@inproceedings{moore-etal-2024-base,
title = "The Base-Rate Effect on {LLM} Benchmark Performance: Disambiguating Test-Taking Strategies from Benchmark Performance",
author = "Moore, Kyle and
Roberts, Jesse and
Pham, Thao and
Ewaleifoh, Oseremhen and
Fisher, Douglas",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.126/",
doi = "10.18653/v1/2024.findings-emnlp.126",
pages = "2283--2288",
abstract = "Cloze testing is a common method for measuring the behavior of large language models on a number of benchmark tasks. Using the MMLU dataset, we show that the base-rate probability (BRP) differences across answer tokens are significant and affect task performance ie. guess $A$ if uncertain. We find that counterfactual prompting does sufficiently mitigate the BRP effect. The BRP effect is found to have a similar effect to test taking strategies employed by humans leading to the conflation of task performance and test-taking ability. We propose the Nvr-X-MMLU task, a variation of MMLU, which helps to disambiguate test-taking ability from task performance and reports the latter."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moore-etal-2024-base">
<titleInfo>
<title>The Base-Rate Effect on LLM Benchmark Performance: Disambiguating Test-Taking Strategies from Benchmark Performance</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kyle</namePart>
<namePart type="family">Moore</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jesse</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thao</namePart>
<namePart type="family">Pham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oseremhen</namePart>
<namePart type="family">Ewaleifoh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douglas</namePart>
<namePart type="family">Fisher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cloze testing is a common method for measuring the behavior of large language models on a number of benchmark tasks. Using the MMLU dataset, we show that the base-rate probability (BRP) differences across answer tokens are significant and affect task performance ie. guess A if uncertain. We find that counterfactual prompting does sufficiently mitigate the BRP effect. The BRP effect is found to have a similar effect to test taking strategies employed by humans leading to the conflation of task performance and test-taking ability. We propose the Nvr-X-MMLU task, a variation of MMLU, which helps to disambiguate test-taking ability from task performance and reports the latter.</abstract>
<identifier type="citekey">moore-etal-2024-base</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.126</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.126/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>2283</start>
<end>2288</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Base-Rate Effect on LLM Benchmark Performance: Disambiguating Test-Taking Strategies from Benchmark Performance
%A Moore, Kyle
%A Roberts, Jesse
%A Pham, Thao
%A Ewaleifoh, Oseremhen
%A Fisher, Douglas
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F moore-etal-2024-base
%X Cloze testing is a common method for measuring the behavior of large language models on a number of benchmark tasks. Using the MMLU dataset, we show that the base-rate probability (BRP) differences across answer tokens are significant and affect task performance ie. guess A if uncertain. We find that counterfactual prompting does sufficiently mitigate the BRP effect. The BRP effect is found to have a similar effect to test taking strategies employed by humans leading to the conflation of task performance and test-taking ability. We propose the Nvr-X-MMLU task, a variation of MMLU, which helps to disambiguate test-taking ability from task performance and reports the latter.
%R 10.18653/v1/2024.findings-emnlp.126
%U https://aclanthology.org/2024.findings-emnlp.126/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.126
%P 2283-2288
Markdown (Informal)
[The Base-Rate Effect on LLM Benchmark Performance: Disambiguating Test-Taking Strategies from Benchmark Performance](https://aclanthology.org/2024.findings-emnlp.126/) (Moore et al., Findings 2024)
ACL