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Abstract

Text-to-SQL parsing and end-to-end ques-
tion answering (E2E TQA) are two main ap-
proaches for Table-based Question Answering
task. Despite success on multiple benchmarks,
they have yet to be compared and their synergy
remains unexplored. In this paper, we iden-
tify different strengths and weaknesses through
evaluating state-of-the-art models on bench-
mark datasets: Text-to-SQL demonstrates su-
periority in handling questions involving arith-
metic operations and long tables; E2E TQA
excels in addressing ambiguous questions, non-
standard table schema, and complex table con-
tents. To combine both strengths, we propose
a Synergistic Table-based Question Answer-
ing approach that integrate different models
via answer selection, which is agnostic to any
model types. Further experiments validate that
ensembling models by either feature-based or
LLM-based answer selector significantly im-
proves the performance over individual mod-
els. Code will be publicly available at https:
//github.com/siyue-zhang/SynTableQA.

1 Introduction

Table QA (TQA) takes a question and a table,
and finds an answer based on the evidence from
the table (Pasupat and Liang, 2015). With the
help of large scale datasets (Zhong et al., 2017;
Yu et al., 2018, 2019; Shi et al., 2020), state-of-
the-art (SOTA) TQA systems primarily focus on
two approaches: semantic parsing (Text-to-SQL)
that predicts a SQL query as intermediate seman-
tic representation of the question, and then exe-
cutes the SQL to find the answer (Wang et al.,
2020; Scholak et al., 2021; Li et al., 2023a); end-
to-end system (E2E TQA) that directly generates
the answer from models pre-trained on table cor-
pora, imitating human-like reasoning on questions
and tables (Pasupat and Liang, 2015; Iyyer et al.,
2017; Gupta et al., 2023). Despite serving for a

Question: What is the difference in prize between 1st May and 10th July?
Required Capability: Conduct arithmetic operation

Question: Which tour has the greatest price?
Required Capability: Process long table content

Question: Which tour is in Singapore?
Required Capability: Resolve ambiguity in question and schema

Question: How many players in Swiss Open Super Series?
Required Capability: Process complex table content

DatePlayers…PrizeCityTitleTour

January 16Sandra Kay,
Cheryl Lee…200,000Kuala 

Lumpur
Malaysia 

Super Series1

May 1Debbie May…300,000SingaporeSingapore 
Super Series2

July 10
Lisa Yates,

Marta Reeves,
April Dawn

…250,000BaselSwiss Open 
Super Series3

November 20Cindy Anne…500,000GuangzhouChina Open 
Super Series4

…………………

December 2Unidentified…800,000ParisSuper Series 
Finals50

Text-to-SQL: 50000

E2E TQAText-to-SQL Execution

E2E TQA: 200000

Text-to-SQL: 800000 E2E TQA: 500000

Text-to-SQL: 2 E2E TQA: Singapore Super Series

Text-to-SQL: 1 E2E TQA: 3

Selector
“1”

“3”

Figure 1: A demonstration of SOTA Table QA mod-
els’ strengths in solving different types of table-based
questions, followed by an overview of SYNTQA. In
a synergistic way, SYNTQA aggregates candidate an-
swers from Text-to-SQL and E2E TQA models, and
then select the final answer. The answers in green color
are the correct answers.

similar purpose, it’s unclear what advantages these
approaches have and their potential synergy.

To answer these questions, we first (re)evaluate
SOTA Text-to-SQL models, i.e., T5 (Raffel et al.,
2020), GPT (OpenAI, 2023), and DIN-SQL (Pour-
reza and Rafiei, 2024), as well as E2E TQA models,
i.e., TAPEX (Liu et al., 2022), OmniTab (Jiang
et al., 2022), and GPT, on benchmark datasets
WTQ (Pasupat and Liang, 2015) and WIKISQL
(Zhong et al., 2017). The experiments show that
while both Text-to-SQL and E2E TQA approaches
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are adept at simple questions, they have comple-
mentary strengths for complex questions and tables,
as shown in Figure 1 (top): Text-to-SQL is more
proficient in numerical reasoning and processing
long tables while E2E TQA is better at ambiguous
questions, complex schema and contents.

