
Findings of the Association for Computational Linguistics: EACL 2024, pages 223–235
November 12-16, 2024 ©2024 Association for Computational Linguistics

Improve Meta-learning for Few-Shot Text Classification with All You Can
Acquire from the Tasks

Xinyue Liu, Yunlong Gao, Linlin Zong, Bo Xu∗

Dalian University of Technology, Dalian, China
xyliu@dlut.edu.cn, yunlong@mail.dlut.edu.cn, llzong@dlut.edu.cn, xubo@dlut.edu.cn

Abstract

Meta-learning has emerged as a prominent tech-
nology for few-shot text classification and has
achieved promising performance. However, ex-
isting methods often encounter difficulties in
drawing accurate class prototypes from support
set samples, primarily due to probable large
intra-class differences and small inter-class dif-
ferences within the task. Recent approaches
attempt to incorporate external knowledge or
pre-trained language models to augment data,
but this requires additional resources and thus
does not suit many few-shot scenarios. In this
paper, we propose a novel solution to address
this issue by adequately leveraging the infor-
mation within the task itself. Specifically, we
utilize label information to construct a task-
adaptive metric space, thereby adaptively re-
ducing the intra-class differences and magni-
fying the inter-class differences. We further
employ the optimal transport technique to es-
timate class prototypes with query set sam-
ples together, mitigating the problem of in-
accurate and ambiguous support set samples
caused by large intra-class differences. We con-
duct extensive experiments on eight benchmark
datasets, and our approach shows obvious ad-
vantages over state-of-the-art models across all
the tasks on all the datasets. For reproducibil-
ity, all the datasets and codes are available at
https://github.com/YvoGao/LAQDA.

1 Introduction

Text classification is a fundamental task in the nat-
ural language processing (NLP) theme, which has
been widely applied to various real applications.
However, a deficiency of supervised data is often
experienced in the real world. Few-shot text clas-
sification (Yu et al., 2018; Geng et al., 2019) aims
to detect novel categories with very limited labeled
examples by using knowledge learned from known
categories, which is crucial for many applications
but remains to be a challenging task.
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The existing methods can be broadly categorized
into two main branches. One branch is Transfer
learning (Brown et al., 2020; Gupta et al., 2021;
Cui et al., 2022), which aims to leverage general-
domain knowledge acquired from Pre-trained Lan-
guage Models (PLMs). While prompt learning
techniques have shown superior results in transfer
learning, these methods often require large-scale
language models (LLMs) and are more suitable for
explicit and simplistic classification tasks such as
emotion recognition (positive or negative). As a re-
sult, they may not be applicable in many real-world
scenarios, particularly when computing resources
are limited, such as those in mobile devices. And
prompting often needs much manual work and is
also some kind of supervision, thus it does not suit
many few-shot scenarios.

The other branch is Meta-learning (Snell et al.,
2017; Bao et al., 2020; Luo et al., 2021), which
aims to learn cross-task transferable knowledge
rather than recalling pre-trained knowledge gained
through PLMs. These methods employ small-scale
models and do not have a bias towards specific tar-
get problems, and are more suitable for practical
applications in few-shot scenarios. Typical meta-
learning methods, e.g., Prototypical Networks (PN)
(Snell et al., 2017), which leverages Euclidean dis-
tance to measure query examples against the class
vector averaged by support examples, often meets
with an overfitting issue. As illustrated in Figure
1(a), the query sample Q1, which belongs to the
blue class, is erroneously classified as green class
because it is closer to the estimated prototype of
the green class.

To alleviate the overfitting issue of PN,
RPOTAUG (Dopierre et al., 2021) and MEDA (Sun
et al., 2022) leverage data augmentation to ex-
pansion support set. MLADA (Han et al., 2021)
introduces an adversarial domain adaptation net-
work for reducing intra-class differences. Contrast-
Net (Chen et al., 2022) magnifies the inter-class
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Figure 1: The feature space illustration of a 3-way 1-shot task. Figure (a) shows that Prototypical Networks (PN)
classifies query samples by prototypes calculated by the support set. Since the given query sample Q1 whose true
label is blue is the closest to the estimated prototype of the green class, PN misclassifies Q1 to green class. Figure
(b) shows that sample representations are closer adapted by label names but the given query sample Q1 is still
misclassified to green class due to the intra-class differences. Figure (c) shows the classifier calculates prototypes
from support and query samples, and Q1 is classified to blue class correctly.

differences by contrastive learning. However, the
overfitting issue still exists because of the random-
ness of the sampled support sets and probable large
intra-class differences. As shown in Figure 1(b),
despite the small intra-class difference and large
inter-class difference, Q1 is still misclassified as
green class because the support samples are located
far away from the class centers, resulting in the es-
timated prototype of the green class being closer to
Q1.

