
Findings of the Association for Computational Linguistics: EACL 2024, pages 2109–2123
November 12-16, 2024 ©2024 Association for Computational Linguistics

Reward Difference Optimization For Sample Reweighting In Offline RLHF
Shiqi Wang12 Zhengze Zhang12 Rui Zhao3

Fei Tan4∗ Cam Tu Nguyen12∗
1State Key Laboratory for Novel Software Technology, Nanjing University

2School of Artificial Intelligence, Nanjing University
3The Chinese University of Hong Kong

4New Jersey Institute of Technology
{wangsky,zzzhang}@smail.nju.edu.cn

tanfei2007@gmail.com
ncamtu@nju.edu.cn

Abstract

With the rapid advances in Large Language
Models (LLMs), aligning LLMs with human
preferences become increasingly important. Al-
though Reinforcement Learning with Human
Feedback (RLHF) proves effective, it is compli-
cated and highly resource-intensive. As such,
offline RLHF has been introduced as an al-
ternative solution, which directly optimizes
LLMs with ranking losses on a fixed preference
dataset. Current offline RLHF only captures
the “ordinal relationship” between responses,
overlooking the crucial aspect of “how much”
one is preferred over the others. To address this
issue, we propose a simple yet effective solu-
tion called Reward Difference Optimization,
shorted as RDO. Specifically, we introduce re-
ward difference coefficients to reweigh sample
pairs in offline RLHF. We then develop a dif-
ference model which captures rich interactions
between a pair of responses for predicting these
difference coefficients. Experiments with 7B
LLMs on the HH and TL;DR datasets substan-
tiate the effectiveness of our method in both au-
tomatic metrics and human evaluation, thereby
highlighting its potential for aligning LLMs
with human intent and values.

1 Introduction

Large Language Models (LLMs) have recently
emerged as a major milestone in modern natu-
ral language processing (NLP), offering unprece-
dented capabilities in understanding, generating,
and translating human language (Ouyang et al.,
2022; Touvron et al., 2023; Bai et al., 2023; Achiam
et al., 2023; Taori et al., 2023; Chiang et al., 2023;
Lu et al., 2023). Powered by an extremely large
number of parameters, LLMs encode the wealth of
human knowledge via a pretraining process, which
is often conducted on a web-scale text corpus with

*Corresponding authors

the next token prediction objective. As LLMs be-
come more capable, it is essential and demanding
for them to follow human preferences such as truth-
fulness, harmlessness, and helpfulness. Unfortu-
nately, the maximum likelihood objective for the
next token prediction falls short in capturing such
crucial human values (Stiennon et al., 2020).

Reinforcement Learning with Human Feedback
(RLHF) has been introduced as an effective method
for LLMs alignment (Ouyang et al., 2022; Sti-
ennon et al., 2020). RLHF first leverages a su-
pervised learning objective to equip LLMs with
basic instruction-following capabilities. Subse-
quently, a reward model is trained on a human
preference dataset that contains pairwise compar-
isons of responses from LLMs (for the same query).
The reward model is exploited for further finetun-
ing LLMs via reinforcement learning with Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017). Specifically, training with PPO requires
four models: a policy model (the targeted LLM), a
critic model, a reference model (i.e., a supervised-
finetuning version of the targeted LLM), and a re-
ward model. All these models are based on LLMs
with billions of parameters, whereas the policy and
the critic models need to be updated online. In light
of this, RLHF is highly resource-demanding and
rather complicated to be applied in practice.

In this context, offline RL has been proposed
as an alternative approach to LLMs alignment
(Rafailov et al., 2023; Yuan et al., 2023). The basic
idea of offline RLHF is to directly train LLMs on
the preference dataset using some ranking loss such
as max-margin ranking loss (Yuan et al., 2023), or
negative log-likelihood loss (Rafailov et al., 2023).
Optionally, a reward model can be trained to col-
lect comparison data for sampling new responses
from LLMs (Yuan et al., 2023). It should be noted
that these offline RLHF methods only exploit the
ordinal relationship between responses rather than

2109

Figure 1: Offline RLHF methods only care about the binary relation between responses (i.e., which response is
better). However, given the query, some responses may show similar quality (Response 1 and 2 in the figure) while
others may be obviously worse (Response 3 in the figure). The number in the right upper corner is the score given
by the reward model.

making use of scalar values for rewarding (or pe-
nalizing) responses as in RLHF. The ordinal rela-
tionship, however, does not reflect the degree to
which the preferred response is better than the dis-
preferred one. For instance, Figure 1 shows an
example where the quality difference of the pair
(response 1, response 2) is not as significant as
that of the pair (response 1, response 3). As such,
treating the two pairs equivalently may result in
suboptimal performance for offline RLHF.

To mitigate the aforementioned issue, we pro-
pose a simple yet effective method based on
Reward Difference Optimization, shorted as RDO.
First of all, the reward difference coefficient is
introduced as the degree to which one response
is preferred against the other one given the same
query. Such coefficients can be exploited as sample
weights, which are incorporated into diverse offline
RLHF methods as additional supervision signals
for calibrating the loss function. Basically, one
can train a reward model similar to that in RLHF
and then exploit the reward values for reward dif-
ference measurement. This method, however, is
not effective enough as the reward model indepen-
dently assigns scores to responses. Inspired by how
much easier it is for humans to conduct pairwise
judgments, we propose a difference model to di-
rectly predict the reward difference between two
responses. Unlike the reward model, our differ-
ence model leverages attention-based interactions
between two responses for prediction. Our contri-
butions are summarized as follows:

• We introduce reward difference coefficients
and show how they can be incorporated into
offline RLHF methods including RRHF (Yuan
et al., 2023), DPO (Rafailov et al., 2023) and
KTO (Ethayarajh et al., 2024).

• We develop the difference model that lever-
ages the rich interactions between response
pairs to directly predict the difference in hu-
man preference. This innovative method is
accompanied by a specifically designed train-
ing strategy to ensure its effectiveness.

• We conduct extensive experiments with
Alpaca-7B (Taori et al., 2023), one of the most
well-known open-source LLMs, on the HH
dataset (Bai et al., 2023) and TL;DR dataset
(Stiennon et al., 2020), two commonly used
datasets for alignments with human prefer-
ence. The experimental results show the effec-
tiveness of our method in automatic metrics
based on reward models, GPT-4, and human
evaluation.