Motivated by their distinct strengths, we pro-
pose Synergistic Table-based Question Answering
(SYNTQA, bottom of Figure 1), which aims to
integrate the strengths of both models via answer
selection. At each time, given the input of table,
question, Text-to-SQL answer, and E2E TQA an-
swer, the answer selector identifies the more prob-
able correct one from Text-to-SQL and E2E TQA
answers. Experiments show that both feature-based
selector and LLM-based selector provide signifi-
cant improvement over single models.

2 Table Question Answering Task

Table Question Answering has received significant
attention as it helps non-experts interact with com-
plex tabular data. Formally, given an input ques-
tion Q = {q1, q2, . . . , qn} and a table T with R
rows and C columns, and each cell Ti,j contains a
real value, Table QA aims to produce an answer
A = {a1, a2, . . . , ak}, where qn and ak are tokens.
Then we introduce two main approaches for Table
QA: Text-to-SQL and E2E TQA.

Text-to-SQL. Table QA problem is originally
framed as semantic parsing, also known as Text-to-
SQL parsers, where a parser takes both question
and table header as input, and predicts a SQL query
that is directly executable to get the answer. Early
neural sequence-to-sequence parsers (Guo et al.,
2019; Wang et al., 2020; Rubin and Berant, 2021)
encode question/schema with attention mechanism
and uses SQL grammar to guide the decoding pro-
cess. Recent approaches take advantages of pre-
trained models, and they either fine-tune (Wang
et al., 2018; Scholak et al., 2021) or prompt (Gao
et al., 2024; Pourreza and Rafiei, 2024) large mod-
els for Text-to-SQL parsing.

E2E TQA. Several issues limit applying Text-
to-SQL parsers into real scenarios: training SOTA
parsers require large amounts of expensive SQL an-
notations; existing parsers largely ignore the value
of table contents. With the help of model pre-
trained on large scale table corpus, recent works
focus on end-to-end Table QA that ignores gen-
erating SQL queries as an intermediate step and

directly predicts the final answer through either
fine-tune (Liu et al., 2022; Zhao et al., 2022; Jiang
et al., 2022) or prompt large models (Chen, 2023).

3 Evaluating Text-to-SQL and E2E TQA

In this section, we evaluate existing Text-to-SQL
and E2E TQA models on two benchmark datasets:
WTQ and WIKISQL.

3.1 Experimental Setup

Dataset. WTQ comprises 22,033 instances with
a diverse array of intricate questions and ta-
bles. SQUALL (Shi et al., 2020) annotates 11,276
WTQ instances with pre-processed tables and SQL
queries.1 Compared with classic datasets, e.g.,
WIKISQL and Spider (Yu et al., 2018), designed
for SQL prediction on well-maintained databases,
WTQ contains complex tables and questions which
are difficult to answer with SQL queries. As a large
portion of Spider tables does not have table content,
we use WIKISQL to validate the generalizability
of our findings, which contains 80,654 instances.

Model and Metric. We evaluate SOTA models
that have publicly available source code or APIs:
Text-to-SQL includes T5 (Raffel et al., 2020), GPT
(OpenAI, 2023), and DIN-SQL (Pourreza and
Rafiei, 2024); E2E TQA includes TAPEX (Liu
et al., 2022), OmniTab (Jiang et al., 2022), and
GPT (OpenAI, 2023). As Text-to-SQL models of-
ten generate invalid SQL queries (Lin et al., 2020),
we devise a post-processing module to screen ta-
ble content, rectify query misspellings, identify the
closest string values, and resolve mismatches. Sim-
ilar to (Scholak et al., 2021), the post-processing
module ensures the correct SQL grammar. For
fine-tuned models, we choose the large version.
For fair comparison, we report answer string exact
match (EM) accuracy.

