versatility
as it seamlessly integrates with both lexical and
dense retrievers. By utilizing and intergrating a
wealth of contextualized information from multiple
references, MuGI surpasses existing techniques in
both in-domain and out-of-distribution evaluations
by more effectively capturing essential keywords
and enriching the background context.

3 Method

We begin by discussing IR preliminaries and then
introduce our MuGI framework.

3.1 Preliminaries

Non-parametric Lexical-based Methods
BM25 is a fundamental non-parametric lexical
method that calculates document relevance using
term frequency (TF) and inverse document

1873

frequency (IDF):

n∑

i=1

IDF(qi)TF(qi, D)(k1 + 1)

TF(qi, D) + k1(1− b+ b |D|
avgdl)

, (1)

where qi are query terms, TF(qi, D) is term fre-
quency, IDF(qi) is inverse document frequency,
|D| is document length, avgdl is average document
length, and k1 and b are tunable parameters.

Neural Dense Retrieval Methods Dense re-
trieval leverages deep learning to identify semantic
similarities between queries and documents by en-
coding them into high-dimensional embeddings,
typically measured by (Huang et al., 2013):

Sim(q,D) =
f(q)⊤f(D)

∥f(q)∥∥f(D)∥ , (2)

where f(·) maps text to embedding space Rd.
BM25 is fast and generalizes well, suited for
sparase retrieval, while dense retrieval excels at
capturing semantic connections but is slower and
less generalized due to neural network dependency.

3.2 Multi-Text Generation Integration
Recognizing that both lexical-based and dense re-
trieval methods depend on a certain degree of infor-
mation overlap between the query and document,
we introduce the Multi-Text Generation Integra-
tion (MUGI) method. This approach aims to aug-
ment the query’s information content by leveraging
multiple samplings from LLMs. MUGI enriches
queries with additional background information
and broadens the keyword vocabulary to encom-
pass out-of-domain terms, thereby bridging the se-
mantic gap between queries and documents on both
lexical-based and dense retrievers.

Upon receiving a query q, MUGI initially ap-
plies a zero-shot prompt (see fig. 1) technique to
generate a set of pseudo-references, denoted as
R = {r1, r2, r3, ..., rn}, which are then integrated
with query for subsequent IR operations.

Zero-shot Generation Prompt

You are PassageGenGPT, an AI capable of generating concise,
informative, and clear pseudo passages on specific topics.

Generate one passage that is relevant to the following
query: '{query}'. The passage should be concise,
informative, and clear

Figure 1: Zero-Shot Prompting for Relevant Passage
Generation: It emphasizes generating contextually rele-
vant content to enhance background knowledge density
for multiple-text integration.

3.2.1 MUGI for BM25
This component evaluates relevance by analyzing
lexical overlaps between the query and references.
Given the longer lengths of documents compared to
queries and BM25’s sensitivity to word frequency,
achieving a careful balance to ensure the appro-
priate influence of each element in text is crucial.
The variation in the lengths of queries and pas-
sages makes the constant repetition of query used
in previous studies, which typically handles single
pseudo-references, ineffective (Wang et al., 2023b;
Shen et al., 2023), particularly when dealing with
multiple references.

To address this issue, we implement an adap-
tive reweighting strategy that adjusts according to
the length of the pseudo-references. This adjust-
ment is governed by a factor β, as illustrated by the
following equation:

λ =

⌊
len(r1) + len(r2) + . . .+ len(rn))

len(q) · β

⌋
. (3)

Since BM25 does not account for word order,
we enhance the query by repeating query λ times
and concatenating it with all pseudo-references:

qsparse = concat(q ∗ λ, r1, r2, r3..., rn). (4)

This enhanced query is then processed by BM25 to
produce the ranking results Ibm25.

3.2.2 MUGI for Dense Retriever
MUGI also enhances dense retrievers, specifically
bi-encoders. In this section, we discuss how to in-
tegrate pseudo-references with queries. We present
two approaches to integrate queries with pseudo-
references to obtain a contextualized query embed-
ding.

I. Concatenation has been commonly used in
prior studies (Shen et al., 2023; Wang et al.,
2023b), where the query is simply concate-
nated with all references as in BM25:

qcat = concat(q, r1, r2, ..., rn). (5)

This enhanced query is then processed by
the dense retriever f to produce embeddings,
i.e., ecat = f(qcat). However, as the number
and length of references increase, the typi-
cal input length limitation of 512 tokens can
hinder the integration process. Consequently,
only one to two passages can be incorporated
into qcat.

1874

BM
25

Stage 1: Retrieval Stage 2: Rerank

MuGI pipeline

Top 100
Docum

ents

Pseudo
References Query

Sparse Query

Pseudo
References

x N

Query

Dense
Retriever

LLMs
Knowledge

Base
Integration

Top 10
Docum

ents

Contextual
Query
Embedding

References
Embeddings

Query Embeddings

Generate
passages
that are

relevant to
the following

'{query}'.

Prompt

Calibration

Calibrated
Query
Embedding

Figure 2: Method overview of MUGI. Left part is initial retrieval using BM25 for initial retrieval, right part
indicates re-rank output from first stage using a dense retriever.