Although previous works have achieved certain
improvements over PN, it is worth noting that most
of them focus on designing complex structures
or incorporating external data augmentation, over-
looking the valuable knowledge presented within
the task itself. In this paper, we propose a method
called LAQDA to address the overfitting issue for
few-shot text classification. We also use the PN
framework, however, by introducing the Label-
Adapter and Query-Data-Augmenter modules, our
method estimates class prototypes that are closer to
the class centers. Specifically, we design a Label-
Adapter module that constructs a task-adaptive
metric space by attention mechanism, which clus-
ters the same class sample representations, thereby
adaptively reducing the intra-class differences and
magnifying the inter-class differences. We further
design a Query-Data-Augmenter module to esti-
mate class prototypes with the query set samples
together by the optimal transport technique, miti-
gating the problem of inaccurate and ambiguous
support set samples caused by intra-class differ-
ences. For example, as shown in Figure 1(c), the
estimated prototypes by LAQDA are closer to the
class centers, and the query sample Q1 is closest

to the prototype of the blue class, so it is classified
correctly. We evaluate the proposed method on
eight popular datasets for few-shot text classifica-
tion, and our approach shows obvious advantages
over state-of-the-art models across all the tasks on
all the datasets.

2 Our Method

2.1 Problem Formulation

Meta-learning paradigm of few-shot text classifica-
tion follows the N -way K-shot task setting, i.e.,
for each task, there are N classes and each class
has K supports (labeled samples). Specifically, the
data is divided into two parts: the source classes
Ytrain, target classes Ytest, and Ytrain ∩ Ytest = ∅.
In general, meta-learning contains two phases:
meta-training and meta-testing.
Meta-training The model is trained with numer-
ous tasks. For each task, N classes are sampled
from training data Ytrain, K labeled examples are
sampled as the support set S and another M ex-
amples as the query set Q per class, donated as
S = (Xi, Yi)

N×K
i=1 and Q = (Xj , Yj)

N×M
j=1 . The

model makes predictions about the query set Q
based on the given support set S. Then the model
updates the parameters by minimizing the loss in
the query set Q.
Meta-testing For each task, N novel classes will
be sampled from Ytest, which is disjoint to Ytrain.
Then the support set S and the query set Q will be
sampled from the N classes like in meta-training.
The performance of the model will be evaluated
through the average classification accuracy on the
query set Q across all the testing tasks.
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Figure 2: The process of LAQDA on a 3-way 1-shot few-shot news classification task. Word Representation
Layer maps sentences and label names into h and u. Label-Adapter generates sample representations for the task.
Query-Data-Augmenter calculates prototypes with support set and query set. Classifier outputs the final result.

2.2 Framework

In our work, we resort to exploring the information
within the task itself to boost the performance of
few-shot text classification. In contrast to previ-
ous methods focusing on complex models or exter-
nal knowledge, our method merely uses the label
names and query samples of the task. Figure 2
gives an overview of our framework, which mainly
consists of four modules. First, the Word Represen-
tation Layer gets the word vector representations
from the input sentences and label names. Sec-
ond, the Label-Adapter joints the label names and
samples to generate the intra-class closer sample
representations. Third, the Query-Data-Augmenter
leveraging query samples as data augmentation
to calculate the class prototypes, mitigating the
problem of inaccurate and ambiguous support set
samples caused by probable large intra-class dif-
ferences. Finally, query samples are inferred by
a Classifier. Note that the Word Representation
Layer and the Classifier modules use the well-
known word-embedding technique and the initial
Prototypical Networks, next we mainly introduce
the Label-Adapter and the Query-Data-Augmenter
modules.

2.3 Label-Adapter

To construct a task-adaptive metric space that gen-
erates closer intra-class sample representations and
larger inter-class differences within a task, we en-

code the words of each sentence and task label
names simultaneously. We use the self-attention
layer as the building block of this module, due to its
inherent weighting mechanism of pairwise similari-
ties between elements in the sequence. Specifically,
we first concatenate a learned prefix h0, each sen-
tence sequence [h1, h2, ..., hn], and the task label
names [u1, u2, ..., uN ]. h0 can be initialized by the
mean of word vectors in each sentence.

We then adopt the set multi-head attention block,
which plays the role of an adapter with trainable
meta-parameters θ, and is defined as:

LAθ(Q,K, V ) = σ(QKT ) · V, (1)

where the pairwise dot-product QKT measures the
similarity amongst features and is used for feature
weighting computed through an activation function
σ. Intuitively, each feature of V will get more
weight if the dot-product between Q and K is
larger.

In Eq. 1, following the self-attention mechanism,
we have Q = K = V , the input is the sequence
of [h0, h1, ..., hn, u1, ..., uN ], and the output is a
vector of learned parameters h∗0 as a sample repre-
sentation v, as expressed in:

v = h∗0 = LAθ([h0, h1, ..., hn, u1, ..., uN ]). (2)

By representing each sentence with the corre-
sponding output v, we get a new metric space in
which the representation of each sentence is closer
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to the corresponding class center, and will be fur-
ther used in the next module.

2.4 Query-Data-Augmenter

Due to the randomness of the sampled support sets
and intra-class differences, the prototypes obtained
from the support set S may not be accurate and rep-
resentative. While query set Q contains abundant
unlabeled samples belonging to N classes, thus we
estimate class prototypes utilizing the information
of query samples that are top R similar to per sup-
port set sample, as the more samples, the better
prototypes can be calculated.