3.2 Results

According to Table 1, prompting methods (i.e.,
GPT and DIN-SQL) underperform fine-tuned mod-
els in table understanding on WTQ and WIKISQL,
aligning with findings in (Li et al., 2024; Liu et al.,
2024). Thus, we primarily focus on fine-tuned
Text-to-SQL and E2E TQA models. Best Text-to-
SQL and E2E TQA models achieve comparable
accuracy, but notably, 27.6% of WTQ and 11.7%

1We train Text-to-SQL models on SQUALL and test on
WTQ, as 20% of WTQ questions lack SQL annotations and
cannot be answered by Text-to-SQL.
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Figure 2: Error case analysis. †Arithmetic operation
errors include questions with both long and short tables.
Tables are regarded as long if their linearized sequences
have more tokens than the Table QA model input length.
The percentage numbers on the left indicate the quantity
of error cases, and remaining percentage points corre-
spond to other errors, such incorrect labels.

of WIKISQL questions were correctly answered
exclusively by either Text-to-SQL or E2E TQA.
It implies that models excel in tackling different
types of table-based questions. To further inves-
tigate the strengths and weaknesses, we analyze
200 erroneous cases summarized in Figure 2 (see
detailed breakdown in Appendix B).

Text-to-SQL is skilled at arithmetic operations.
It is evident in Figure 2 (A) that 61% of E2E TQA
error cases involve arithmetic operations including
counting, summation, averaging, and subtraction.
Despite existing E2E TQA approaches (Herzig
et al., 2020; Eisenschlos et al., 2020) have incor-
porated a separate aggregation operator into model
design, the range of supported operations is limited
with suboptimal performance. In contrast, Text-to-
SQL provides more accurate and consistent results
for arithmetic operations through symbolic reason-

Figure 3: The impact of table size (i.e., number of rows)
on the accuracy of E2E TQA, Text-to-SQL, and SYN-
TQA (RF) on the the test set of WTQ. The x-axis repre-
sents the row number ranges, and the y-axis shows the
average accuracy for each method.

ing (Cheng et al., 2023; Liu et al., 2024).

Text-to-SQL is adept at long tables. When
faced with long tables, comparing with Text-to-
SQL, E2E TQA accuracy dramatically declines
with increased table size (see details in Figure 3
and Appendix C). This is because existing E2E
TQA approaches are limited in processing and un-
derstanding long context, therefore are only able to
take truncated table as input. In contrast, Text-to-
SQL approaches primarily focus on table headers,
and are more robust to incomplete or long table
content. For example, in a long table like Figure
2 (B), Text-to-SQL is able to aggregate all critical
information over the rows.

E2E TQA is robust to ambiguous questions and
non-standard table schema. Rather than center-
ing on table schema, E2E TQA prioritizes table
content. Analysing table content is particularly use-
ful for resolving the ambiguity. As shown in Figure
2 (C), the term “higher” may refer to a bigger value
in quantity or a smaller value in rank. And E2E
TQA is more effective to infer that “higher” corre-
sponds to a smaller ranking value by incorporating
the table content (e.g., “3rd” and “5th”). Instead,
Text-to-SQL relies on the relevant column header
“2000” and mistakenly searches for the bigger value.
Furthermore, as depicted in the third question of
Figure 1, the non-standard header tour misleads
Text-to-SQL to retrieve the identity number. In
contrast, E2E TQA accurately predicts the official
title of the tour.
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E2E TQA is flexible to process complex table
content. Complex content arises with the mixing
of data types within same column, and Text-to-
SQL cannot find such nuanced difference, without
looking at table contents. According to Figure
2 (D), Text-to-SQL cannot exclude the row with
“null” rank and makes the wrong prediction then.

Some questions cannot map to a SQL query.
As pointed out by (Shi et al., 2020), there are cases
where SQL queries are insufficiently expressive.
According to Figure 2 (E), Text-to-SQL cannot
answer questions related to phrases “approximate”,
while E2E TQA is about to find the answers.

Text-to-SQL requires post-process the executed
answers. We also find that in some cases, ad-
ditional steps are needed to translate SQL query
results to natural language answers, where a no-
table semantic gap exists. For example, mapping
“1” to “longer” for “longer or shorter” question.
E2E TQA approaches do not have these limitations
as they directly predict the final answers.