2 Reward Difference Coefficients

Given a dataset D = {(x(i), y(i)w , y
(i)
l)}Ni=1 of sam-

ples from the targeted LLM, existing offline RLHF
methods can be treated as learning to optimize the
following general loss function (Zhao et al., 2023):

L =
∑

(x,yw,yl)∼D
Laln(x, yw, yl; θ) + Lreg(θ) (1)

where θ indicates the parameters of the targeted
LLM (πθ); yw and yl respectively denote the pre-
ferred and the dispreferred responses for the given
query x. The preference label can be provided ei-
ther by human annotators or a well-trained reward
model. Here, Laln is the loss function for pref-
erence optimization (i.e., the alignment loss) and
Lreg is the regularization term, for example, to pre-
vent LLM from drifting too far from the supervised-
finetuning (SFT) baseline.

2110

Reward Difference Coefficients As aforemen-
tioned, offline RLHF methods exploit the ordinal
relationship yw ≻ yl for measuring the alignment
loss (L(aln) in Eq. 1), without differentiating piv-
otal pairs and the trivial counterparts. We propose a
simple yet effective method to address such issues
based on reward differences. Specifically, given a
well-trained reward model rϕ : (x, y) 7→ R that
assigns a reward scalar to each response y for the
query x, we can quantify the reward difference
for each pair of responses (yw, yl) for preference
optimization as follows:

Lrc =
∑

Laln(x, yw, yl; θ)×Rα + Lreg(θ)

R = rϕ(x, yw)− rϕ(x, yl) (2)

where R denotes the reward difference coefficient,
indicating the degree of how yw is better than yl.
This difference is then leveraged as the coefficient
for each response pair in the alignment loss. Here,
α ∈ [0, 1] is used to control the effect of the reward
difference coefficient. In particular, when α = 0,
the coefficient has no effect.

Assuming that the reward model can pinpoint
essential differences from minor mistakes, the co-
efficient term helps steer more gradients towards
sample pairs with larger differences. Note that, a
typical way to learn a reward model is based on
the Bradley-Terry (BT) model (Bradley and Terry).
Specifically, the loss function for learning the re-
ward model is as follows:

Lr = −
∑

[log σ(rϕ(x, yw)− rϕ(x, yl))]

N
(3)

where σ indicates the sigmoid function, and rϕ is
the reward model with learnable parameters ϕ.

The proposed coefficient can be readily incor-
porated into diverse offline RLHF methods. The
following details how our method can be applied
to RRHF and DPO.

RRHF+rc RRHF with reward difference coeffi-
cients (RRHF+rc) optimizes the following loss:

LRRHF+rc =

−
∑

max(πθ(yw|x)− πθ(yl|x), 0)×Rα + Lsft

where Lsft indicates the cross-entropy loss similar
to supervised fine-tuning on preferred responses.
This loss is used as a regularization term to keep
the LLM near the supervised-finetuning version.

DPO+rc DPO with reward difference coeffi-
cients (DPO+rc) optimizes the following loss:

LDPO+rc = −
∑

(x,yw,yl)∼D
Rα × g(yw, yl, x, θ)

g = log σ

(
β log

πθ(yw|x)
πsft(yw|x)

− β log
πθ(yl|x)
πsft(yl|x)

)

where g is the original DPO objective defined for
the tuple (yw, yl, x). To analyze the effect of re-
ward difference coefficients, let us consider the
gradient of DPO+rc. Specifically, as Rα does not
depend on θ, the gradient with respect to the pa-
rameters θ of DPO+rc can be written as:

∇θLDPO+rc

= −
∑

R̂[∇θ log πθ(yw|x)−∇θ log πθ(yl|x)]
R̂ = Rα × β × σ(r̂θ(x, yl)− r̂θ(x, yw))

where R̂ is the weight associated with each re-
sponse pair, and r̂θ(x, y) = β log πθ(y|x)

πsft(y|x) is the
reward implicitly defined by the language model πθ.
In DPO (Rα = 1), each response pair is weighed
by how much higher the implicit reward model r̂θ
rates the disperferred responses, scaled by the con-
stant β (Rafailov et al., 2023). In contrast, DPO+rc
weighs the response pair by taking into account the
independent reward model rϕ(x, y) (for measuring
Rα) besides the implicit reward r̂θ(x, y).

3 Reward Difference Prediction

The above reward difference coefficients are mea-
sured based on a typical (pointwise) reward model
rϕ(x, y). However, doing so is not effective as the
model considers responses independently. In this
section, we introduce a reward difference model
that simultaneously takes the given query x and
two responses yw, yl as inputs for predicting the
reward difference. We then propose an effective
method for training the difference model.

3.1 Reward Difference Model
The reward difference model Rϕ : (x, y1, y2) 7→ R
is an LLM of which the last layer is replaced with
a new linear layer. The input for Rϕ is of the
form “Query: {x}; Response 1:{y1}; Response
2:{y2}”. We obtain the last token embedding as the
representation to be passed to the last linear layer
for reward difference prediction. Note that, if the
predicted output is negative, the difference model
predicts that y1 is worse than y2, and the magnitude

2111

Figure 2: The pipeline of traditional offline alignment methods (the upper side) and our proposed Reward Difference
Optimization (i.e., RDO) pipeline with more accurate supervision signals (the lower part). The special tokens are
omitted in the figure to save space. Instead of using the reward model to identify the ordinal relation between two
responses (i.e., win or lose), we propose to use a difference model to predict the difference score between two
responses directly and then use this score to help supervise the alignment process more precisely.

(absolute value) indicates how much y1 is worse
than y2.

Compared to the vanilla (pointwise) reward
model, the last token embedding in the reward dif-
ference model can attend to both responses, thus
we obtain a more informative representation for
predicting the reward difference. The difference
between the typical reward model and the reward
difference model is demonstrated in Figure 2.

3.2 Difference Model Training

To train such a difference model, we design the
main loss as follows:

Lrd =

∑
CE (σ(f(x, y1, y2)), I(y1, y2))

N

I(y1, y2) =

{
1, if y1 ⪰ y2

−1, if y1 ≺ y2

(4)

where CE indicates the cross-entropy loss and I is
an indicator of whether y1 is considered better than
y2 in the training dataset.

Regularization Losses Training the difference
model based solely on the previous loss may not
be entirely satisfactory. This is because it may
require a substantial amount of data to ensure ef-
fectiveness. On the other hand, the model might
still score f(x, yi, yi) as positive or negative even
though the two responses are the same. In order
to fix such issues and make the training more ef-
ficient, we propose two additional regularization

loss terms for the difference model training based
on the following comparison rules:

• Duplication: The comparison score between
yi and itself (i.e. f(x, yi, yi)) should be zero.

• Reverse: Because the order matters in the
model input, the difference score between yi
and yj (i.e. f(x, yi, yj)), and the difference
score between yj and yi (i.e. f(x, yj , yi)) are
supposed to be the opposite of each other.

