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Abstract
We present a simple on the fly method for faster
inference of large language models. Unlike
other (self-)speculative decoding techniques,
our method does not require fine-tuning or
black-box optimization to generate a fixed draft
model, relying instead on simple rules to gen-
erate varying draft models adapted to the input
context. We show empirically that our light-
weight algorithm is competitive with the cur-
rent SOTA for self-speculative decoding, while
being a truly plug-and-play method.

1 Introduction

The main bottlenecks of transformer-based large
language model (LLM) inference are the sequential
generation of tokens, due to its autoregressive na-
ture, and the need to reload the KV cache, causing
inference to be memory bandwidth bound (Shazeer,
2019). Both of these bottlenecks prevent the full
use of computing resources. Speculative decod-
ing is a method to decrease the inference time of
LLMs by taking advantage of this available com-
pute capacity through the observation that the time
of processing a single input token is roughly the
same as processing a small number of tokens in
parallel.

After processing the input context and generat-
ing the first token t1 using a model M , instead
of sequentially generating tokens until completion,
speculative decoding uses a smaller draft model D
to generate a short sequence of tokens [t̂2, t̂3, ...].
The tokens [t1, t̂2, t̂3, ...] are then processed in par-
allel by M for verification. The first rejected token
t̂r is replaced by M ’s predicted token tr. The pro-
cess is then repeated, generating a new sequence
of tokens [t̂r+1, t̂r+2, ...] for verification.

When using greedy decoding, the verification
process is to simply ensure that t̂i = ti for each
drafted token t̂i. When sampling is used, a clever
method has been devised to accept tokens which en-
sures that the distribution they were sampled from

matches that of M (Chen et al., 2023; Leviathan
et al., 2023). Simply put, speculative decoding has
the ability to speed up inference without sacrificing
accuracy.

The ability to speed up inference also stems
from the varying difficulty in predicting the next
token over the generated sequence, where even
quite small draft models are capable of predicting
a percentage of tokens correctly. Choosing a D
to maximize speedup then requires balancing its
speed of token generation with the accuracy of the
tokens it generates.

In this work we propose a self-speculative de-
coding algorithm, where D is chosen as a subnet-
work of M , generated on the fly and adapted to
the input context. Compared to the current state of
speculative decoding described in Section 2, our
method is simple to implement as a truly plug-
and-play method, avoiding the challenges of find-
ing a fixed draft model using fine-tuning or black-
box optimization. In Section 4 we observe that
despite the simplicity of our proposed Adaptive
Draft Model Generator (ADMG, Algorithm 1), our
method is competitive with the current SOTA of
self-speculative decoding.

2 Related Work

Speculative decoding was first developed in (Chen
et al., 2023; Leviathan et al., 2023). These works
proposed using a second smaller model to draft
tokens from. Acquiring such a draft model is in
general challenging, and will typically require fine-
tuning (Cai et al., 2024; Li et al., 2024; Zhang et al.,
2024). Sufficient memory must also be available to
store a second model as well as save both models’
KV caches.

To alleviate the need for a separate draft model,
self-speculative decoding was developed in Draft
& Verify (Zhang et al., 2024), where D is chosen
as a subnetwork of M by removing attention and
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MLP layers. Choosing which layers to remove to
minimize the average inference time is a binary
optimization problem (NP-hard) of a black-box
objective function. An approximate solution to
this problem is found using Bayesian optimization
with a small number of training samples. This is
a time consuming process (see Section 4), with
the solution depending on the model architecture,
dataset, and computing environment.

Kangaroo (Liu et al., 2024) can be seen as a
hybrid approach between using a fine-tuned draft
model and self-speculative decoding, where D con-
sists of the first l ∈ N layers of M , a fine-tuned
adapter layer, and the LM Head of M .

Medusa (Cai et al., 2024) is an adjacent method
to speculative decoding which uses multiple decod-
ing heads to predict tokens in parallel, avoiding the
challenges of obtaining an appropriate draft model.
In its simplest form, these additional heads must be
trained with the original weights of M kept frozen.

EAGLE (Li et al., 2024) also does not use a
separate draft model, but drafts tokens using an ad-
ditional decoder layer which must be trained. The
added decoder layer takes as input the embedding
of the last generated token and the input to the LM
head of the penultimate generated token, with its
output fed into the LM head of M to predict the
next token.

Compared to these related works, a main benefit
of our method is that it does not require the use of
any fine-tuning or black-box optimization. Fine-
tuning can be challenging when the training set of
M is not available, as this can result in a shift in the
output distribution of D compared to M , making
the token verification stage of speculative decod-
ing more challenging (Cai et al., 2024). Similarly,
for Draft & Verify, the chosen draft model can be
sensitive to the calibration data used, and its perfor-
mance may suffer if an appropriate dataset is not
available, see Section 4.1 for further discussion.

3 Adaptive Self-Speculative Decoding

In order to generate draft models on the fly, our
main technique is to use a simple thresholding rule
to remove layers from the original model based on
the cosine similarities of the hidden states of the
input context.