4 SYNTQA: Selecting Correct Answer

Above findings show that different models solve
different questions, so we use a selector to choose
the answer. Specifically, at each time, the selector
receives the input of table T , question Q, Text-to-
SQL prediction and confidence ÂSQL, along with
E2E TQA prediction and confidence ÂE2E . After-
wards, the selector determines the correct answer
ÂSEL, where ÂSEL ∈ {ÂSQL, ÂE2E}. In gen-
eral, answer selection can be done through feature-
based classification or LLM-based contextual rea-
soning, which is discussed in this section.

We use the best performing base models, i.e.,
fine-tuned T5 for Text-to-SQL and OmniTab for
E2E TQA in the ensemble model.

4.1 Selector Designs

Feature-based Selector. SYNTQA (RF) trains
a random forest classifier to make the selection.2

We design the following features to train the classi-
fier: question characteristics (e.g., question word
and length), table characteristics (e.g., table size,
header and question overlapping, and truncation),
Text-to-SQL answer characteristics (e.g., confi-
dence, query execution, and queried answer data
type), and E2E TQA answer characteristics (e.g.,

2We evaluate various classic classifiers and identify ran-
dom forest as the top performer in Appendix E.3.

Model WTQ WIKISQL
Dev Test Dev Test

Text-to-SQL Models
DIN-SQL 44.6 81.7
GPT + TC + P 50.0 82.2
T5 + TC + P 66.7 64.7 88.3 89.6

E2E TQA Models
GPT 56.8 62.6
TAPEX 57.5 57.0 89.2 89.5
OmniTab 63.7 62.6 89.7 89.0

Ensemble Models
SYNTQA (RF) 71.6 93.2
SYNTQA (GPT) 70.4 93.0
SYNTQA (Oracle) 77.5 95.1

Table 1: Accuracy on WTQ and WIKISQL datasets
comparing SYNTQA with baselines. The best test re-
sult is highlighted in bold. Oracle result indicates the
maximum potential of mixing Text-to-SQL and E2E
TQA models (TC: Table Content, P: Post-processing).

confidence and length). The full list of features and
training details are included in Appendix E.

LLM-based Selector. SYNTQA (GPT) does not
require training data thanks to LLMs’ remarkable
few-shot capabilities. For comparison, we evalu-
ate LLMs’ answer selection capability via direct
prompting in Table 1.3 Furthermore, we propose
a heuristic-enhanced prompting strategy to elevate
the SOTA performance to 74.4% and 93.6% on
WTQ and WIKISQL (see details in Appendix F).

4.2 Results

According to Table 1 (Bottom), our ensemble mod-
els exhibit substantial improvement over individual
models. They achieve comparable performance
with recent tool-based LLMs on WTQ while sav-
ing computational costs, e.g., Dater (Ye et al., 2023)
65.9% and Mix SC (Liu et al., 2024) 73.6%. As
our findings are orthogonal to these methods, we
demonstrate a case integrating the concept of Mix
SC in Appendix G. The effectiveness can be at-
tributed to selectors’ high success rate (nearly 80%)
in selecting correct answers. Notably, the confi-
dence of Text-to-SQL and E2E TQA models is the
most impactful feature for SYNTQA (RF).

3We employ gpt-3.5-turbo-0125 for the evaluation.
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4.3 SQL Annotation Efficiency

Since manually creating SQL annotations can be
costly (Shi et al., 2020), we conducted experiments
to study how the accuracy improvement varies with
different amounts of SQL annotations, using the
feature-based selector in the WTQ dataset. The
answers are assumed to be always fully available,
leading to a stable performance of E2E TQA.

As shown in Figure 4, 10% of SQL annotations
(∼900) enhanced E2E TQA accuracy by 5%. The
improvement potential and actual improvement
continue to grow with the increase of the SQL anno-
tation amount. Trade-offs can be made between the
performance improvement and annotation amounts
depending on the use case.