The two regulation loss terms for the difference
model training are calculated as follows:

Ldup =
1

N

∑
[f(x, yi, yi)]

2

Lre =
1

N

∑
[f(x, yi, yj) + f(x, yj , yi)]

2
(5)

Here N stands for the number of all comparisons
in the dataset D. For the Ldup we only calculate for
one randomly selected response between the two
compared responses. For the Lre, we also calculate
for one possible order only given two compared
responses. The final loss function is:

L = Lrd + β0 × Ldup + β1 × Lre (6)

4 Experiments

We conduct experiments to answer multiple re-
search questions: 1) Q1: How is the effect of

2112

reward difference coefficients measured by a point-
wise reward model? 2) Q2: How is the perfor-
mance of the difference model on response prefer-
ence prediction compared to that of the pointwise
reward model? and 3) Q3: How is the effect of the
difference model on LLM alignment?

4.1 Common Settings

Compared Methods We exploit Alpaca with
7B parameter size as the initial model for align-
ment. We run experiments on three representa-
tive offline RLHF methods: 1) RRHF (Yuan et al.,
2023), one of the earliest offline RLHF methods;
2) DPO(Rafailov et al., 2023), the most popular of-
fline RLHF method; and 3) KTO (Ethayarajh et al.,
2024), the most recent offline RLHF method based
on economic theory. We examine the performance
of RRHF and DPO in three cases: 1) Vanilla of-
fline RLHF (the original RRHF, DPO and KTO); 2)
RRHF+rc, DPO+rc and KTO+rc in which reward
difference coefficients are calculated from a point-
wise reward model; 3) RRHF+rc and DPO+rc in
which reward difference coefficients are calculated
from our difference model. Experiments of KTO
can be found in Appendix section A.1.

Preference Datasets Our experiments are con-
ducted on the Anthropic Helpful and Harmless
(HH) dataset (Bai et al., 2023)* and OpenAI TL;DR
dataset (Stiennon et al., 2020).
HH dataset. Each dialogue in the HH dataset
has preferred and dispreferred responses labeled
by humans. The dataset contains 76.3k dialogues
(queries) for training and 5.1k for testing. For
RRHF training, we use the augmented dataset
(HH+) provided by RRHF authors. In the HH+
dataset, for a given query, there are 6 responses of
which two are from the original HH dataset and the
other four are generated by the Alpaca-7B using
dynamic beam search. The preference ordering
of the 6 responses (for the corresponding query)
is decided by a trained reward model. For DPO
training, we follow the DPO paper and directly use
the original HH dataset.
TL;DR dataset. OpenAI TL;DR dataset (Stiennon
et al., 2020) is a dataset targeted at summarization
tasks with human preference labels. The dataset
contains 11.7k training preference pairs and 6.55k
test pairs. We use the original dataset for both
RRHF and DPO.

*https://huggingface.co/datasets/Dahoas/rm-static

Evaluation of language models We use three-
folds of evaluation. (1). Reward model evaluation.
We calculate the average reward given by the re-
ward model on the test set; (2). LLM auto eval-
uation. We randomly selected 300 samples from
the test set and requested the LLMs to score each
response without knowing the underlying methods.
Subsequently, we calculated the win/tie/loss ratio
for each pair. To mitigate positional bias in LLMs
(Wang et al., 2023), we shuffled the responses and
requested LLMs to provide a detailed explanation
before judgment. We include three powerful LLMs,
GPT4 (Achiam et al., 2023), GPT3.5 (i.e. Chat-
GPT) and moonshot-v1†(i.e. KIMI), and the major-
ity vote determined the outcome for each compari-
son. Detailed results of each LLM evaluation can
be seen in the appendix; (3). Human evaluation.
We also conducted a human evaluation in section
4.4 on 300 randomly chosen samples from the HH
test set. Three computer science graduate students
with strong English skills served as evaluators. For
each sample, the response order was shuffled, and
the source method identities were hidden. Evalu-
ators were instructed to judge the helpfulness and
general quality of each response and choose the
better one, or mark “Tie”. The majority vote deter-
mined the outcome for each comparison.

4.2 Q1: Effect of Reward Difference
Coefficients on Offline RLHF

4.2.1 Experimental Design

Reward Models This section calculates reward
coefficients using (pointwise) reward models.
HH dataset. For RRHF training, we follow the
original paper and use the “gpt-j-static” reward
model ‡. We refer to this reward model as RRHF-
rm. For DPO training, since the original DPO does
not require a reward model, we train a new reward
model based on Alpaca-7B on the training split
of the HH dataset. The resultant reward model
is referred to as DPO-rm hereafter. As RRHF
and RRHF+rc use RRHF-rm as the reward model
during training, DPO-rm is considered the held-
out reward model for RRHF/RRHF+rc. Likewise,
RRHF-rm is the held-out reward model for DPO.
TL;DR dataset. For TL;DR dataset, the re-
ward model used to calculate the reward differ-
ence (i.e., training rm) is “OpenAssistant/reward-

†https://www.moonshot.cn/
‡https://huggingface.co/Dahoas/gptj-rm-static

2113

Greedy Decoding Dynamic Beam Search

RRHF rm DPO rm RRHF rm DPO rm

Alpaca-7B -1.068 0.0927 -1.106 0.200

RRHF -0.724 -0.0856 -0.833 0.0174
RRHF+rc (α = 0.5) -0.658 (↑ .066) -0.0432 (↑ .0424) -0.765 (↑ .068) 0.107 (↑ .0896)
RRHF+rc (α = 1.0) -0.694 (↑ .030) -0.0225 (↑ .0631) -0.778 (↑ .055) 0.146 (↑ .1286)

DPO -1.010 0.210 -1.010 0.210
DPO+rc (α = 0.5) -0.961(↑ .049) 0.279(↑ .069) -0.961 (↑ .049) 0.285 (↑ .075)
DPO+rc (α = 1.0) -0.962 (↑ .048) 0.281(↑ .071) -0.962 (↑ .048) 0.290 (↑ .080)

Table 1: Reward model evaluation results of reward difference coefficient (i.e., rc) in HH dataset. “RRHF rm”
column stands for the average reward given by the model Dahoas/gptj-rm-static which is used during the RRHF
training, and “DPO rm” stands for the Alpaca-7B reward model which is used during the DPO training.

RRHF DPO

GD DS GD DS

Initial LLM -0.751 -0.077 2.612 2.587
+Alignment -0.620 0.847 3.025 4.034
+Alignment+rc 0.272 0.860 3.460 4.568

Table 2: Reward model evaluation for different offline
RLHF methods in TL;DR dataset. “DS” and “GD” are
short for Dynamic Beam Search and Greedy Decoding.

model-deberta-v3-large-xv2”§ achieving accuracy
of 71.47% on the test set of TL;DR dataset, which
is consistent for RRHF and DPO.