We use the Optimal Transport (OT) technique,
which can help transfer data efficiently between
discrete empirical distributions, to transfer query
samples to support set to estimate class prototypes
that are closer to the class centers by utilizing the
query samples.

Consider an N -way K-shot task, given a
novel class c, its K support samples denoted as
{xSc1, ..., xScK}, query samples {xQ1 , ..., xQm} and
their representations {vSc1, ..., vScK}, {v

Q
1 , ..., v

Q
m},

we treat each sample as a random variable which
follows the Gaussian distribution. Specifically, for
the c-th class support set Sc, we first retrieve its R
most similar samples in the query set Q based on
the OT distance,

MQ
c = argmin

c∈N
W(Q,Sc)

= argmin
c∈N

min
T∈Σ(Q,xS

ci)
< C,T >

= {a1, a2, ..., aR},

(3)

where C is a cost matrix with each element com-
puted as: c(xQi , x

S
j ) = ||vQi − vSj ||22, T ∈ Rn×m

+ :
{T1m = Q,T1n = Sc}. We denote the augment
information for the c-th class support set as MQ

c ,
and the optimal transport plan between Sc and Q as
Tc, which could be obtained through the Sinkhorn
algorithm (Cuturi, 2013).

We next adapt the augment information MQ
c

from the query set Q, mapping to the task as fol-
lows:

âi = arg min
ai∈MQ

c

∑

j

Tc(i, j) · c
(
ai, v

S
cj

)
, (4)

for all i = 1, ..., R, where âi denotes the projected
representation of the i-th sample representation in

MQ
c , and Tc(i, j) represents an element of the

optimal transport plan Tc. It has been shown that
when the cost function is squared Euclidean norm,
the solution to the above barycenter mapping corre-
sponds to a weighted average of Sc (Courty et al.,
2017), which is given by:

Ŝc = diag (Tc1nc)
−1TcSc, (5)

where diag(·) is a diagonal matrix.
After obtaining the adapted augment information

Ŝc, we unite it with the support sample representa-
tions to get the c-th class prototype:

Pc = mean(union(Sc, Ŝc)). (6)

2.5 Training and Testing Phases

Training Phase During the training phase, the
probability of query sample xQi belonging to the
c-th class is computed by a softmax function with
the Euclidean distances between its representation
vQi and the prototypes:

P (yc | xQi ,P) =
exp(−||vQi − Pc||22)∑
i=1 exp(−||v

Q
i − Pi||22)

.

(7)
We use the cross-entropy loss function:

L =

n∑

q=1

N∑

c=1

yqclogP (yc | xQi ,P), (8)

where yqc = 1 if xQi belongs to the c-th class, other-
wise yqc = 0, n is the number of query samples. By
minimizing L total with gradient descent methods,
all the trainable model parameters can be learned.
Testing Phase In the testing phase, given an N -
way K-shot task, we generate the corresponding
adapted query sample representations and combine
them with the original support set as the final sup-
port set. Finally, we predict the class label for each
query sample x by the Prototypical network,

ỹ = argmax
k

P (yc | xQi ,P). (9)

3 Experiments

3.1 Datasets

Following (Chen et al., 2022), we conduct experi-
ments on eight text classification datasets, includ-
ing four news or review classification datasets:
HuffPost (Bao et al., 2020), Amazon (He and
McAuley, 2016), Reuters (Bao et al., 2020), and
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20News (Lang, 1995). The statistics of the datasets
are shown in Table 1, and four intent detection
datasets: Banking77 (Casanueva et al., 2020),
HWU64 (Liu et al., 2019a), Clinic150 (Larson
et al., 2019), and Liu57 (Liu et al., 2019a).

Dataset Avg. Length Samples Train / Valid / Test
HuffPost 11.48 36900 20 / 5 / 16
Amazon 143.46 24000 10 / 5 / 9
Reuters 181.41 620 15 / 5 / 11
20News 279.32 18828 8 / 5 / 7
Banking77 11.77 13083 25 / 25 / 27
HWU64 6.57 11036 23 / 16 / 25
Liu57 6.66 25478 18 / 18 / 18
Clinc150 8.31 22500 50 / 50 / 50

Table 1: Dataset statistics.

News or Review Classification Datasets The Huff-
Post dataset is a news classification dataset with
36, 900 HuffPost news headlines with 41 classes
collected from the year 2012 to 2018. The Amazon
dataset is a product review classification dataset
including 142.8 million reviews with 24 product
categories from the year 1996 to 2014. Following
(Bao et al., 2020), we discard multi-label articles
and only use 31 classes, having at least 20 arti-
cles. The Reuters dataset is collected from Reuters
Newswire in 1987. The 20News dataset is a news
classification dataset, which contains 18820 news
documents from 20 news groups.
Intent Detection Datasets The Banking77 dataset
is a fine-grained intent classification dataset spe-
cific to a single banking domain, including 77
classes. The HWU64 dataset is a multi-domain
fine-grained intent classification dataset, which con-
tains 11036 utterances covering 64 intents in 21
domains. The Clinic150 dataset contains 150 in-
tents and 23700 examples across 10 domains. Here
we ignore these out-of-scope examples. Liu57 is a
highly imbalanced intent classification dataset col-
lected on Amazon Mechanical Turk, which is com-
posed of 25478 user utterances from 54 classes.