10% 20% 50% 100%
SQL Annotation Amount

50%

55%

60%

65%

70%

75%

80%

Ac
cu

ra
cy

TableQA
Text-to-SQL

SynTQA (RF)
Oracle

Figure 4: WIKISQL test set accuracy versus the percent-
age amount of SQL annotations provided by SQUALL.
Even an inferior Text-to-SQL model trained with a more
limited set of SQL annotations can substantially enhance
the E2E TQA model.

4.4 Robustness Analysis

In addition to individual Text-to-SQL and E2E
TQA models such as previous works (Pi et al.,
2022; Singha et al., 2023), we evaluate our en-
semble approach SYNTQA (RF) with adversarial
perturbations such as replacing key question enti-
ties and adding table columns. The evaluation is
performed on the ROBUT-WIKISQL dataset (Zhao
et al., 2023). We find that different models exhib-
ited degradation on distinct adversarial samples.
Employing model assembling mitigates the per-
formance degradation experienced by individual
models significantly (see details in Table 5).

5 Other Related Work

Mixture-of-Experts. Since proposed by (Jacobs
et al., 1991), Mixture-of-Experts has been applied
in a wide fields of machine learning (Li et al., 2022;

Gururangan et al., 2023). We follow the same con-
cept and route the experts from the sample level
(Puerto et al., 2021; Si et al., 2023), i.e. selecting
an expert model for each test instance.

Tool-based LLMs. With LLMs’ strong textual
reasoning and tool-use capabilities, recent Table
QA methods (Cheng et al., 2023; Ye et al., 2023;
Liu et al., 2024) call executable programs (e.g.,
SQL and Python) as needed to retrieve relevant
contexts, facilitating reasoning. We provide an
alternative ensemble approach that does not rely on
computationally expensive LLMs.

6 Conclusion

This study delved into the comparative analysis
of two Table QA approaches: Text-to-SQL and
E2E TQA. Results indicate Text-to-SQL’s profi-
ciency in arithmetic operations and long tables and
E2E TQA’s advantages in resolving ambiguity and
complexity in the question and table. We enhance
performance on Table QA datasets by combining
models through answer selectors. We plan to ex-
tend the method to more challenging problems such
as hybrid TQA (Chen et al., 2020; Zhu et al., 2021).

Limitations

Although OmniTab is pre-trained for E2E TQA,
T5 is not a model specifically designed for Text-to-
SQL. Most Text-to-SQL models are tailored for the
Spider dataset (Wang et al., 2018; Rubin and Be-
rant, 2021; Scholak et al., 2021). Table or passage
retrievers (Karpukhin et al., 2020; Herzig et al.,
2021) can be applied to select certain rows and
columns before truncating the long tables which
might improve E2E TQA performance. As for
SYNTQA (GPT), we constrain GPT to select an
answer from candidates, which abandons its ca-
pability to provide a different answer when both
candidates are wrong. In more challenging datasets
which necessitate both textual and tabular data
(Chen et al., 2020; Zhu et al., 2021), our method
may not be as flexible and effective as tool-based
LLMs (Li et al., 2023b; Asai et al., 2024).

Ethics Statement

SYNTQA were developed using WTQ (Pasupat
and Liang, 2015), SQUALL (Shi et al., 2020), WIK-
ISQL (Zhong et al., 2017), and ROBUT (Zhao
et al., 2023), which are publicly available under
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the licenses of CC BY-SA 4.04, BSD 3-Clause5,
and MIT6. We used 4 NVIDIA Quadro RTX8000
GPUs to fine-tune models. SYNTQA (RF) and
SYNTQA (GPT) were constructed and executed
solely using CPU. SYNTQA (GPT) relies on Ope-
nAI API and using other GPT versions will lead
to varied performance. No manual annotation and
human study are involved in this study.
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A Evaluation Implementation Details

To fully utilize the table-question-answer triplets
from WTQ and SQL annotations from SQUALL,
we augmented the random splits generated by
SQUALL with additional WTQ samples that were
not annotated within SQUALL. In the evaluation,
we used the split of train-1 for fine-tuning Text-
to-SQL and the corresponding augmented split to
fine-tune E2E TQA. Then, both fine-tuned models
are evaluated by the augmented dev-1 set. Specif-
ically, the training set comprises 11,340 WTQ
samples, with SQL annotations present in 9,032
of them. As for WIKISQL, we employed the
full dataset with 56,640 table-question-SQL query
training samples. Answers were extracted follow-
ing the approach outlined in (Liu et al., 2022). We
used the default split for the evaluation, named as
train-0 and dev-0. For model fine-tuning, we
maintained the same parameters as original papers,
running 50 and 10 epochs for WTQ and WIKISQL
and selecting the best checkpoint based on the vali-
dation accuracy.