Policy Model Training
HH dataset. For RRHF training, we follow the
same training hyperparameters as the original paper.
We train Alpaca-7B for 3 epochs and a learning rate
of 2e-5. For the DPO training, we set β in DPO
loss to 0.2 and train Alpaca-7B for one epoch with
a learning rate of 1e-6. For the reward difference
coefficient α, we try 0.5 and 1.0, but more careful
tuning may produce better results.
TL;DR dataset. We run only one epoch for both
DPO and RRHF with learning rate as 1e-6. In
order to save time, we only test with the reward
difference coefficient α = 0.5. Note that the initial
LLM for RRHF is llama2-7b in this experiment.

4.2.2 Experimental Results
The experimental results are reported in Tables 1,
2 and 3, showing that the inclusion of the reward
difference coefficient consistently enhances the per-
formance of offline RLHF methods.

§https://huggingface.co/OpenAssistant/reward-model-
deberta-v3-large-v2

Dataset Method +rc Win Tie +rc Lose

HH
RRHF 79.0% 4.7% 16.3%
DPO 41.7% 21.0% 37.3%

TL;DR
RRHF 47.7% 14.3% 38.0%
DPO 49.7% 8.0% 42.3%

Table 3: LLM-as-judge evaluation results voted by
GPT4, GPT3.5-turbo and moonshot-v1 where “+rc” in-
dicates the inclusion of reward coefficients; Detailed
results for each judge can be seen in Table 12.

For reward model evaluation of HH dataset in
Table 1, it is observable that RRHF+rc and DPO+rc
surpass their vanilla counterparts across different
α, sampling strategies (greedy vs. beam search).
Notably, RRHF+rc and DPO+rc outperform RRHF
and DPO respectively according to different reward
models, verifying the role of reward coefficients.

For reward model evaluation of TL;DR dataset
in Table 2, it can be seen that the use of reward dif-
ference coefficients helps improve the performance
across different sampling strategies and with differ-
ent base offline RLHF methods.

We show LLM-as-judge evaluation results in
Table 3. It can be seen that majority voting from
three strong LLMs including GPT4, GPT3.5 and
moonshot-v1 consistently verifies the helpfulness
of reward coefficients for different offline RLHF
methods across different datasets.

4.3 Q2: Comparison of Reward Difference
Model and Reward Model

4.3.1 Experimental Settings
Difference and Reward Models Training We
train the difference model and the reward model

2114

Model Name Test Accuracy

Dahoas/gptj-rm-static 0.685
Alpaca 7b Reward model 0.675
Alpaca 7b Reward model (3 epochs) 0.698

Alpaca 7b Difference model 0.715
- w/o regularization loss 0.708

Table 4: Accuracy of difference model and reward mod-
els on the HH test set.

with the same hyperparameters on Alpaca-7B on
HH dataset. Specifically, the learning rate of the
LLM is set to 1e-5 and that of the reward head
layer is set to 1e-4. We train both models for one
epoch unless otherwise stated. The values of β0, β1
in the difference model training are from a range
β0 = β1 ∈ {0.1, 0.01, 0.001}, and selected based
on the training loss.

Evaluation We train the difference and reward
models on HH training set, and use accuracy mea-
sured on HH test set for evaluation.

4.3.2 Experimental Results
We report the accuracy of the difference model and
the pointwise reward model in Table 4 where the
main observations are as follows.

• The difference model achieves higher accu-
racy than the two baseline models: gptj-rm-
static and Alpaca-7B reward models. Here,
the gptj-rm-static is the reward model used in
(Yuan et al., 2023) and the Alpaca 7B reward
model is trained by ourselves.

• Alphaca 7b Reward model (3 epochs) is bet-
ter than Alphaca 7b Reward model, which
is trained with one epoch. The model, how-
ever, is still inferior compared to the differ-
ence model. Note that it is an unfair compar-
ison as the difference model is trained with
only one epoch.

• The regularization losses help enhance the
overall accuracy from 0.708 to 0.715. Further
improvement can be obtained by tuning the
hyper-parameters β0 and β1 more carefully.

4.4 Q3: Effect of Reward Difference Model
On Offline RLHF Methods

In this section, we run experiments on HH dataset
to prove the effectiveness of our proposed differ-
ence model compared with vanilla reward model.

Difference model
Win

Tie
Reward model

Win

RRHF+rc 48.7% 8.3% 43.0%
DPO+rc 47.2% 12.6% 40.2%

Table 5: Comparison of difference model and reward
model on offline RLHF methods on 300 samples from
HH test set. Results are majority votes of three pow-
erful models: GPT4, GPT3.5-turbo and moonshot-v1.
Detailed results of each judge can be seen in Table 13

Difference model
Win

Tie
Reward model

Win

RRHF+rc 45% 16% 39%

Table 6: Human evaluation for RRHF+rc (diff) and
RRHF+rc (reward) on 300 samples from HH test set.

4.4.1 Experimental Settings
Policy Model Training This sections considers
two enhanced offline RLHF methods: RRHF+rc
(diff) and DPO+rc (diff). These methods leverage
the difference model to calculate the reward coeffi-
cients. This contrasts with RRHF+rc (reward) and
DPO+rc (reward) methods (Section 4.2), which di-
rectly subtract scores from the reward model. In
both RRHF+rc (diff) and DPO+rc (diff), the pa-
rameter α is set to 0.5, while other settings remain
consistent with those described in section 4.2.1.
Additionally, we explore RRHF (diff), an RRHF
variant where the difference model replaces the re-
ward model for generating preference data in the
original RRHF method.

4.4.2 Experimental Results
Table 5 reveals the advantage of the difference
model over the reward model in predicting reward
difference coefficients. This observation holds for
both base methods (DPO/RRHF) and across evalu-
ators (ChatGPT/GPT-4/moonshot-v1).

Table 6 presents human evaluation for compar-
ing RRHF+rc (diff) to RRHF+rc (reward). The
results confirm the findings of the LLM evaluation,
which consistently favors the difference model ap-
proach for the RRHF+rc method.

5 Related Work

5.1 LLMs Alignment with Offline RLHF

Offline RLHF has recently received significant at-
tention thanks to its simplicity. A number of inno-
vations have been proposed from different perspec-

2115

tives. SLiC-HF (Zhao et al., 2023) calibrates se-
quence likelihood for better alignment via pairwise
reward ranking. DPO (Rafailov et al., 2023) em-
ploys logistic regression on human preferences for
optimal policy training with theoretical guarantees.
RSO (Liu et al., 2023) addresses the distribution
shift issue via importance sampling. RRHF (Yuan
et al., 2023) leverages response-reward pairs with
zero-margin contrastive loss. PRO (Song et al.,
2024) improves complex preference data optimiza-
tion via list-wise contrastive loss. ReST (Gulcehre
et al., 2023) proposes self-reinforcement for itera-
tive preference optimization. More recently, KTO
is proposed (Ethayarajh et al., 2024) based on the
famous Kahneman & Tversky’s prospect theory,
which needs only a binary signal of whether an
output is desirable or undesirable for a given input.