II. Feature Pooling addresses the model’s input
length limitations, particularly when multi-
ple references are involved. A straightfor-
ward method is to average the embeddings in
the feature space, as demonstrated by HyDE
(Gao et al., 2022):

emean-pool =
f(q) +

∑
i f(ri)

n+ 1
. (6)

Empirically, we use another variant termed
contex-pool:

econtex-pool =

∑
i f(concat(q, ri)

n
. (7)

We then calculate the similarity between the
query and all documents, ranking them accordingly.
We denote these rankings as Idense.

3.3 MUGI Pipeline
While recent neural dense retrievers often out-
perform traditional sparse retrieval methods like
BM25, we observe that pre-indexing and storing
embeddings is computationally and memory inten-
sive for large-scale databases, particularly with the
advent of larger models. For instance, encoding
the academic-purpose MS-MARCO dataset with
8.8 million passages using a 7B LLM-based text
encoder requires over 35 hours on a single A100
GPU, even with Flash Attention (Dao et al., 2022),
and consumes 120GB of storage in float16 preci-
sion. This process becomes impractical when new
models are introduced, as it requires re-indexing
the entire dataset. Given that MUGI enhances both
BM25 and dense retrievers, it is natural to com-
bine them to leverage the strengths of generated
references for Information Retrieval.

To address these challenges, we introduce a
fast and high-quality retrieval pipeline, termed

the MUGI Pipeline (see fig. 2). This pipeline
begins by retrieving the top-k references using
BM25+MUGI, followed by reranking these ref-
erences with enhanced query embeddings from a
bi-encoder model. Specifically, we restrict the
bi-encoder’s search scope to the top 100 refer-
ences retrieved by BM25+MUGI, which is man-
ageable enough to enable efficient online rerank-
ing. This approach enhances flexibility, as it facil-
itates the integration of the latest models into the
retrieval system without the computational over-
head of re-indexing the entire dataset. By reusing
the lightweight BM25 for the initial retrieval stage
and performing reranking with a neural dense re-
triever, the MUGI pipeline effectively mitigates the
heavy computational load of dense retrieval. More-
over, with the support of large language models for
query expansion, we observe that MUGI pipeline
achieves not only significantly faster search speeds
but also retrieval results comparable to those ob-
tained by a much slower process of directly apply-
ing a dense retriever on the full database.

It is important to note that the MUGI pipeline
serves as an initial retrieval method, complement-
ing rather than contradicting the retrieval-then-
rerank framework, since it utilizes a bi-encoder
solely during the retrieval stage. To enhance re-
trieval accuracy, a subsequent cross-encoder can
be employed to rerank the outputs of the MUGI
pipeline.

Calibration The MUGI pipeline utilizes re-
trieval results from BM25, which provides pseudo-
reference information that can be further leveraged
to refine query embeddings using relevance feed-
back techniques. To achieve this, we consider the
Rocchio algorithm (Schütze et al., 2008), which
refines the query vector using relevance feedback

1875

as follows :

e′q = aeq+
b

|D+|
∑

di∈D+

di−
c

|D−|
∑

dj∈D−

dj , (8)

where e′q is the calibrated query vector, eq is the
original query vector, di,dj are document vectors,
D+/D− is the set of positive/negative documents,
and a, b, c are weights.

Since the Rocchio algorithm is primarily de-
signed for bag-of-words models and does not di-
rectly align with the architecture of neural retriev-
ers, we propose an adapted post-processing opera-
tion suitable for neural dense retrievers.

Specifically, we first run the MUGI pipeline and
get top 100 BM25 results Ibm25 as well as initial
dense rank results Iinit as shown in fig. 2. We con-
struct a negative feedback set N consisting of the
last n documents from the BM25 retrieval results,
and a positive feedback set R+, which includes all
generated references along with the K-reciprocal
documents—defined as the intersection of the top-
K documents from both Ibm25 and Iinit. The ad-
justed query calibration is then performed as fol-
lows:

e′q =
1

W
(
∑

r∈R+

f(concat(q, r))− α
∑

n′∈N
f(n′)),

(9)
where W = |R+|+ |N | is the total number of

positive and negative feedback documents, and α is
a weight factor controlling the influence of negative
feedback. The refined query vector e′q is then used
for a reranking process among Ibm25 to produce the
final retrieval results. It is worth noting that this
calibration process does not introduce additional
computational overhead, as it directly operates on
the output embeddings, ensuring efficiency while
improving the quality of retrieval.

4 Experiments

In this section, we provide answers for RQ1 and
RQ2 in §4.2 and §4.3 and answers for RQ3 and
RQ4 in §4.4.

4.1 Setup

Implementation Details We employ ChatGPT
and Qwen (Bai et al., 2023) to generate pseudo-
references. For BM25 searches, we use the Py-
serini toolkit (Lin et al., 2021) with default settings.
We select multiple dense bi-encoders based on

their performance in the MTEB leaderboard (Muen-
nighoff et al., 2022), including: ALL-MINILM-
L6-V2, ALL-MPNET-BASE-V2, BGE-LARGE-
EN-V1.5 (Xiao et al., 2023), GTE-LARGE-EN-
V1.5 (Li et al., 2023), EMBER-V1, and E5-
MISTRAL-INSTRUCT (Wang et al., 2023a), which
vary in size from 23M to 7B parameters. We
also incorporate strong cross-encoders, including
MonoT5 (Nogueira et al., 2020) and RankLLaMA
(Ma et al., 2023a) as baselines.