B Statistics of Error Cases

We analyse 200 error cases for Text-to-SQL and
E2E TQA models. The detailed breakdown is
shown in Figure B. The remaining percentage
points correspond to other errors, such incorrect
labels.

Text-to-SQL
Error Cases

Short
Table

73%

Long
Table

27%

Sum &
Avg 7%

Count
8%

Sum &
Avg 3%

Subtra
-ction

5%

Subtraction
16%

Count
22%

Others
11%

Others
27%

Others 30%

Cell
25%

Column
10%

Complex
35%

SQL
12%

Question
7%

Schema
13%

Ambi
-guous
20%

Semantic
3%

Expressivity
15%

E2E TQA
Error Cases

Figure 5: Breakdown of E2E TQA error cases (top) and
Text-to-SQL error cases (bottom).

C Table Size Impact Analysis

This section analyzes how table size, measured by
row numbers, influences the performance of vari-
ous methods on WTQ. We investigate the impact
of row count on the average accuracy of E2E TQA,
Text-to-SQL, and an ensemble approach. Our find-
ings reveal a consistent trend of decreasing accu-
racy as the number of rows increases. Notably,
E2E TQA experiences a more pronounced decline
in accuracy compared to Text-to-SQL. Traditional
Text-to-SQL methods typically rely solely on table
schema for SQL generation, leading to consistent
accuracy regardless of the number of rows. How-
ever, the decline of Text-to-SQL accuracy shown
in Figure 3 implies that table content may also play
a role in SQL generation. Besides, it is evident
that E2E TQA deteriorates much more severely
than Text-to-SQL which can be attributed to the
lack of the retrieval system (i.e., table row and col-
umn selection) and the the complexity of handling
long-context data. Last but not least, the ensemble
approach is observed to be effective to mitigate the
accuracy drop caused by the table size.

D LLM-based Table QA Models

This section presents the evaluation of LLM-based
E2E TQA and Text-to-SQL models. To optimize
the cost, we use gpt-3.5-turbo-0125 for all mod-
els including E2E TQA, Text-to-SQL, and SYN-
TQA (GPT) selector. For LLM-based E2E TQA,
we follow the direct prompting (zero-shot) ap-
proach implemented by (Liu et al., 2024). For
LLM-based Text-to-SQL, we incorporate 8 exam-
ples from dev set in the prompting to showcase the
target style of SQL queries.

Table 2 demonstrates that GPT-3.5 exhibits lim-
ited proficiency in table understanding, as evi-
denced by significantly lower accuracy of both
GPT-based Text-to-SQL and E2E TQA models
compared to fine-tuned small models. However,
it is evident that GPT-based Text-to-SQL and E2E
TQA models also response correctly to different
questions, mirroring the findings observed between
T5 and OmniTab. The gap between the oracle ac-
curacy and individual model accuracy suggests the
substantial improvement potential by aggregation.
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Model WTQ WikiSQL
Text-to-SQL Models

T5 67.6 90.8
GPT 50.0 82.2

E2E TQA Models
OmniTab 66.3 88.3
GPT 56.8 62.6

Ensemble Models
SYNTQA (GPT) 65.2 84.4
SYNTQA (Oracle) 75.2 87.6

Table 2: Accuracy on subsets of WTQ and WIKISQL.
SYNTQA aggregates LLM-based Text-to-SQL and E2E
TQA models via the LLM-based selector. Oracle result
indicates the maximum potential of mixing LLM-based
Text-to-SQL and E2E TQA models.