A number of methods have been proposed to im-
prove the performance of DPO in recent days (Azar
et al., 2023; Mitchell; Chowdhury et al., 2024;
Rafailov et al., 2024; Meng et al., 2024). For ex-
ample, SimPO (Meng et al., 2024) enhances the
computational and memory efficiency of DPO with-
out the need for a reference model. IPO (Azar et al.,
2023) proposes a general theoretical paradigm and
addresses the overfitting problem of DPO.

Despite the progress, they focus solely on or-
dinal relationships between responses, neglecting
the importance of reward difference measure that
quantifies the degree of preference difference.

5.2 Reward Modeling for Alignment

In LLMs alignment, a reward model assesses a
response to a given query, generating a score repre-
senting its quality (Stiennon et al., 2020; Ouyang
et al., 2022). This score serves as a guide for
the alignment process and can be used for two
main purposes: 1) During alignment, the score
acts as a training signal for online RLHF (Ouyang
et al., 2022); 2) It helps gather human prefer-
ences for response selection (Yuan et al., 2023).
Typically, training reward models employed the
Bradley-Terry (BT) model (Bradley and Terry),
which estimates the likelihood of one response be-
ing better than another based on their individual
scores. However, this method often falls short of
capturing true human preferences.

Several recent studies have tackled the limita-
tions of conventional reward models by exploring
diverse solutions. Touvron et al. (2023) and Bai
et al. (2023) propose to train fine-grained reward

models that evaluate the response from different
aspects, e.g. helpfulness, and harmlessness. Other
studies consider taking uncertainty in the learned
functions into account (Liang et al., 2023; Yue et al.,
2023). These methods, however, focus on “point-
wise” reward models which independently predict
a reward score for each response. Recently, SLiC-
HF (Zhao et al., 2023) is introduced to utilize a rank
model that takes a query and two response candi-
dates as input, ultimately indicating the chosen re-
sponse via a token identifier (e.g., A/B). While bear-
ing similarities with our difference model, SLiC-
HF’s ranking model outputs a categorical token,
not a quantitative score reflecting the difference
between responses.

Offline RLHF methods usually omit the process
of reward modeling. However, it has been shown
in recent studies (Xu et al., 2024; Azar et al., 2023)
that the reward model plays an important role in
LLM alignment. We verify this finding and pro-
vide a simple yet effective way to enhance multiple
offline RLHF methods.

6 Conclusion

This paper proposes a novel approach to address
the limitations of existing offline RLHF methods.
Our method leverages the reward difference coeffi-
cient, which quantifies ‘how much” one response
is preferred over another. These coefficients are in-
tegrated as sample weights during training, putting
the focus towards more “sure” comparisons. Fur-
thermore, we introduce a reward difference model
for directly predicting these coefficients, accompa-
nied by an effective training methodology. Experi-
mental results consistently show the effectiveness
of the reward difference coefficients on two rep-
resentative offline RLHF methods including DPO
and RRHF. In addition, LLMs-based evaluation
and human evaluation validate the advantages of
the difference model over the reward model.

In the future, we aim to explore several promis-
ing directions: (1). Scaling Law: While this work
demonstrates effectiveness with 7B models, scaling
to larger architectures is crucial. Evaluating perfor-
mance on progressively larger LLMs will provide
valuable insights into the effectiveness of our ap-
proach; (2). Generalization: As LLMs may lose
some of their generalization ability after alignment
(Gao et al., 2023), exploring techniques to mitigate
this phenomenon would ensure LLM retention of
their core strengths besides improved alignment.

2116

7 Limitation

The effectiveness of our proposed methods can be
shaped by the quality of reward model or difference
model.

Training the difference model requires process-
ing only half the number of queries compared to
the original reward model training, but it involves
a longer sequence length. As a result, training the
difference model may take more time and resources
when the queries (or chat histories) in the dataset
are short but the responses are much longer.

The difference model may not be good at directly
giving the reward score of the response which is
required by RL algorithms like PPO. However, it
should be noted that it can still give the reward
score for a single response by introducing a base-
line response for each query (Zhao et al., 2023).

All experiments and analyses are limited to LLM
with 7B parameters. It is unknown whether the
conclusions still hold as the model gets larger.

8 Ethical Concerns

Sensitive and offensive content exists within HH
and HH+, datasets intended solely for research pur-
poses. The viewpoints expressed in the data do
not reflect our beliefs. We aspire for our efforts to
contribute to the development of AI technologies
aligned with ethical standards.

Acknowledgements

This project is supported by the Postgraduate Re-
search & Practice Innovation Program of Jiangsu
Province.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas,
David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville,
Yoshua Bengio, et al. 2017. A closer look at memo-
rization in deep networks. International Conference
on Machine Learning.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for align-
ment. arXiv preprint arXiv:2112.00861.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal
Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2023. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Ralph Allan Bradley and Milton E. Terry. Rank analysis
of incomplete block designs: I. the method of paired
comparisons. Biometrika, page 324.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023).

Sayak Ray Chowdhury, Anush Kini, and Nagarajan
Natarajan. 2024. Provably robust dpo: Aligning lan-
guage models with noisy feedback. International
Conference on Machine Learning.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. Inter-
national Conference on Machine Learning.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, et al. 2023. Reinforced self-
training (rest) for language modeling. arXiv preprint
arXiv:2308.08998.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. International Conference on Learning
Representations.

Jian Hu, Xibin Wu, Xianyu, Chen Su, Leon Qiu,
Daoning Jiang, Qing Wang, and Weixun Wang.
2023. Openrlhf: An easy-to-use, scalable and high-
performance rlhf framework. https://github.
com/OpenLLMAI/OpenRLHF.

Jinchi Huang, Lie Qu, Rongfei Jia, and Binqiang Zhao.
2019. O2u-net: A simple noisy label detection ap-
proach for deep neural networks. International Con-
ference on Computer Vision.

Xinran Liang, Katherine Shu, Kimin Lee, and Pieter
Abbeel. 2023. Reward uncertainty for exploration
in preference-based reinforcement learning. Interna-
tional Conference on Learning Representations.

2117

https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://github.com/OpenLLMAI/OpenRLHF
https://github.com/OpenLLMAI/OpenRLHF

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J Liu, and Jialu Liu. 2023.
Statistical rejection sampling improves preference
optimization. International Conference on Learning
Representations.