3.2 Baselines
We compare our proposed LAQDA against several
well-established few-shot baseline models, which
are briefly described as follows: (1) PN (Snell
et al., 2017) leverages Euclidean distance to mea-
sure query examples against the class vector aver-
aged by support examples. (2) MAML (Finn et al.,
2017) trains a favorable initial point for the base

learner by utilizing the meta-learning that learns
among tasks. (3) IN (Geng et al., 2019) learns a
generalized class-wise representation by leveraging
a dynamic routing algorithm. (4) TPN (Liu et al.,
2019b) intends to learn to propagate labels from la-
beled support samples to unlabeled query samples
via episodic training and a specific graph construc-
tion, which is a powerful transductive few-shot
learning method. (5) DS-FSL (Bao et al., 2020)
builds an attention generator to get the representa-
tions and classifies samples with a ridge regressor.
(6) MLADA (Han et al., 2021) introduces an adver-
sarial domain adaptation network in meta-learning
systems. (7) P-Tuning (Luo et al., 2021) extracts
discriminative sentence representations from the
pre-trained language model BERT guided by la-
bel semantics. (8) PROTAUG (Dopierre et al.,
2021) utilizes a short-texts paraphrasing model to
generate data augmentation of texts and builds an
instance-level unsupervised loss upon the proto-
typical networks, including two variants: unigram
and bigram. (9) ContrastNet (Chen et al., 2022)
introduces instance-level and task-level regulariza-
tion loss into a contrastive learning model based
on BERT representations. (10) ProtoVerb (Cui
et al., 2022) introduces contrastive loss in prompt
learning to learn class prototypes from training in-
stances. (11) DE (Liu et al., 2023) provides two
strategies: Way-DE and Shot-DE to calibrate the
data distribution by utilizing the top nearest queries.
(12) TART (Lei et al., 2023) transforms the class
prototypes to per-class fixed reference points in
task-adaptive metric spaces.

3.3 Implementation Details

Evaluation Metric Following (Chen et al., 2022),
we use accuracy (ACC) to evaluate the perfor-
mance. All reported results are from 5 different
runs, and in each run, the training, validation and
testing classes are randomly resampled.
Parameter Setting We follow (Chen et al., 2022)
to conduct experiments on 5-way 1-shot and 5-shot
setting, randomly sample 100, 100, and 1000 tasks
for each training, validation, and testing epoch in
all the approaches. In the news and review clas-
sification task, the number of query samples per
class in each episode is 25. In the intent detec-
tion task, the number of query samples per class
in each episode is 5. In terms of the Word Rep-
resentation Layer, we use the pure pre-trained
bert-base-uncased model for the news or review
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Methods HuffPost Amazon Reuters 20News Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN (NeurIPS 2017) 35.7 41.3 37.6 52.1 59.6 66.9 37.8 45.3 42.7 51.4
IN (EMNLP 2019) 38.7 49.1 34.9 41.3 59.4 67.9 28.7 33.3 40.4 47.9
MAML (ICML 2017) 35.9 49.3 39.6 47.1 54.6 62.9 33.8 43.7 40.9 50.8
TPN (ICLR 2019) 50.6 69.5 76.0 84.9 91.4 93.1 63.0 69.4 70.3 79.2
DS-FSL (ICLR 2020) 43.0 63.5 62.6 81.1 81.8 96.0 52.1 68.3 59.9 77.2
P-Tuning (ACL 2021) 54.5 65.8 62.2 79.1 90.0 96.7 56.2 77.7 65.7 79.8
MLADA (ACL 2021) 45.0 64.9 68.4 86.0 82.3 96.7 59.6 77.8 63.8 81.4
ContrastNet (AAAI 2022) 51.8 67.8 73.5 83.6 88.5 94.6 70.9 80.5 71.2 81.6
ProtoVerb (ACL 2022) 53.1 70.8 72.4 84.7 85.4 94.2 60.2 83.1 67.8 83.2
Shot-DE (AAAI 2023) 51.9 71.4 76.1 86.9 90.6 95.1 71.0 83.2 72.4 84.2
Way-DE (AAAI 2023) 51.9 71.7 76.1 87.4 90.6 95.2 71.0 83.2 72.4 84.4
TART (ACL 2023) 46.5 68.9 73.7 84.3 86.9 95.6 73.2 84.9 70.1 83.4
LAQDA (QDA / o) 50.5 69.8 73.7 87.4 88.4 95.2 71.1 84.2 70.9 84.2
LAQDA (LA / o) 55.8 72.4 79.7 88.6 91.9 92.6 76.6 85.5 76.0 84.8
LAQDA (ours) 57.0 72.8 80.0 88.6 92.5 95.3 77.4 85.7 76.7 85.6