Attention MLP
Minimum ACS 0.581 0.854
Maximum ACS 0.998 0.991
Mean ACS 0.953 0.942
Median ACS 0.977 0.960
Mean Time (ms) 1.339 0.768

Table 1: Statistics of the average cosine similarity (ACS)
and the average compute time of the layers of Llama-
2-13B based on the input context of 1000 training set
samples of CNN/DM.

3.1 Removing Attention Layers Based on
Cosine Similarity

Our proposed Adaptive Self-Speculative Decod-
ing (ASD) method uses the cosine similarity of
the hidden states before and after each attention
layer as an estimate of its importance, based on
the intuition that the closer the cosine similarity
is to 1 for a given attention layer, the smaller the
effect of removing it should be on the model’s accu-
racy. Our decision to only remove attention layers
is motivated by observations from computing the
average cosine similarity (ACS) of every attention
and MLP layer, and the average compute time of
attention and MLP layers of Llama-2-13B over the
input context of 1000 samples of the training set
of CNN/DM, summarized by the statistics given
in Table 1. The following three observations moti-
vated the focus on only removing attention layers
based on cosine similarity:

1. The higher mean and median ACS of attention
layers indicate that on average more attention
layers than MLP layers can be removed.

2. The range of the ACS is larger for attention
layers, considering Maximum ACS - Mini-
mum ACS, allowing for an easier differentia-
tion of removable attention layers.

3. The average attention compute time is 1.74×
greater than that of MLP layers.

Considering the added compute time to inference
from having to calculate the cosine similarity and
determine which layers to remove, we concluded
that focusing solely on attention layers would give
the best return in terms of inference speedup, given
that more attention layers will be removable, it will
be easier to determine which layers to remove, and
a greater reduction in draft time will be achieved
per removed layer.
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3.2 Implementation & Further Heuristics
When performing inference, the input context
serves as a natural calibration set to adaptively
choose which attention layers to remove from M
to form D for the given instance.

The first step of inference is to pass the entire
input context through the original model M in par-
allel to generate the first token and populate the
KV cache. As the hidden states of the input pass
through each layer, ASD computes the ACS of each
attention layer over the input sequence length in or-
der to choose D for the following token generation
stage.

In particular, let X l ∈ RS×H and Y l ∈ RS×H

be the hidden states before and after the lth atten-
tion layer for l = 1, ..., L, where S is the input
sequence length, H is the hidden size, L is the
number of layers, and assuming a batch size of 1.
We first compute the ACS over the input sequence,
Cl :=

1
S

∑S
s=1

⟨Xl
s,Y

l
s ⟩

||Xl
s||2||Y l

s ||2
. For a fixed constant

α ∈ (0, 1), all attention layers with Cl ≥ α are
removed from M to generate D for the current
generation task, which will be refered to as CS
thresholding.

Even though this method enabled significant in-
ference speedup on its own, in order to further
speed up inference, we found two simple determin-
istic rules to be effective:

1. Remove every mth attention and MLP layer.

2. Do not remove the last n attention and MLP
layers when using rule 1 or CS thresholding.

An insightful hypothesis for the effectiveness
of rule 1 was proposed in (Sajjad et al., 2023): In
an M with redundancy in its layers, neighbouring
layers contain similar information, hence if layer l
is removed, its information is still largely contained
in layers l − 1 and l + 1.

Rule 2 was initially proposed to preserve the
first and last n layers, but by choosing n < m in
our implementation (Table 2), and from low ob-
served ACS in the first n layers, this extra con-
dition became unnecessary. The analysis in (Sun
et al., 2024) gives support for this rule, as it was
found that middle layers, matching closely to lay-
ers {l : n < l ≤ L − n} for our given n in Table
2, share the same representation space, allowing
the output from layer k to be interpretable by layer
l, for l > k. We also note that the importance of
the last few layers has been previously observed in
(Gromov et al., 2024).

Our Adaptive Draft Model Generator (ADMG)
is presented as Algorithm 1, which outputs the
attention and MLP layers to remove. An ablation
study on ADMG is presented in Section 4.1.

Algorithm 1 Adaptive Draft Model Generator
(ADMG)

Input: C ∈ [−1, 1]L; α ∈ (0, 1); m,n ∈ N
removeATTN = {l : Cl ≥ α, l ≤ L− n}
removeMLP = {l : l = jm,m ∈ N, l ≤ L−n}
removeATTN = removeATTN ∪ removeMLP
Output: removeATTN, removeMLP

4 Experiments

We compare our method to the self-speculative
decoding algorithm of Draft & Verify, which is
most similar to our work. We conducted the same
(fine-tuned) Llama-2-13B experiments found in the
body of their paper without changing any of the
chosen hyperparameters.

The experiments cover three models and three
datasets: Llama-2-13B and Llama-2-13B-Chat
(Touvron et al., 2023) evaluated on 1000 random
test set samples of CNN/DM (Nallapati et al., 2016)
and XSUM (Narayan et al., 2018), and CodeLlama-
13B (Rozière et al., 2023) evaluated on HumanEval
(Chen et al., 2021). CNN/DM and XSUM are
both summarization tasks whereas HumanEval is
a Python code generation task. The test sets were
sampled using the same random seed as in Draft &
Verify’s experiments.