Ryan Lowe, Abhinav Gupta, Jakob Foerster, Douwe
Kiela, and Joelle Pineau. 2019. On the interaction
between supervision and self-play in emergent com-
munication. International Conference on Learning
Representations.

Jinghui Lu, Dongsheng Zhu, Weidong Han, Rui Zhao,
Brian Mac Namee, and Fei Tan. 2023. What makes
pre-trained language models better zero-shot learn-
ers? Annual Meeting of the Association for Compu-
tational Linguistics.

Yu Meng, Mengzhou Xia, and Danqi Chen.
2024. Simpo: Simple preference optimization
with a reference-free reward. arXiv preprint
arXiv:2405.14734.

Eric Mitchell. A note on dpo with noisy preferences
& relationship to ipo. https://ericmitchell.ai/
cdpo.pdf. Accessed: 2024-06-13.

Niklas Muennighoff, Alexander M Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023. Scaling data-constrained language models.
Advances in Neural Information Processing Systems.

Michael Noukhovitch, Samuel Lavoie, Florian Strub,
and Aaron Courville. 2023. Language model align-
ment with elastic reset. Advances in Neural Informa-
tion Processing Systems.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea
Finn. 2024. From r to q*: Your language
model is secretly a q-function. arXiv preprint
arXiv:2404.12358.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2024. Pref-
erence ranking optimization for human alignment.
AAAI Conference on Artificial Intelligence.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems.

Fei Tan, Changwei Hu, Yifan Hu, Kevin Yen, Zhi Wei,
Aasish Pappu, Serim Park, and Keqian Li. 2022.
Mgel: Multigrained representation analysis and en-
semble learning for text moderation. IEEE trans-
actions on neural networks and learning systems,
34(10):7014–7023.

Fei Tan, Yifan Hu, Changwei Hu, Keqian Li, and
Kevin Yen. 2020. Tnt: Text normalization based
pre-training of transformers for content moderation.
Empirical Methods in Natural Language Processing.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.
2023. Large language models are not fair evaluators.
arXiv preprint arXiv:2305.17926.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and Yi Wu.
2024. Is dpo superior to ppo for llm alignment? a
comprehensive study. International Conference on
Machine Learning.

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf: Rank
responses to align language models with human feed-
back. Advances in Neural Information Processing
Systems.

Sheng Yue, Guanbo Wang, Wei Shao, Zhaofeng Zhang,
Sen Lin, Ju Ren, and Junshan Zhang. 2023. Clare:
Conservative model-based reward learning for offline
inverse reinforcement learning. International Con-
ference on Learning Representations.

Hengyuan Zhang, Yanru Wu, Dawei Li, Zacc Yang, Rui
Zhao, Yong Jiang, and Fei Tan. 2024. Balancing
speciality and versatility: a coarse to fine framework
for supervised fine-tuning large language model.

2118

https://ericmitchell.ai/cdpo.pdf
https://ericmitchell.ai/cdpo.pdf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2404.10306
http://arxiv.org/abs/2404.10306
http://arxiv.org/abs/2404.10306

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se-
quence likelihood calibration with human feedback.
Advances in Neural Information Processing Systems.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Appendix

A Additional Experiments

A.1 Reward difference coefficient on KTO

KTO (Ethayarajh et al., 2024) is one of the latest
techniques for LLM alignment, which is based on
the famous Kahneman & Tversky’s prospect the-
ory and only needs a binary signal of whether an
output is desirable or undesirable for a given in-
put. We also test the idea of reward coefficient
using this method. Pay attention that KTO receives
point-wise samples instead of pair-wise compar-
isons like other methods, so we use the reward
difference score as the reward coefficient for both
the desirable and undesirable responses paired in
the dataset.

A.1.1 Experiment settings
We basically follow similar settings as in section
4.2.1 and align Alpaca-7b¶ on HH and TL;DR
datasets using KTO with or without the reward
coefficient to test its effectiveness. For the HH
dataset, we use the reward trained from alpaca-7b
on the HH dataset as the reward model, and for
the TL;DR dataset, we use the open-source deberta
reward model to calculate the reward coefficient.
To save time and resources, we use OpenRLHF
repo (Hu et al., 2023) in Github and leverage Lora
(Hu et al., 2021) with rank=8 for KTO training. All
experimental settings are exactly the same except
for using the reward coefficient(i.e. rc) or not for
methods KTO and KTO+rc. We train both of them
with one epoch and a learning rate of 5e-7.

A.1.2 Experimental results
Results of KTO with or without the reward co-
efficient can be found in table 7 and 8. Both
reward evaluation and LLM-as-judge evaluation
from three powerful LLMs show that our proposed
method can also help KTO perform better on the
HH dataset.

¶https://huggingface.co/wxjiao/alpaca-7b

DS GD

Initial LLM 0.216 0.207
+KTO 0.229 0.227
+KTO+rc 0.241 0.243

Table 7: Reward model evaluation results of reward
coefficient(i.e. rc) in HH dataset for KTO. “DS” is short
for Dynamic Beam Search and “GD” is short for Greedy
Decoding.

+rc Win Tie +rc Lose

KIMI 27.7 % 46.0% 26.3%
ChatGPT 46.0% 43.3% 10.7%
GPT4 38.0% 26.7% 35.3%

Majority Voting 47.0% 24.0% 29.0%

Table 8: LLM-as-judge evaluation of KTO with or with-
out reward difference coefficient(i.e. rc) on 300 samples
on HH dataset.

A.2 Additional experiments for difference
model

In this section, we report some other experiments
that can better prove the robustness of our experi-
mental conclusion about the superiority of the pro-
posed difference model.

A.2.1 RRHF with Difference model V.S.
Alpaca reward model

In section 4.4, the baseline reward model we used
is the one with higher accuracy (i.e. Dahoas/gptj-
rm-static). Here we also report the result of RRHF
with the Alpaca 7b Reward model in Table 4. We
follow the same experimental setting and evalua-
tion setting as in section 4.4.

The results are in table 9. The results indicate
that the difference model is better than the Alpaca-
7B reward model too.

Difference model Win Tie Reward model Win

52.3% 2.7% 45.0%

Table 9: ChatGPT evaluation of “RRHF + Difference
model” V.S. “RRHF + Alpaca-7b reward model”

A.2.2 DPO with bigger β

β of DPO loss controls the implicit KL-divergence
penalty and the greater it is, the more the trained
policy model resembles the reference model. In
our main experiments, we set β of DPO loss to
0.2, which is relatively small. Here, we report the

2119

results of DPO with β = 0.5 to better prevent the
policy model from going too far from the initial
SFT model. The results of the difference model
and reward model under this setting can be found
in table 10.

The results show that the difference model still
outperforms the baseline reward model in this case.
The percent of “Tie” is much larger than table 5 due
to both two aligned LLMs becoming more similar
to the initial SFT model.