Table 2: The 5-way 1-shot and 5-shot average accuracy on news or review classification datasets. The LAQDA (LA
/ o) model denotes the LAQDA without using our Label-Adapter, and the LAQDA (QDA / o) denotes the LAQDA
without Query-Data-Augmenter.

classification task and use the further pre-trained
BERT language model provided in (Dopierre et al.,
2021) for the intent detection task. We set R = 10
for the news or review classification task, while
R = 4 for the intent detection task. We adopt the
AdamW (Loshchilov and Hutter, 2019) algorithm
with a learning rate of 1e-6 as the optimizer and
execute early stopping when the performance of
the validation set fails to increase within 20 epochs.
Specific settings can be found in our publicly avail-
able repository. All the experiments are conducted
with NVIDIA RTX A6000 GPUs (20 epochs per
hour).

3.4 Results Analysis

Tables 2 and 3 report the experimental results for
the news or review classification task and the intent
detection task. Some baseline results are taken
from (Liu et al., 2023; Lei et al., 2023) and the top
2 results are highlighted in bold.
News or Review Classification From Table 2,
we can make the following observation: (1) Our
LAQDA achieves the best performance in aver-
age. Specifically, LAQDA achieves significant per-
formance improvement over existing methods by
4.3%-36.3% and 1.4%-37.7% in the 1-shot and
5-shot scenarios, indicating that our model con-
tributes more to a generation of distinguishable
class representation, particularly when the number

of labeled class samples is small. (2) LAQDA per-
forms much better than the baselines in nearly all
the cases (with only one exception). This is because
Reuters has similar text characteristics, MLADA
and P-tuning can make better use of base class
information, but our approaches still outperform
them significantly in the 1-shot scenario.

Intent Detection From Table 3, it is easy to find
that: (1) Compared with these latest methods, the
proposed LAQDA can achieve very competitive
performance. Specifically, LAQDA achieves 90%
accuracy across all four datasets. (2) Limited by the
number of queries, the improvement of LAQDA is
affected, two results were sub-optimal, but only by
a few tenths of a percent, which still validates the
effectiveness of the proposed strategies.

Analysis LAQDA achieves a more significant boost
in the 1-shot scenario than in the 5-shot scenario.
This is because the fewer samples in the support set,
the more challenging for other methods to calculate
accurate prototypes due to the randomness of the
sampled support sets and intra-class differences.
LAQDA not only utilizes label names to make the
sample representations more suitable in the task-
adaptive metric space to get intra-class closer sam-
ple representations but also estimates prototypes
using query samples, mitigating the inaccuracy of
prototypes merely calculated by support samples.
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Methods Banking77 HWU64 Liu57 Clinic150 Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PROTAUG (ACL 2021) 86.9 94.5 82.4 91.7 84.4 92.6 94.9 98.4 87.2 94.3
PROTAUG (bigram) 88.1 94.7 84.1 92.1 85.3 93.2 95.8 98.5 88.3 94.6
PROTAUG (unigram) 89.6 94.7 84.3 92.6 86.1 93.7 96.5 98.7 89.1 94.9
ContrastNet (AAAI 2022) 91.2 96.4 86.6 92.6 85.9 93.7 96.6 98.5 90.1 95.3
Shot-DE (AAAI 2023) 90.5 95.8 87.1 93.5 90.4 95.2 98.0 99.2 91.5 95.9
Way-DE (AAAI 2023) 90.5 95.4 87.1 93.4 90.4 95.5 98.0 99.3 91.5 95.9
LAQDA (QDA / o) 89.8 96.0 85.7 93.6 88.6 95.2 96.8 99.0 90.2 96.0
LAQDA (LA / o) 93.0 96.0 90.1 93.8 92.3 95.7 98 99.2 93.4 96.2
LAQDA (ours) 92.5 96.2 90.0 94.0 92.5 95.3 98.4 99.2 93.4 96.2

Table 3: The 5-way 1-shot and 5-shot average accuracy on intent detection datasets.

Methods HuffPost Amazon Reuters 20News Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

FastText-PN 31.6 53.7 46.8 67.9 56.6 76.1 34.3 47.7 42.3 61.3
FastText-PN (QDA / w) 39.5 54.8 55.0 69.0 70.6 83 40.8 50.7 51.5 64.4
Bert-PN 37.4 55.9 50.9 73.2 44.8 64.1 39.1 56.2 43.1 62.4
Bert-PN (QDA / w) 41.6 56.1 60.9 75.7 45.4 64.4 43.9 56.5 48.0 63.2
LAQDA (LA / o | ICL) 53.0 69.4 79.8 88.0 92.4 94.1 77.4 85.5 75.6 84.3
LAQDA (ours) 57.0 72.8 80.0 88.6 92.5 95.3 77.4 85.7 76.7 85.6

Table 4: The ablation study results on news or review classification datasets. The LAQDA (LA /o | ICL) denotes the
LAQDA using In-context learning instead of our Label-Adapter. The Bert-PN and FastText-PN denote adding a
Prototype Networks classifier on pure pre-trained bert-base-uncased and FastText using the mean of word vector
as sample representations. The (QDA / w) denotes upgraded versions with our QDA module.