An important factor which determines the level
of inference speedup is the number of tokens
drafted before verifying their accuracy with M .
We used the Adaptive Draft-Exiting Mechanism
proposed in Draft & Verify (Zhang et al., 2024,
Section 3.4), keeping the hyperparameters equal to
their tuned values (Zhang et al., 2024, Table 6) to
match their experiments.

We conducted all experiments using two V100-
32GB GPUs. Draft & Verify relies on Bayesian
optimization to find their draft model, which is sen-
sitive to the computing environment. In order to
get the best performance from their method, we
reran their optimization code to generate draft mod-
els tuned to our environment. In total three draft
models were generated, one for each model, which
took on average 11 hours to generate per model.

For our ADMG (Algorithm 1), we used the hy-
perparameters in Table 2. The only difference
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Model α m n

Llama-2-13B 0.985 3 2
Llama-2-13B-Chat 0.985 3 2
CodeLlama-13B 0.985 4 3

Table 2: Hyperparameters used for ADMG (Alg. 1)

Model T Method CNN/DM XSum

Llama-2
-13B

0.0
D&V 1.495× 1.415×
ASD 1.443× 1.383×

0.2
D&V 1.479× 1.383×
ASD 1.422× 1.350×

Llama-2
-13B-Chat

0.0
D&V 1.238× 1.143×
ASD 1.247× 1.110×

0.2
D&V 1.219× 1.134×
ASD 1.238× 1.102×

Table 3: Inference speedup of Draft & Verify (D&V)
and Adaptive Self-Speculative Decoding (ASD) meth-
ods compared to vanilla autoregressive generation using
different temperatures (T).

over the experiments was that higher speedup was
observed by incrementing m and n by 1 for the
CodeLlama-13B experiments. Since CodeLlama-
13B is fine-tuned for a more specific task compared
to the other models, we believe that there may be
less redundant layers which can be easily removed
using rules 1 and 2.

The results of the experiments are presented in
Tables 3 and 4. We observe that both methods
have similar performance overall, with Draft &
Verify performing better on the Llama-2-13B ex-
periments, ASD having better performance on the
CodeLlama-13B experiments, with mixed perfor-
mance observed for Llama-2-13B-Chat.

4.1 Discussion & Ablation Study

It may be surprising that choosing a draft model by
simple rules can give on par performance with a
costly optimization method, but there are no guar-
antees on the solution quality when using normal

Model T Method Speedup

CodeLlama-13B
0.0

D&V 1.282×
ASD 1.365×

0.6
D&V 1.282×
ASD 1.340×

Table 4: HumanEval inference speedup of Draft & Ver-
ify (D&V) and Adaptive Self-Speculative Decoding
(ASD) compared to vanilla autoregressive generation
using different temperatures (T).

Drafting Generation Rules Speedup
CS thresholding 1.307×
CS thresholding & rule 2 1.340×
Rules 1 & 2 1.179×
ADMG 1.443×

Table 5: Ablation study on ADMG (Algorithm 1) show-
ing the inference speedup using subsets of its 3 rules
for Llama-2-13B on 1000 test samples of the CNN/DM
dataset using greedy decoding.

Bayesian optimization to solve a discrete optimiza-
tion problem by rounding the suggested continuous
points, as was done in Draft & Verify. This may
result in the algorithm getting stuck by revisiting
previously sampled points (Luong et al., 2019),
which was in fact observed when running their im-
plementation.

The largest difference in inference speedup be-
tween Draft & Verify and ASD is observed in
the CodeLlama-13B experiments. Given that Hu-
manEval does not have a training set, Python sam-
ples from the StarCoder (Li et al., 2023) training
dataset were used to generate Draft & Verify’s D,
as was done in their experiments. We believe the
high relative speedup of ASD demonstrates the ro-
bustness of ADMG, and the potential sensitivity to
differences in the distribution of the calibration and
test datasets for their method. The implication of
this being that in general, it may be challenging for
Draft & Verify to remain on par with our method
when it cannot be guaranteed that the difference be-
tween the calibration data and the data it processes
through time will remain small.

We end this section by giving an ablation
study on ADMG, showing the inference speedup
achieved when generating draft models using sub-
sets of its 3 rules, presented in Table 5. We observe
that the majority of the inference speedup comes
from CS thresholding, with increased inference
speed when adding rule 2, and then again when
adding rule 1 (ADMG). We also observe that even
without using CS thresholding, inference speedup
is achieved only using rules 1 and 2.

5 Conclusion

We have proposed a self-speculative decoding
method to generate draft models on the fly which
are adapted to the input context. Our method uses
cosine similarity thresholding with simple layer re-
moval rules to generate draft models without the
need for any fine-tuning, black-box optimization,
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or training data. Despite our proposed method’s
simplicity, we found that it is competitive with the
current self-speculative decoding SOTA, while be-
ing an easy to implement plug-and-play method.

Limitations

The inference speedup achieved by ASD relies on
the existence of layers which when removed, do
not significantly impact the model’s accuracy. This
reliance on the level of redundancy in the LLM’s
layers will limit the potential inference speedup of
ASD.
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