In our experiments, unless specified otherwise,
MUGI uses a β = 4 for BM25 and a context
feature pool with a calibration factor of α = 0.2
and 4-reciprocal for dense retrieval. Each retrieval
process involves using n = 5 generated pseudo-
references from ChatGPT-4-turo-1106. All experi-
ments are conducted with 1 NVIDIA A100 GPU.

Evaluation Following (Wang et al., 2023b), we
adopt nDCG@10 as the metric and evaluate on
the TREC DL19 (Craswell et al., 2020) and
DL20 (Craswell et al., 2021) datasets for in-domain
analysis, and on nine low-resource datasets from
BEIR (Thakur et al., 2021) for out-of-distribution
(OOD) evaluation.

4.2 Result
Applicability is crucial for query expansion
methods. Previous approaches like HyDE targeted
only dense retrievers, while Query2Doc yields in-
consistent results across models of varying capaci-
ties (Li et al., 2024; Weller et al., 2023). Conversely,
our MUGI framework enhances both BM25 and
dense retrievers across all evaluations, as demon-
strated in Table 1. Unlike Query2Doc, MUGI con-
sistently enhances models across a wide range of
sizes, from 23M to 7B parameters, demonstrating
its broad applicability.

MUGI for Sparse Retriever For sparse retrieval
evaluation, we include strong baselines such as
HyDE (Gao et al., 2022), Query2Doc (Wang et al.,
2023b), and LameR (Shen et al., 2023), alongside
compact dense retrievers like ANCE (Xiong et al.,
2020) and DPR (Karpukhin et al., 2020). The re-
sults, presented in Table 1, show that MUGI out-
performs all baseline models and existing query
expansion techniques on the TREC DL dataset.
Specifically, it boosts BM25 performance by 19.8%
and 16.4% in nDCG@10 for the TREC DL 19/20
datasets, respectively.

MUGI also shows substantial improvements on
the BEIR dataset, where queries are typically short

1876

Methods In-domain Out-of-Domain

DL19 DL20 Covid NFCorpus Touche DBPedia SciFact Signal News Robust04 BEIR (Avg)

ANCE † 64.5 64.6 65.4 23.7 24.0 28.1 50.7 24.9 38.2 39.2 36.8
DPR† 62.2 65.3 33.2 18.9 13.1 26.3 31.8 15.5 16.1 25.2 22.5
DocT5query† 64.2 - 71.3 32.8 34.7 33.1 67.5 30.7 42.0 43.7 44.5
HyDE†Contriever 61.3 57.9 59.3 - - 36.8 69.1 - 44.0 - -
RepLLaMA-7B † 74.3 72.1 84.7 37.8 30.5 43.7 75.6

Sparse + Query Expansion
BM25 50.6 48.0 59.5 30.8 44.2 31.8 67.9 33.1 39.5 40.7 43.4

+ RM3† 52.2 47.4 - - - - - - - - -
+ Query2Doc† 66.2 62.9 72.2 34.9 39.8 37.0 68.6 - - - -
+ LameR† 67.1 62.7 72.5 - - 38.7 73.5 - 49.9 - -
+ MuGI (ChatGPT-3.5) 70.4 63.9 69.7 36.0 46.3 41.2 72.0 35.8 46.6 49.7 49.6
+ Query2Doc (ChatGPT-4)‡ 67.0 63.2 70.8 36.0 44.2 39.1 73.3 - - - -
+ LameR (ChatGPT-4)‡ 70.1 64.2 - - - - - - - - -
+ MuGI (ChatGPT-4) 70.4+19.8 64.4+16.4 72.9+13.4 37.4+6.6 46.1+1.9 42.7+10.9 74.0+6.1 36.0+2.9 50.0+10.5 49.2+8.5 51.0+7.6

Dense + Query Expansion (ChatGPT-4)
all-MiniLM-L6-v2 63.7 65.6 50.7 30.9 19.7 33.4 65.1 - - - -

+ Query2Doc ‡ 70.8 69.9 68.2 34.7 23.2 40.4 70.5 - - - -
+ MuGI 75.3 71.5 75.2 35.9 24.4 42.7 72.2

AMB-v2 66.7 67.2 55.6 33.5 23.6 34.6 65.7 - - - -
+ Query2Doc‡ 73.7 73.5 74.2 38.0 23.4 41.2 70.7 - - - -
+ MuGI 76.8 75.7 75.3 38.0 26.7 42.6 71.4 - - - -

Ember-v1 72.7 70.5 76.5 38.8 27.0 42.9 75.2 - - - -
+ Query2Doc‡ 74.1 73.2 81.8 39.5 25.1 43.6 77.2 - - - -
+ MuGI 76.9 74.5 82.1 39.5 28.5 44.9 77.3 - - - -

GTE-Large-EN-v1.5 71.6 72.2 76.1 36.9 24.5 44.6 79.6 - - - -
+ Query2Doc‡ 76.2 74.3 82.9 39.0 27.5 43.7 81.1 - - - -
+ MuGI 78.2 75.0 84.3 39.7 27.6 45.9 81.5 - - - -

Table 1: Retrieval Results (nDCG@10). The top half presents MUGI results for sparse retrievers, while the bottom half shows
MUGI results for dense retrievers. The best-performing results are highlighted in bold. †indicates cited results, and ‡represents
reproduced results. ‘ChatGPT-4’ refers to ChatGPT4-1106, and ‘ChatGPT-3.5’ corresponds to ChatGPT3.5-turbo.

and ambiguous. By integrating multiple pseudo-
references, MUGI effectively enriches the context,
leading to a 7.6% enhancement over the baseline
BM25 and outperforming other query expansion
strategies across all tested datasets.