3.5 Ablation Study

The effectiveness of LA & QDA From Table 2
and 3, we can observe that: (1) With Query-Data-
Augmenter, LAQDA improves few-shot text clas-
sification performance upon LAQDA (QDA / o);
(2) LAQDA further promotes LAQDA (LA / o) by
adding Label-Adapter. These results demonstrate
the effectiveness of our proposed LA and QDA
modules, which utilize the information within the
task itself to mitigate the overfitting issue caused by
a limited number of labeled samples. In the task of
intention recognition, the role of LA is not obvious,
even 0.3%, and 0.1% negative growth on the 1-shot
setting of the Banking77 and HWU64 datasets. It
is because the sentences of the intent datasets are
short (average 10 words), with an additional 5 class
representations, it is not conducive to LA further
extracting information related to the class.
LA vs In-context Learning We also try to utilize
the PLMs ability of in-context to do Label-Adapter,
which adds task label names directly in sentences.
From Table 4, it can be seen that LAQDA (LA / o
| ICL)’s scores drop by 1.1% and 1.3% averagely

in the 1-shot and 5-shot scenarios compared to
LAQDA. Its scores are lower than the LAQDA (LA
/ o), which demonstrates the effectiveness of our
proposed LA module. This is because the class
names may contain redundant tokens, ICL may
interfere with sample representation, but LA aligns
labels and samples in a high-level semantic space,
which effectively reduces intra-class differences.

QDA vs TPN & DE To further demonstrate the
effectiveness of our proposed QDA module, we
compare LAQDA (LA / o) to other methods using
the query samples. TPN leverages query samples to
construct a graph classifier, and Way-DE leverages
query samples to do distribution calibration. From
Table 2, it can be seen that LAQDA (LA / o) has
the best scores. Specifically, LAQDA (LA / o)
achieves 5.7% and 5.6% better than TPN, 3.6%
and 0.4% better than Way-DE in the 1-shot and
5-shot scenarios. In addition, as shown in Table 4,
QDA also plays a role in pure pre-trained Bert-PN
and FastText-PN, especially in the 1-shot scenario.
This also demonstrates the versatility of the QDA
module.
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(a) Bert-PN (b) LAQDA (QDA /o) (c) LAQDA

Figure 3: Visualization of sample text representations sampled from five novel classes on HuffPost dataset. The
triangles represent the class prototypes calculated by support set and the pentagrams represent the class prototypes
calculated with our whole model.

3.6 Visualization

To investigate models’ ability in calculating bet-
ter prototypes, we visualize the sample represen-
tations and class prototypes produced by Bert-
PN, LAQDA (QDA /o) and LAQDA using t-
SNE (van der Maaten and Hinton, 2008). We ran-
domly select 5 classes on HuffPost dataset, where
5 samples as the support set and 150 samples as the
query set per class. The results are shown in Fig-
ure 3. It can be observed that the text representation
generated by LAQDA (QDA /o) in Figure 3(b) is
more discriminative than that of the vanilla Bert-PN
in Figure 3(a). Due to the randomness of the sam-
pled support sets and large intra-class differences,
the prototypes that are obtained from the support
set are not accurate and representative, like green
and orange. On the contrary, our proposed LAQDA
calculates the prototypes by using the query sample
information, which makes prototypes easier to be
distinguished and each prototype closer to its class
center, as shown in Figure 3(c).

4 Related Work

4.1 Transfer Learning Based Methods

Transfer learning aims to tackle few-shot text clas-
sification by leveraging knowledge from source
domains to target domains. But fine-tuning Pre-
trained Language Models (PLMs) (Devlin et al.,
2019; Liu et al., 2019c) is still suboptimal due to
the gap between pre-training and downstream tasks.
Prompt learning, inspired by the “in-context learn-
ing” approach proposed by GPT-3 (Brown et al.,
2020), has recently gained attention for its abil-
ity to stimulate model knowledge with just a few

prompts, which converts the classification task to a
cloze-style mask language modeling problem. Typ-
ical prompt learning methods focus on designing
a prompt template or expanding the label words to
improve the ability of large-scale models in a few
labeled sample scenes. PET (Schick and Schütze,
2021) constructs a prompt learning paradigm for
few-shot text classification, which needs designing
the template manually. KPT family (Hu et al., 2022;
Ni and Kao, 2023) construct an external knowledge
graph for PLMs to predict query labels. These
methods often require large-scale language models
(LLMs) and are more suitable for explicit and sim-
plistic classification tasks such as emotion recogni-
tion (positive or negative), may not be applicable
in many real-world scenarios.