Difference model Win Tie Reward model Win

45.7% 19.0% 35.3%

Table 10: ChatGPT evaluation of “DPO + Difference
model” V.S. “DPO + reward model” with β = 0.5

B Why Reward Coefficients?

Doing the theoretical explanation for our method
is not trivial, because the proposed method can be
plugged into different offline RLHF methods and
some of them do not yet have a theory guarantee
now. However, take DPO as an example, we can
briefly show one possible reason why the reward
coefficient is beneficial.

Firstly, we would like to show that the reward
difference coefficients for noisy samples are rela-
tively smaller than those of clean samples. This is
based on a reasonable assumption that noisy sam-
ples are “hard-to-tell” samples and clean samples
are easy ones. According to some recent studies
(Huang et al., 2019; Arpit et al., 2017), easy sam-
ples are learned at the early stage as they contribute
more to the gradient computation early on, leading
to a sharp decrease in their losses. On the other
hand, the“hard” samples are usually learned at the
late stage of training. As we train the reward or the
difference model with only one epoch, the model is
likely to be underfitted for hard samples. In other
words, the reward and difference model will avoid
giving too high scores for those hard-to-tell com-
parisons and tend to give higher scores for those
easy samples.

Secondly, we briefly prove that adding the re-
ward coefficient does not change the analytical so-
lution of DPO as eq.7 in the IPO paper (Azar et al.,
2023) or eq.4 in the DPO paper (Rafailov et al.,
2023). We skip the intermediate steps and directly
show that the final equation of proof (section A.1)

in the IPO paper (Azar et al., 2023) becomes:

−KL(δ||δ) = Lτ (δ)

τRα
− C

Here, C is a constant as shown in Azar et al. (2023).
And given a specific sample, the reward coeffi-
cient Rα can be seen as a constant similar to τ .
So, the conclusion from section A.1 in Azar et al.
(2023) still holds, which is: −KL(δ||δ∗) and Lτ

still share the same argmaxmin. And so, the an-
alytic solution of DPO+rc is still equal to δ∗, in
other words, the following equation still holds:

π∗(y) ∝ πref (y) exp
(
τ−1Ey′ [Φ(p

∗(y ≻ y′))]
)

Here, p∗(y ≻ y′) is the empirical probability of
response y better than y′ in the dataset, and π∗(y)
stands for the probability that y given by the opti-
mal policy π∗. Pay attention that, for noisy samples
in the dataset, the solution on the left-hand side is
also noisy. In conclusion, the reward coefficient
doesn’t change the optimal solution of DPO but
only affects the optimization speed of each sample.

Finally, based on the derivation of the gradient
of DPO+rc, the gradient of a pair of responses is
weighted by the reward difference coefficients as
below.

∇θLDPO+rc

= −
∑

R̂[∇θ log πθ(yw|x)−∇θ log πθ(yl|x)]
R̂ = Rα × β × σ(r̂θ(x, yl)− r̂θ(x, yw))

As the coefficients corresponding to noisy sam-
ples are smaller than those of easy samples, the
gradients of noisy samples become even smaller
(relatively) with the reward coefficients. In other
words, the coefficients amplify the difference in the
optimization speed for the noisy and the clean ones,
whereas do not change the final optimal solution.
As a result, with the same training pace and train-
ing epochs, DPO+rc is less likely to be overfitted to
noisy samples in comparison to the original DPO.

C Training and Inference Consumption

C.1 Analyses of the additional cost of
introducing reward/difference model

Our methods introduce the reward
model/difference model into offline RLHF,
which may cost additional resources compared
with algorithms like DPO. However, we would
like to show that this additional cost is considered

2120

Dataset Stage GPU memory Time

HH dataset
Difference model training 40%-43% 1h 43min
Reward model training 50%-53% 2h 26min

HH dataset
DPO training 90%-95% 6h 56min
Difference score inference 67%-70% 20min
Reward model inference 71%-82% 27min

HH+ dataset
RRHF training 90%-95% 20h 1min
Difference score inference 46%-52% 4h 3min
Reward model inference 50%-56% 55 min

Table 11: Time and computation resources consumed during training and inference. The experiments are done with
16 v100s and deepspeed zero3 stage. Training is only for one epoch. Reward model training and inference have
double batch size compared to difference model for fair comparison.

acceptable. Our method is a two-stage pipeline:
1) train a difference model (or reward model)
and perform inference on the (offline) preference
dataset to obtain reward coefficients; 2) perform
offline RLHF like DPO or RRHF. In comparison
to offline RL methods that exploit a reward model
like RRHF, there is almost no additional cost. In
comparison to offline methods that do not use a
reward model like DPO, the cost of the first stage is
relatively smaller than the cost of the second stage.
Table 11 shows the difference model training and
inferencing time only take for a relatively small
part in the complete DPO training progress. Note
that we need to pay the cost for the difference
model training and inferencing stage once whereas
we may need to train DPO with several epochs in
the second stage.

C.2 Comparison between reward model and
difference model

Usually, one may think that concatenating the query
and two responses for scoring is less efficient than
scoring each separately. This could be one of the
drawbacks of our proposed difference model in
case we have more than 2 responses during the
inference phase. However, we would like to clar-
ify that the additional cost of the difference model
is still small compared to offline RLHF training
time. In table 11, we compare RRHF training time,
difference model inference and reward model infer-
ence time in the RRHF training dataset (i.e. HH+)
which contains 6 responses for each query. As we
can see, although the difference model inference is
longer than the reward model inference, the domi-
nant time is still RRHF training.

On the other hand, we want to point out that
when there are only two responses for each
query, e.g. training and inference in the HH
dataset, the difference model inference time can
be even faster than what is with the reward model
as it only has half the number of samples to be
handled. Another reason for the difference model
being more efficient in this case is that queries in
the dataset are relatively long. In the HH dataset,
as a multi-round dialogue dataset, the average to-
kens of a query are around 164 while the average
tokens of responses are around 145. As the query
length is dominated, processing two pairs of (query,
response 1) and (query, response 2) with a reward
model is more expensive than processing one tuple
(query, response 1, response 2) with a difference
model. Table 11 shows the time when we trained
DPO on the raw HH dataset, which contains two
responses for each query. Pay attention that the
max sequence length of the difference model is set
to be double as the reward model.