MUGI for Dense Retriever For dense retrieval,
we employ FAISS (Douze et al., 2024) to per-
form inner product search across four different-
sized bi-encoders, as presented in Table 1. The
MUGI pipeline significantly enhances performance
for all models in both in-domain and out-of-
domain benchmarks. We also observe a consistent
trend where MUGI outperforms the single pseudo-
reference method by a considerable margin. No-
tably, with MUGI, the smaller 434M GTE model
outperforms the larger 7B RepLLaMA model in
all in-domain and most out-of-domain tasks. This
suggests that compact models, when supplemented
with pseudo-references generated by larger models,
can serve as highly effective retrievers.

4.3 MUGI Pipeline Retrieval Results

MUGI pipeline is a fast and effective retrieval
pipeline combining benefit of sparse retriever and
dense retriever, it involves reordering passages ini-
tially retrieved by sparse retriever using advanced

neural models. Our findings, shown in Table 2,
underscore the MUGI pipeline’s substantial en-
hancement of dense retrievers’ performance. The
BM25 rerank baseline reranks the top 100 refer-
ences from BM25, while Query2Doc applies the
Query2Doc1 method in both sparse retrieval and
reranking phases. The MuGI pipeline, outlined
in fig. 2, integrates calibration into the reranking
process.

Integrating MUGI into the reranking process
consistently boosts performance, outperforming
Query2Doc in all scenarios. This integration leads
to over a 7% improvement in in-domain evalua-
tions across various model sizes compared with
BM25 re-rank baseline. Notably, the compact
MiniLMv2 model, with just 23M parameters, sur-
passes the larger 7B E5-Mistral baseline and even
3B cross-encoder monoT5 by achieving an average
of 11% improvement over the baseline on the DL
19/20 datasets.

In OOD scenarios, MUGI continues to outper-
form BM25 re-rank baseline, with gains exceed-
ing 4% across all models. Specifically, the 23M
MiniLMv2 shows that compact bi-encoders can
be an effective and robust retriever when equipped

1Only the TREC DL dataset is released for Query2Doc.

1877

Methods #Param In-domain Out-of-Domain

DL19 DL20 Covid NFCorpus Touche DBPedia SciFact Signal News Robust04 BEIR(Avg)

Dense Cross-Encoder + BM25 re-rank
monoT5 † 220M 71.5 67.0 78.3 37.4 30.8 42.4 73.4 31.7 46.8 51.7 49.1
monoT5† 3B 71.8 68.9 80.7 39.0 32.4 44.5 76.6 32.6 48.5 56.7 51.4
RankLLaMA‡ 7B 75.6 77.4 85.2 30.3 40.1 48.3 73.2 - - - -
Cohere Rerankv2 † API 73.2 67.1 81.8 36.4 32.5 42.5 74.4 29.6 47.6 50.8 49.5

Dense Bi-Encoder + Query Expansion (ChatGPT-4)
all-MiniLM-L6-v2 23M

+ BM25 re-rank 64.2 60.8 73.6 30.8 26.2 35.9 67.6 28.8 52.0 51.4 45.8
+ Query2Doc 73.1 70.2 76.6 34.2 29.1 39.6 69.2 - - - -
+ MuGI Pipeline 75.4+11.2 72.1+11.3 81.0+7.4 37.6+6.8 34.1+7.9 45.5+9.6 74.8+7.2 28.9+0.1 51.4 55.2+3.8 51.0+5.2

AMB-v2 110M
+ BM25 re-rank 68.3 64.2 75.8 34.3 28.9 37.6 68.0 29.8 52.0 51.4 47.2
+ Query2Doc 75.3 74.0 78.9 36.2 29.5 38.9 71.4 - - - -
+ MuGI Pipeline 77.6+9.3 75.1+10.9 82.6+6.8 39.2+4.9 30.3+1.4 45.7+7.8 73.9+5.9 30.2+0.4 55.2+3.2 58.2+6.8 51.9+4.7

Ember-v1 335M
+ BM25 re-rank 71.3 64.5 80.3 35.8 31.6 41.7 75.2 32.0 48.8 51.3 49.6
+ Query2Doc 73.5 71.1 82.1 37.9 33.8 42.9 79.2 - - - -
+ MuGI Pipeline 78.3+7.0 73.3+8.8 84.7+4.4 40.7+4.9 35.8+4.2 46.6+4.9 78.3+3.1 32.6+0.6 54.0+5.2 58.0+6.7 53.8+4.2