4.2 Meta Learning Based Methods

Meta-learning aims to learn from different small
tasks of source classes in the training set and gen-
eralizes to unseen tasks of target classes in the test
set. Existing methods are mainly divided into two
categories: (1) Optimization-based methods learn
to find a good initialization parameter to adapt with
few-shot training examples, such as MAML (Finn
et al., 2017) and Reptile (Antoniou et al., 2018)
attempt to find initial parameters through a few-
shot gradient update mechanism. And AMGS (Lei
et al., 2022) adds the Masked Language Model-
ing task as an auxiliary task and optimizes meta-
learner via gradient similarity between it and the
basic task. (2) Metric-based methods learn a metric
between samples and classes, such as Matching
Networks (Vinyals et al., 2016) with cosine sim-
ilarity, Prototypical Networks (Snell et al., 2017)
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with Euclidean distance, Relation Networks (Sung
et al., 2017) with convolutional neural networks.
(3) Data-augmentation-based methods try to aug-
ment the data to help calculate better prototypes.
DE (Liu et al., 2023) utilizes the top nearest queries
to calibrate the data distribution and generate more
informative samples. MEDA (Sun et al., 2022)
leverage data augmentation to expansion support
set. Our approach combines the ideas of measure-
ment and enhancement, the key idea is using label
names to generate better sample representations
and using highly similar query samples as data ex-
tensions by optimal transport.

5 Conclusion

We propose a meta-learning method called LAQDA
for few-shot text classification, fully utilizing the
information within the task to mitigate the overfit-
ting issue caused by a limited number of labeled
samples. Specifically, we propose two key mod-
ules: Label-Adapter uses label information to con-
struct a task-adaptive metric space that generates
intra-class closer and inter-class differences larger
sample representations. Query-Data-Augmenter
leverages the query samples to calculate the class
prototypes, mitigating the problem of inaccurate
prototypes caused by the randomness of the sam-
pled support sets and intra-class differences. Last
but not least, we merely use the information from
the task itself instead of introducing external knowl-
edge or LLMs. Extensive experiments are con-
ducted on eight benchmark datasets, and our ap-
proach outperforms the state-of-the-art methods.

6 Limitations

Our approach focuses on making better use of in-
formation from the task itself, such as label names
and query samples, which in some scenarios may
not be as effective as using an external knowledge
base. In addition, our method is primarily suit-
able for text classification, such as news category
or product review classification. It is not appro-
priate for text generation tasks. Lastly, our ap-
proach is based on meta-learning and only 6 layers
of bert-base-uncased are fine-tuned, using large
and complex feature encoders like LLMs may pose
scalability challenges.
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A Appendix

A.1 Pseudocode
Our method mainly consists of four modules. First,
the Word Representation Layer gets the word vec-
tor representations from the input sentences and
label names. Second, the Label-Adapter joints the
label names and samples to generate the intra-class
closer sample representations. Third, the Query-
Data-Augmenter leveraging query samples as data
augment to calculate the class prototypes, mitigat-
ing the problem of inaccurate and ambiguous sup-
port set samples caused by probable large intra-
class differences. Finally, query samples are in-
ferred by a Classifier. The whole training proce-
dure for LAQDA is summarized in Algorithm 1.

A.2 Experiment Setting
A.2.1 Datasets
Following (Chen et al., 2022), we evaluate our
method LAQDA under typical 5-way tasks on four
news or review classification datasets: HuffPost,
Amazon, Reuters, and 20News. Additionally, we
follow (Chen et al., 2022) to evaluate our method
on intent detection datasets: Banking77, HWU64,
Clinic150, and Liu57. The average length of sen-
tences in news or review classification datasets is
much longer than those in intent detection datasets.

Algorithm 1 Training procedure of LAQDA
Input: Training data {Xtrain, Ytrain}; T episodes
and ep epochs; N classes in support set or query
set; K samples in each class in the support set and
M samples in each class in the query set; Word
Representation Layer fΦ; Label-Adapter LAθ;
Query-Data-Augmenter QDA.
Output: Parameters Φ, θ after training

1: for i ∈ [1, ep] do
2: Y ← Λ(Ytrain, N); // select N elements

from Ytrain randomly.
3: for each j ∈ [1, T ] do
4: S,Q,L← ∅, ∅, ∅;
5: for y ∈ Y do
6: S ← S ∪ Λ(Xtrain{y},K);
7: Q← Q ∪ Λ(Xtrain{y}/ S,M);
8: L← Ω(N); // get the task label names
9: end for

10: vS , vQ ← LA(fΦ(S,Q,L)) ;
11: P ← QDA(vS , vQ);
12: Update Φ, θ by the loss of the Eq. 8;
13: end for
14: end for

Table 1 concludes the statistics of all datasets. To
fully evaluate our approach, we also conduct exper-
iments on RCV1 and FewREL datasets.
Typical News or Review Classification Datasets

HuffPost (Bao et al., 2020) consists of news
headlines published on HuffPost between 2012 and
2018. These headlines are split into 41 classes.
In addition, their sentences are shorter and less
grammatically correct than formal phrases.

Amazon (He and McAuley, 2016) consists of
142.8 million customer reviews from 24 product
categories. Following (Han et al., 2021), we use a
subset with 1000 reviews per category.