E Feature-based Selector Implementation

E.1 Classifier Features
Below we list all the features used to train our ran-
dom forest classifier for selecting the final output
answer based on model predictions.

• Question Characteristics: question word,
question length, and the number of numeri-
cal values in the question.

• Table Characteristics: the number of rows
and columns in the table, the number of over-
lap words between the table header and ques-
tion, and a boolean value implying whether
the table is truncated in the model input.

• Text-to-SQL Answer Characteristics: with
regard to the predicted and revised SQL query,
it includes the generation probability nor-
malized by length, and the number of pre-
processed columns used in the query (e.g.,
_parsed, _first, and _list in SQUALL);
concerning the queried answers from the table,
it consists of the query execution status (i.e.,
successful or not), the number of queried an-
swers, and the data types of queried answers
(i.e., string or number).

• E2E TQA Answer Characteristics: the gen-
eration probability normalized by length, the
number of predicted answers, answer data
types, a boolean value indicating whether the
E2E TQA answer is a sub-string of the Text-
to-SQL answer, and another boolean indicator

checking if the E2E TQA answer is a sub-
string of the model input.

E.2 Training Details

Error case samples, where one model is correct and
the other one is erroneous, are essential for effec-
tively training the random forest classifier. Thus,
we trained one Text-to-SQL model and one E2E
TQA model at a time for each dataset splitting (in
total 5 splits). We gathered error cases from each
validation set. As WIKISQL does not provide 5
random splits as SQUALL, 4 additional unique dev
sets with a similar amount of samples as the origi-
nal dev set were extracted from the train set.

E.3 Comparisons Among Classifiers

We investigate various classic classification meth-
ods for answer selection in SYNTQA: linear regres-
sion (LR), k-nearest neighbors (kNN), support vec-
tor machine (SVM), multilayer perceptron (MLP),
and random forest (RF). As shown in Table 3, RF
attains the best performance in answer selection.

Model LR kNN SVM MLP RF
Accuracy 70.8 66.8 70.1 70.0 71.6

Table 3: Classification accuracy of different machine
learning methods in SYNTQA on the test set of WTQ
dataset. The best performance is highlighted in bold.

F Heuristic Enhanced SYNTQA (GPT)

Apart from the direct prompting approach pre-
sented in the paper, we also develop a heuristic-
enhanced prompting strategy for SYNTQA (GPT)
and test it with gpt-4-0125-preview. The main
idea is to leverage additional LLM-based modules
to reduce the the necessity of complex reasoning
on the question, table, and answer candidates. The
designed heuristic is demonstrated in Figure 6 and
the full prompts refer to the following subsections.
As a result, the heuristic-enhanced prompting strat-
egy achieves 89% and 87.1% accuracy in selecting
the correct answer on WTQ and WIKISQL respec-
tively. Correspondingly, it attains Table QA accu-
racy of 74.4% and 93.6% on WTQ and WIKISQL,
further elevating the SOTA Table QA performance.
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comparison contradiction *
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long tableshort

Figure 6: Design of LLM-based Selector. Similarity
module examines if Text-to-SQL and E2E TQA answers
are similar entities. Relevance module checks if the Text-
to-SQL answer is relevant to the question. Alignment
module inspects if the number of entities in Text-to-
SQL answer corresponds to the question. Comparison
module chooses the correct answer from two models.
Contradiction module identifies if there is contradiction
between the truncated table and Text-to-SQL answer
(∗indicates only using the Text-to-SQL answer).

F.1 Similarity Module

Assess the Response A and the Response B to the Question. Answer yes 
if the Response A and the Response B belong to the similar type of 
entities related to the Question, or no if they are distinct type of things. 
Answer yes if they are both names.

[QUESTION] which team did liverpool play against?

[RESPONSE A] coventry city

[RESPONSE B] new england patriots (4)

[ANSWER] yes

F.2 Relevance Module

Assess whether the Response contains the entities or answers asked by 
the Question. Answer yes if the Question asks for names or persons. 
Answer yes if the Response is relevant to the Question, or no if the 
Response is not expected by the Question. It does not matter if the 
response is correct or not. 