GTE-Large-EN-v1.5 434M
+ BM25 re-rank 70.4 66.0 81.3 35.2 28.3 41.5 78.9 29.8 50.9 54.9 50.1
+ Query2Doc 73.6 72.8 83.2 37.7 29.9 45.0 79.9 - - - -
+ MuGI Pipeline 77.9+7.5 74.1+8.1 86.9+5.6 40.8+5.6 31.9+3.6 47.4+5.9 80.6+1.7 28.0 54.0+3.1 58.5+3.6 53.5+3.4

E5-Mistral-instruct 7B
+ BM25 re-rank 70.0 66.7 81.4 36.0 29.5 42.4 75.8 32.8 53.0 52.8 50.5
+ Query2Doc 73.8 71.4 83.2 39.1 32.4 45.3 76.8 - - - -
+ MuGI Pipeline 77.3+7.3 +74.9+8.2 +85.6+4.2 +41.3+5.3 +35.8+6.3 47.3+4.9 +77.9+2.1 +34.5+1.7 55.1+2.1 59.2+6.4 54.6+4.1

Table 2: MuGI Pipeline Results (nDCG@10) on TREC and BEIR. Best performing are marked bold. MuGI pipeline suggests
application of MuGI on both sparse retrieval and dense retrieval as shown in fig. 2. ‡RankLLaMA rerank based on top 200
references from RepLLaMA.

with sufficient contextual information. With the
MUGI application, it consistently outperforms the
larger 7B E5-Mistral BM25 re-rank baseline and
approaches the performance of the cross-encoder
monoT5-3B. However, only modest improvements
are noted on the Signal dataset, likely due to the
ambiguous queries like "A stadium for Hughes"
and "Revilla wants 34 defense witnesses", which
may not provide sufficient context for LLMs.

Notably, the combination of sparse and dense
retrievers in the MUGI pipeline proves to be signif-
icantly faster and more cost-effective for retrieval
inference compared to using dense retrievers with
FAISS directly on whole database. This efficiency
arises from the fact that MUGI eliminates the need
for pre-indexing and avoids performing inner prod-
uct searches across the entire database. Addition-
ally, the pipeline shows promising performance,
particularly in out-of-domain evaluations, where
it exceeds the performance of direct retrieval with
dense retrievers. We attribute this strong perfor-
mance to the advantages of sparse retrievers in
zero-shot scenarios, where dense retrievers may be
less effective. The results from Table 1 suggest
that proposed MUGI pipeline not only enhances
speed and reduces computational costs but also de-
livers superior retrieval results, while maintaining
the flexibility to integrate seamlessly with more

recent and advanced models.

4.4 Explore Best Practice of Query Expansion

Explore Reweight for BM25. Reweighting
queries and pseudo references is crucial for op-
timizing the sensitive BM25 algorithm. To explore
reweighting strategy, we experiment with pseudo-
references generated by GPT-4 under the MUGI
framework in two settings: 1) constant repetition
of query for t times and 2) our proposed adaptive
reweighting with reweight factor β.

Fig. 3 displays the average scores for the TREC
DL+BEIR dataset. It shows that constant repeti-
tion, overlooking variations in pseudo-reference
lengths, is not a general solution. For instance, re-
peating a query five times, as suggested in (Wang
et al., 2023b), is only optimal with a single pseudo-
reference. When dealing with multiple pseudo-
references, a higher repetition t is needed to achieve
better performance. The main drawback of this
method is its failure to adjust to the different
lengths of references, resulting in inconsistent per-
formances when using a fixed repetition rate t.
Moreover, finding an effective t for multiple ref-
erences requires considerable effort. Our adap-
tive reweighting strategy dynamically adjusts to
query and reference lengths, optimizing word fre-
quency in the enhanced query which is important

1878

Figure 3: BM25 + MuGI Reweighting Strategy Results (nDCG@10) on average
scores of TREC DL + BEIR. The left panel illustrates the constant repetition of the
query, while the right panel displays our adaptive reweighting strategy with various
β values. The Y-axis represents the number of pseudo-references used.

ChatGPT-4 ChatGPT-3.5 Qwen2-7B
50

51

52

53

54

55

56

Av
er

ag
e

nD
C

G
@

10
 (%

)

54.50

51.20

51.80

54.90

53.20

52.00

constant repeat 30 times
adaptive factor beta = 4

Figure 4: BM25 + MuGI over vari-
ous LLMs with different reweight
strategy with 5 References Results
(nDCG@10) .

Model Params Method TREC DL BEIR

MiniLM-L6-v2 23M
concat 71.6 48.1

contex-pool 73.6 (+2.0) 49.5 (+1.4)

AMB-v2 110M
concat 75.7 50.3

contex-pool 76.1 (+0.4) 50.9 (+0.6)

Ember-v1 335M
concat 74.0 52.0

contex-pool 74.8 (+0.8) 52.5 (+0.5)

BGE-Large-EN-v1.5 335M
concat 74.3 51.2

contex-pool 74.8 (+0.5) 51.6 (+0.4)

E5-Mistral-instruct 7B
concat 74.0 53.0

contex-pool 75.8 (+1.8) 53.6 (+0.6)

Table 3: Evaluation Results (nDCG@10 %) of different sized
Models with distinct integration approach.

for lexical-based retrievers. This method effec-
tively manages various numbers of references with-
out needing repeated trials to find the optimal repe-
tition ratio. For instance, setting β = 4, as shown
in fig. 3 (right), consistently yields strong perfor-
mance across different numbers of reference pas-
sages, eliminating the need for a grid search to
adjust repetition times t as the number of passages
varies.