D Case Study

Table 14 showcases one example. Here, the
user inquired about making granola. The response
generated by the vanilla RRHF (diff) model fails
to provide useful information and appears unfo-
cused. While the RRHF+rc (reward) response
is marginally better, it remains too vague and
lacks concrete instructions. Specifically, although
RRHF+rc (reward) mentions combining ingredi-
ents, it offers no specifics on either the ingredients
or the subsequent steps. In contrast, the RRHF+rc
(diff) model delivers a clear and well-organized
set of instructions, encompassing all key steps

2121

Kimi ChatGPT GPT4 Majority Voting
Method + Win Tie − Win + Win Tie − Win + Win Tie −Win + Win Tie − Win

DPOH 21.7% 59.3% 19.0% 36.7% 23.0% 40.3% 37.0% 28.7% 34.3% 41.7% 21.0% 37.3%
RRHFH 67.7% 12.7% 19.6% 75.3% 2.3% 22.4% 75.0% 6.3% 18.7% 79.0% 4.7% 16.3%

DPOT 42.3% 19.7% 38.0% 52.3% 3.7% 44.0% 51.7% 4.3% 44.0% 49.7% 8.0% 42.3%
RRHFT 43.0% 23.7% 33.3% 49.3% 5.0% 45.7% 54.0% 10.0% 36.0% 47.7% 14.3% 38.0%

Table 12: Detailed evaluation results of comparison between with reward difference coefficient (i.e. +) and without
reward difference coefficient (i.e. −) on 300 samples from HH test dataset and TLDR dataset, where H (the
results at the top) stands for results on the HH dataset and T (the results at the bottom) stands for results on the
TLDR dataset. In the DPO and RRHF approaches, we compare the method using our proposed reward difference
coefficient with the method without using the reward difference coefficient.

Kimi ChatGPT GPT4 Majority Voting
Method D Win Tie R Win D Win Tie R Win D Win Tie R Win D Win Tie R Win

DPO 43.3% 12.0% 44.7% 49.0% 3.3% 47.7% 49.0% 3.3% 47.7% 47.3% 12.4% 40.3%
RRHF 42.7% 15.3% 42.0% 51.0% 3.0% 46.0% 55.0% 3.3% 41.7% 48.7% 8.3% 43.0%

Table 13: Detailed evaluation results of comparison between the difference model and reward model on 300 samples
from HH test dataset. In the DPO and RRHF approaches, we compare the method using our proposed Difference
model (i.e. D) with the method using the vanilla Reward model(i.e. R).

from combining ingredients to flavoring and bak-
ing, thereby demonstrating superior performance
in generating informative and helpful content.

E Other Missing Details

E.1 Correlation between difference model
accuracy and confidence

We present the correlation between the absolute re-
ward difference value and the prediction accuracy
of the difference model in Table 15. The table be-
low shows that when the difference model assigns a
more confident score, it also tends to achieve higher
accuracy. This result supports our institution that
reward difference scores can help distinguish hard-
to-tell and easy-to-tell samples.

E.2 LLM-as-judge evaluation details

We use “gpt-3.5-turbo-0105”, “gpt-4-0125-
preview” and “moonshot-v1” for response quality
evaluation. Following some previous studies
(Zheng et al., 2023; Wang et al., 2023), we ask
the LLMs to give a score to the two responses
under the same query and also ask them to give
a detailed explanation before assigning the score.
The prompt for evaluation is as follows:

In the main text, we only report the majority vot-
ing results of three LLMs. In this part, we also
report the detailed results given by each of the pow-
erful LLM, as shown in Table 12 and Table 13.

Figure 3: Evaluation prompt for gpt3.5, gpt4.0 and
moonshot-v1

E.3 Human evaluation details

We hire three graduate student volunteers to do
the human evaluation. All of them majored in
computer science and have a good ability in En-
glish. Specifically, we first randomly shuffled the
response sequence order and did NOT tell them the
specific source of the responses. Then we asked
them to decide on a better response or “Tie” based
on the helpfulness and general quality of the re-
sponses. Finally, we take the majority decision as
the final result for each comparison.

2122

Query Human: How do I make granola?

RRHF+rc (reward) To make granola, you will need to combine the ingredients in a large
bowl. Then, add the desired amount of sugar and salt. Finally, add the desired amount of
water and stir until the mixture is evenly blended. Enjoy!

RRHF (diff) I would recommend to use a large pan and a big bowl, but you can also use
a small pan or a pot. You could also use a few different types of granola, like a mixture of
the two. Or you could just use a mixer, and then add some water and some sugar. I would
suggest using a large pan and a big bowl, and then you can use a little bit of sugar and some
other things. But it is not necessary to have a huge amount of sugar. And you can also try to
add a few more things. You should be able to make a good granola with a good balance of
sugar and salt. It will be a great breakfast food!

RRHF+rc (diff) You can use a mixture of oats, and other grains like rice or wheat, to
create a granola. First, you need to combine the oats with water in a large bowl until they
are softened. Then, add the other grains and stir them together. Next, add in any desired
flavorings like honey or nuts. Finally, bake the granola in a greased pan until it is golden
brown. Serve with milk and enjoy!

Table 14: Responses from different variants of RRHF methods

Absolute Difference score range Accuracy

0-1 0.626
1-2 0.717
2-3 0.853
>=3 0.977

Table 15: Correlation between confidence and accuracy
of the difference model

F Future Works

Aligning deep models like LLMs to human val-
ues, such as avoiding harmful responses (Tan et al.,
2020, 2022; Bai et al., 2023; Ouyang et al., 2022),
is of great importance today. In this paper, we pro-
pose the difference model and reward difference co-
efficient to help offline RLHF methods like RRHF
and DPO achieve better performance. However,
this work still has some limitations:

1. The Scaling law (Gao et al., 2023; Muen-
nighoff et al., 2023; Rae et al., 2021) of the
reward coefficient and comparison model has
not been studied and is not clear now. In this
paper, we do all our experiments on 7b lan-
guage models. However, how would our pro-
posed methods perform when the size of the
language model further grows is still an im-
portant question waiting for future work.

2. All the metrics are evaluated in-domain. We

test all the models in the in-domain test set.
However, the generalization ability of LLM
is very important and it might decrease af-
ter alignment (Askell et al., 2021; Gao et al.,
2023). Actually, we do observe that LLM af-
ter being aligned on the HH dataset might lose
the ability to do summarization on the TL;DR
dataset. Thus, how to mitigate performance
drops on out-of-domain tasks and datasets is
an important future direction for offline RLHF
methods. Some possible methods include
model weight average (Noukhovitch et al.,
2023), parameters choosing((Zhang et al.,
2024)), KL-divergence constraints (Schulman
et al., 2017; Rafailov et al., 2023), adding the
original pretraining task to the finetuning ob-
jective (Lowe et al., 2019), and so on.

3. More experiments can be done to better prove
the effectiveness of our proposed method.
Due to the time and resource limit, tuning
for α in the reward difference coefficient and
β0, β1 in the difference model training might
not be enough. We will consider doing these
in the future work.

2123