Reuters (Bao et al., 2020) consists of shorter
Reuters articles in 1987. Following (Bao et al.,
2020), we discard multi-label articles and use 31
classes, each with at least 20 articles.

20News (Lang, 1995) is a collection of approxi-
mately 20,000 newsgroup documents, partitioned
equally among 20 different newsgroups.
Typical Intent Detection Datasets

Banking77 (Casanueva et al., 2020) is a fine-
grained single-domain dataset for intent detection,
in which some categories are similar and may have
overlap with others.

HWU64 (Liu et al., 2019a) contains 11036 utter-
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Hyperparameter Banking77 HWU64 Liu57 Clinic150 HuffPost Amazon Reuters 20News
optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
epochs 100 100 100 100 100 100 100 100
episodeTrain 100 100 100 100 100 100 100 100
episodeVal 100 100 100 100 100 100 100 100
episodeTest 1000 1000 1000 1000 1000 1000 1000 1000
learning rate 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
warmup steps 100 100 100 100 100 100 100 100
weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
dropout rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
R 4 4 4 4 10 10 10 10
query per class 5 5 5 5 25 25 15 25
freeze layers 6 6 6 6 6 6 6 6

Table 5: The specific hyperparameters used by each dataset. R is the number of query set samples for the Query-
Data-Augmenter.

Method RCV1 FewRel Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

DS-FSL (ICLR 2020) 54.1 75.3 67.1 83.5 60.6 79.4
ContrastNet (AAAI 2022) 65.7 87.4 85.3 92.7 75.5 90.1
TART (ACL 2023) 65.3 81.1 83.5 92.6 74.4 86.9
LAQDA (ours) 77.2 87.0 92.6 95.1 84.9 91.1

Table 6: The 5-way 1-shot and 5-shot average accuracy on RCV1 and FewRel datasets.

ances covering 64 intents in 21 domains. The exam-
ples are from a real-world home robot, with multi-
domain utterances, e.g., email, music, weather and
so on.

Liu57 (Liu et al., 2019a) is collected from Ama-
zon Mechanical Turk, which is composed of 25478
user utterances from 54 classes.

Clinic150 (Larson et al., 2019) contains 150 in-
tents and 23700 examples across 10 domains. It
has 22500 user utterances evenly distributed in ev-
ery intent and 1200 out-of-scope queries. Here we
ignore these out-of-scope examples.
Another Less Used Datasets

FewRel (Han et al., 2018) is a relation classifica-
tion dataset developed for few-shot learning. Each
example is a single sentence, annotated with a head
entity, a tail entity, and their relation. The goal is
to predict the correct relation between the head and
tail. The public dataset contains 80 relation types.

RCV1 (Lewis et al., 2004) is a collection of
Reuters newswire articles from 1996 to 1997.
These articles are written in formal speech and
labeled with a set of topic codes. We consider 71
second-level topics as our total class set and discard
articles that belong to more than one class.

A.2.2 Evaluation Metric
Following (Chen et al., 2022), we use accuracy
(ACC) to evaluate the performance. Because the
setting of N-way K-shot is class-balanced, it makes
sense to use ACC only. To test the stability of our
method, we perform a five-fold class split for each
dataset, following the approach outlined in (Chen
et al., 2022). All reported results are from 5 differ-
ent runs, and in each run, the training, validation,
and testing classes are randomly resampled.

A.2.3 Parameter Setting
We follow (Chen et al., 2022) to conduct experi-
ments on the 5-way 1-shot and 5-shot setting, ran-
domly sample 100, 100, and 1000 tasks for each
training, validation, and testing epoch in all the
approaches. In news and review classification task,
the number of query samples per class in each
episode is 25. In intent detection task, the num-
ber of query samples per class in each episode
is 5. In terms of the Word Representation Layer,
we use the pure pre-trained bert-base-uncased
model for the news or review classification task and
use the further pre-trained BERT language model
provided in (Dopierre et al., 2021) for the intent
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detection task. To save computing resources, we
only fine-tune the last 6 layers of BERT parameters.
We set R = 10 for the news or review classification
task, while R = 4 for the intent detection task. We
adopt the AdamW(Loshchilov and Hutter, 2019)
algorithm with a learning rate of 1e-6 as the opti-
mizer and execute early stopping when the perfor-
mance of the validation set fails to increase within
20 epochs. All the experiments are conducted with
NVIDIA RTX A6000 GPUs (20 epochs per hour).
The specific parameters are shown in the Table ??.
It is easy to find that our method maintains the same
set of hyperparameters on different datasets, which
indicates that our method is general. Except for the
Reuters dataset, the number of query samples was
adjusted to 15 because there were only 20 samples
per class. We use the same parameters as Liu57 on
RCV1 and FewRel datasets.

A.2.4 More Results
Since baselines do not conduct experiments on the
two datasets RCV1 and FewRel and DE(AAAI
2023) does not disclose the code. We conducted
five runs of the latest method TART (ACL 2023)
and our method respectively, and the experimen-
tal results are shown in Table 6. It can be seen
that the effectiveness of our method is significantly
improved compared with TART (ACL 2023).
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