The adaptive reweighting also maintains robust
performance across diverse LLMs, accommodating
their varied output lengths. We applied the optimal
configuration from fig. 3, which includes a constant
repetition of t = 30 and β = 4 across 5 passages
from various LLMs. As demonstrated in fig. 4,
this adaptive approach consistently outperforms
constant repetition. For instance, against ChatGPT-
3.5, known for its shorter responses, our method
effectively compensates for the inadequate query
weighting of constant repetition, ensuring strong
performance across different models.

Explore Integration Approach for Dense Re-
triever. We explored two methods for integrating
information from pseudo-references with a query:

70 71 72 73 74 75 76 77 78

E5-M
Ember

BGE
AMB
MLM

76.1
75.8

75.6
76.4

73.8

49 50 51 52 53 54 55 56 57
nDCG@10 (%)

E5-M
Ember

BGE
AMB
MLM

54.6
53.8

52.8
51.9

51.0

w/o calibration w calibration

Figure 5: Calibration Ablation α = 0.2 (nDCG@10). (Top)
In domain TREC DL evaluation; (Bottom) BEIR OOD evalu-
ation. E5-M is E5-Mistral-instruct, BGE is BGE-Large-EN-
v1.5, MLM is all-MiniLM-L6-v2, Ember is Ember-v1.

concatenation in the input space and feature pool-
ing in the feature space. Our experiments with
MUGI pipeline, conducted without calibration,
indicate that feature pooling consistently outper-
forms simple concatenation, as detailed in Table 3.
The primary drawback of concatenation is trun-
cation; given most models’ input length limit of
512 tokens, only 1-2 pseudo-references can be ac-
commodated, limiting the utilization of multiple
references.

Additionally, concatenation increases computa-
tional costs due to its quadratic complexity. For ex-
ample, with n references each of average length d,
the complexity of concatenation is O(n2d2), com-
pared to O(nd2) for feature pooling.

Effect of Calibration The new calibration
method leverages hard negative reference feedback
to refine query embeddings in the feature space.

1879

Figure 6: (Left) Ablation on α in calibration. (Right) Ablation
on the number of generated pseudo references for MiniLM-L6.
Zero references represent directly rerank on top100 BM25.

As shown in fig. 5, it consistently boosts perfor-
mance in both in-domain and OOD evaluations,
with notable gains in OOD scenarios.

5 Analysis

5.1 Ablation Study
In this section, we analyze and conduct ablation
studies on MUGI using the all-MiniLM-L6-v2
and references generated by GPT-4 within the full
MUGI pipeline settings described in §4.1.

Impact of Number of Pseudo References The
fundamental premise of MUGI is that multiple ref-
erences generated by LLMs can provide contextual
information and key words or relevant patterns that
enhance queries. Consequently, the critical factor
in our framework is the number of pseudo refer-
ences used. Both sparse retrieval (fig. 3) and dense
retrieval (fig. 6) show performance improvements
with an increasing number of references; however,
gains plateau at five. This suggests that the lan-
guage model’s capability to generate key terms
reaches its limit at this point.

Impact of α in Calibration Figure 6 indicates
that the calibration parameter α offers benefits,
with performance peaking at 0.2 and then declining.
The impact of calibration is more pronounced in
OOD evaluations, in line with observations from
fig. 5.

Impact of Large Language Models We as-
sessed the MUGI framework across various LLMs,
specifically examining BM25 (fig. 4) and dense
retrievers (Table 4). Our findings highlight that: 1)
stronger LLMs consistently produce better results;
2) GPT models outperform others, likely due to
their expansive knowledge bases. Although GPT-
3.5 generally underperforms relative to Qwen2-7B
on most open leaderboards (Zheng et al., 2023;
Park, 2023), it demonstrated superior performance

Qwen2-7B Qwen2-72B GPT3.5 GPT4 GPT4o

In-domain 68.3 73.1 73.1 73.8 73.4
OOD 47.8 50.3 50.5 51.0 50.2

Table 4: nDCG@10 Results Using MiniLM with References
from Diverse LLMs.

Figure 7: Key Words Overlap Distribution.

in our tests, possibly due to its more robust gener-
alization capabilities.

5.2 Mechanism behind Query Expansion

We investigate how generated pseudo references
improve IR through key vocabulary overlap. We
compile "Ground Truth References (GT)" from pas-
sages rated relevance level 3 and aggregate "pseudo
references (PSE)" for each query from TREC DL.
By identifying the top 10 highest Inverse Docu-
ment Frequency (IDF) words in these references,
we compare the frequency of key vocabularies in
the query, GT, and PSE. As illustrated in fig. 7,
there is a substantial overlap in the frequency of
key vocabularies between GT (red region) and PSE
(yellow region) in both IID and OOD scenarios,
surpassing that between the original query (blue re-
gion) and GT (red region). This demonstrates that
pseudo references significantly enhance retrieval by
incorporating crucial key vocabularies or patterns
that target specific passages.

6 Conclusion

This paper explores best practices for query expan-
sion methods in information retrieval with LLMs.
We present the Multi-Text Generation Integration
(MUGI) framework, a technique that markedly
improves information retrieval by integrating the
query with multiple generated passages through
an adaptive reweighting strategy, feature pooling,
and query calibration. Our empirical findings show
that MUGI significantly enhances the performance
of both sparse and dense retrieval models. We of-
fer a comprehensive discussion of best practices,
informed by thorough experimentation.

1880

Method GPT4 generation Index search

BM25 - 14 ms
+MuGI >2500ms 230 ms

Table 5: Latency of vairous methods. Measured by
taking average of top 100 results for MS-MARCO dev
queries with a single thread. Note that LLM generation
latency is highly related to specific models and depends
on server load. With the help of accelerating framework
such as vLLM, the generation speed could be much
faster.

Limitation

The proposed method offers substantial im-
provements in information retrieval performance.
Nonetheless, a shared limitation across query ex-
pansion approaches, ours included, is the increased
inference time due to the generation of extra pas-
sages with LLMs. We provide approxiamte latency
using MuGI in table 5.

References
Nasreen Abdul-Jaleel, James Allan, W Bruce Croft,

Fernando Diaz, Leah Larkey, Xiaoyan Li, Mark D
Smucker, and Courtney Wade. 2004. Umass at trec
2004: Novelty and hard. Computer Science Depart-
ment Faculty Publication Series, page 189.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and
Rodrigo Nogueira. 2022. Inpars: Data augmentation
for information retrieval using large language models.
arXiv preprint arXiv:2202.05144.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec

Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and
Daniel Campos. 2021. Overview of the trec 2020
deep learning track.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview
of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness.
In Advances in Neural Information Processing Sys-
tems (NeurIPS).

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

Wenqi Fan, Zihuai Zhao, Jiatong Li, Yunqing Liu, Xi-
aowei Mei, Yiqi Wang, Jiliang Tang, and Qing Li.
2023. Recommender systems in the era of large lan-
guage models (llms). ArXiv, abs/2307.02046.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Precise zero-shot dense retrieval without rele-
vance labels.

Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing
Zhang, and Xueqi Cheng. 2022. Semantic mod-
els for the first-stage retrieval: A comprehensive re-
view. ACM Transactions on Information Systems,
40(4):1–42.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Gautier Izacard and Edouard Grave. 2020. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio,
Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, and
Rodrigo Nogueira. 2023. Inpars-v2: Large language
models as efficient dataset generators for information
retrieval. arXiv preprint arXiv:2301.01820.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen tau Yih. 2020. Dense passage retrieval for open-
domain question answering.

1881

https://api.semanticscholar.org/CorpusID:218971783
http://arxiv.org/abs/2102.07662
http://arxiv.org/abs/2102.07662
http://arxiv.org/abs/2401.08281
https://api.semanticscholar.org/CorpusID:259342486
https://api.semanticscholar.org/CorpusID:259342486
http://arxiv.org/abs/2212.10496
http://arxiv.org/abs/2212.10496
https://doi.org/10.1145/3486250
https://doi.org/10.1145/3486250
https://doi.org/10.1145/3486250
http://arxiv.org/abs/2004.04906
http://arxiv.org/abs/2004.04906

Victor Lavrenko and W Bruce Croft. 2017. Relevance-
based language models. In ACM SIGIR Forum, vol-
ume 51, pages 260–267. ACM New York, NY, USA.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks.

Hang Li, Ahmed Mourad, Shengyao Zhuang, Bevan
Koopman, and Guido Zuccon. 2022. Pseudo rele-
vance feedback with deep language models and dense
retrievers: Successes and pitfalls.

Minghan Li, Honglei Zhuang, Kai Hui, Zhen Qin,
Jimmy Lin, Rolf Jagerman, Xuanhui Wang, and
Michael Bendersky. 2024. Can query expansion im-
prove generalization of strong cross-encoder rankers?

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
2021), pages 2356–2362.

Jerry Liu. 2022. LlamaIndex.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and
Jimmy Lin. 2023a. Fine-tuning llama for multi-stage
text retrieval. arXiv preprint arXiv:2310.08319.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and
Jimmy Lin. 2023b. Zero-shot listwise document
reranking with a large language model. arXiv
preprint arXiv:2305.02156.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Rodrigo Nogueira and Kyunghyun Cho. 2020. Passage
re-ranking with bert.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2020.
Document ranking with a pretrained sequence-to-
sequence model. arXiv preprint arXiv:2003.06713.

Daniel Park. 2023. Open-llm-leaderboard-report.

Hongjin Qian, Zhicheng Dou, Yutao Zhu, Yueyuan Ma,
and Ji rong Wen. 2021. Learning implicit user profile
for personalized retrieval-based chatbot. Proceed-
ings of the 30th ACM International Conference on
Information & Knowledge Management.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Xin Zhao, Daxiang Dong, Hua Wu, and Haifeng
Wang. 2020. Rocketqa: An optimized training ap-
proach to dense passage retrieval for open-domain
question answering. In North American Chapter of
the Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Stephen E. Robertson and Karen Spärck Jones. 1976.
Relevance weighting of search terms. J. Am. Soc. Inf.
Sci., 27:129–146.

Stephen E. Robertson, Steve Walker, Susan Jones,
Micheline Hancock-Beaulieu, and Mike Gatford.
1994. Okapi at trec-3. In Text Retrieval Conference.

Devendra Singh Sachan, Mike Lewis, Mandar Joshi,
Armen Aghajanyan, Wen-tau Yih, Joelle Pineau, and
Luke Zettlemoyer. 2022. Improving passage retrieval
with zero-shot question generation. arXiv preprint
arXiv:2204.07496.

Gerard Salton. 1971. The smart retrieval sys-
tem—experiments in automatic document process-
ing.

Hinrich Schütze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval, volume 39. Cambridge University Press
Cambridge.

Tao Shen, Guodong Long, Xiubo Geng, Chongyang
Tao, Tianyi Zhou, and Daxin Jiang. 2023. Large
language models are strong zero-shot retriever. arXiv
preprint arXiv:2304.14233.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie
Ren, Dawei Yin, and Zhaochun Ren. 2023. Is
chatgpt good at search? investigating large lan-
guage models as re-ranking agent. arXiv preprint
arXiv:2304.09542.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. Beir:
A heterogenous benchmark for zero-shot evaluation
of information retrieval models.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023a. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

1882

http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2108.11044
http://arxiv.org/abs/2108.11044
http://arxiv.org/abs/2108.11044
https://doi.org/10.5281/zenodo.1234
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
https://github.com/dsdanielpark/Open-LLM-Leaderboard-Report
https://api.semanticscholar.org/CorpusID:237194722
https://api.semanticscholar.org/CorpusID:237194722
https://api.semanticscholar.org/CorpusID:231815627
https://api.semanticscholar.org/CorpusID:231815627
https://api.semanticscholar.org/CorpusID:231815627
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://api.semanticscholar.org/CorpusID:45186038
https://api.semanticscholar.org/CorpusID:3946054
https://api.semanticscholar.org/CorpusID:61113802
https://api.semanticscholar.org/CorpusID:61113802
https://api.semanticscholar.org/CorpusID:61113802
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404

Liang Wang, Nan Yang, and Furu Wei. 2023b.
Query2doc: Query expansion with large language
models. arXiv preprint arXiv:2303.07678.

Orion Weller, Kyle Lo, David Wadden, Dawn J Lawrie,
Benjamin Van Durme, Arman Cohan, and Luca Sol-
daini. 2023. When do generative query and document
expansions fail? a comprehensive study across meth-
ods, retrievers, and datasets. ArXiv, abs/2309.08541.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighoff. 2023. C-pack: Packaged resources
to advance general chinese embedding.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.
arXiv preprint arXiv:2007.00808.

Qian Yang, Qian Chen, Wen Wang, Baotian Hu, and
Min Zhang. 2023. Enhancing multi-modal multi-hop
question answering via structured knowledge and
unified retrieval-generation. In Proceedings of the
31st ACM International Conference on Multimedia,
MM ’23, page 5223–5234, New York, NY, USA.
Association for Computing Machinery.

Chunyuan Yuan, Wen jie Zhou, Mingming Li, Shang-
wen Lv, Fuqing Zhu, Jizhong Han, and Songlin Hu.
2019. Multi-hop selector network for multi-turn re-
sponse selection in retrieval-based chatbots. In Con-
ference on Empirical Methods in Natural Language
Processing.

Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin
Zhao, Leyu Lin, and Ji rong Wen. 2023a. Recom-
mendation as instruction following: A large language
model empowered recommendation approach. ArXiv,
abs/2305.07001.

Le Zhang, Yihong Wu, Fengran Mo, Jian-Yun Nie, and
Aishwarya Agrawal. 2023b. MoqaGPT : Zero-shot
multi-modal open-domain question answering with
large language model. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 1195–1210, Singapore. Association for Com-
putational Linguistics.

Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris
Brockett, Michel Galley, Jianfeng Gao, and Bill
Dolan. 2022. Retgen: A joint framework for retrieval
and grounded text generation modeling. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11739–11747.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan
Liu, Wenhan Liu, Chenlong Deng, Zhicheng Dou,
and Ji-Rong Wen. 2023. Large language models
for information retrieval: A survey. arXiv preprint
arXiv:2308.07107.

1883

https://api.semanticscholar.org/CorpusID:262012661
https://api.semanticscholar.org/CorpusID:262012661
https://api.semanticscholar.org/CorpusID:262012661
http://arxiv.org/abs/2309.07597
http://arxiv.org/abs/2309.07597
https://doi.org/10.1145/3581783.3611964
https://doi.org/10.1145/3581783.3611964
https://doi.org/10.1145/3581783.3611964
https://api.semanticscholar.org/CorpusID:202776649
https://api.semanticscholar.org/CorpusID:202776649
https://api.semanticscholar.org/CorpusID:258615776
https://api.semanticscholar.org/CorpusID:258615776
https://api.semanticscholar.org/CorpusID:258615776
https://doi.org/10.18653/v1/2023.findings-emnlp.85
https://doi.org/10.18653/v1/2023.findings-emnlp.85
https://doi.org/10.18653/v1/2023.findings-emnlp.85
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