[QUESTION] which city has the largest number of people in camarines
sur?

[RESPONSE] 25px

[ANSWER] no

F.3 Alignment Module

Assess whether the Response contains the entities or answers asked by 
the Question. Answer yes if the Question asks for names or persons. 
Answer yes if the Response is relevant to the Question, or no if the 
Response is not expected by the Question. It does not matter if the 
response is correct or not. 

[QUESTION] which city has the largest number of people in camarines
sur?

[RESPONSE] 25px

[ANSWER] no

F.4 Comparison Module

You will get a table, a question, and two responses. 
Based on this table, choose the more correct answer from A or B. 
If A and B are the same, choose the one that is more natural to the 
question and favored by humans.
If neither response is correct, choose A.
If the table does not have enough information, choose A.
Let's think step by step, and then give the final answer.
Ensure the final answer format is either "Final Answer: A" or "Final 
Answer: B", no other form.

[TABLE] header : date announced | plant name | employees row 1 : 
january 23, 2006 | st. louis assembly | 1445 row 2 : january 23, 2006 | 
atlanta assembly | 2028 row 3 : january 23, 2006 | batavia transmission 
| 1745 row 4 : january 23, 2006 | windsor casting | 684 row 5 : total | 
total | 5902

[QUESTION] how many plants have at least 1,500 employees?

[RESPONSE A] 3

[RESPONSE B] 2

[ANSWER] to find the number of plants with more than 1500 people 
employees, we need to look at the employees column and count the 
entries that exceed 1500. 
1. st. louis assembly (1445<1500)
2. atlanta assembly (2028>1500)
3. batavia transmission (1745>1500)
4. windsor casting (684<1500)
5. total (5902>1500)
because total is an aggregation amount not a real plant, the plants have 
at least 1500 employees are:
- atlanta assembly
- batavia transmission
that makes a total of 2 plants.
final answer: B

F.5 Contradiction Module

We implemented one type of contradiction scenar-
ios regarding the question for counting entities in
the table when candidate answers are small integer
numbers. In the event that this module detects a
higher count of entities within the truncated table
than reflected in the Text-to-SQL response, it is
deemed a contradiction, indicating a high likeli-
hood of errors within the response.
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[TABLE] header : canton | district | establish date row 1 : esch-sur-
alzette | luxembourg | 4 august 1907 row 2: diekirch | diekirch | 4 
august 1907 row 3: vianden | diekirch | 1 may 1922

[QUESTION] how many cantons are established in 1907?

[ANSWER] 2

G Integrating Self-Consistency

Following (Liu et al., 2024), we incorporate the
Self-Consistency in our Text-to-SQL and E2E TQA
base models. To generate 5 candidate answers for
each model, we perturb the input table schema for
the Text-to-SQL model and conduct top-k sam-
pling (k = 50) for the E2E TQA model. Among
five candidates, we choose one following the rule
of maximum voting. Lastly, our RF classifier deter-
mined the final answer based on designed features.

Model WTQ
Text-to-SQL Models

T5 64.7
T5 + SC 65.2

E2E TQA Models
OmniTab 62.6
OmniTab + SC 62.9

Ensemble Models
SYNTQA (RF) 71.6
SYNTQA (RF) + SC 71.8

Table 4: Accuracy on WTQ test set. Self-Consistency
can further improve the performance of both individual
models and the ensemble model (SC: Self-Consistency).
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H Robustness Analysis

Text-to-SQL E2E TQA SYNTQA (RF)
Level Perturbation Type

ACC R-ACC ACC R-ACC ORACLE ACC

Synonym
Replacement

84.7 / 72.6
(-12.1)

82.9
84.7 / 73.0

(-11.7)
83.4

93.1 / 86.5
(-6.6)

79.6
(+6.6)Table

Header Abbreviation
Replacement

84.4 / 76.2
(-8.2)

87.0
84.2 / 74.3

(-9.9)
85.7

92.9 / 87.5
(-5.4)

81.2
(+5.0)

Column
Extension

89.6 / 48.7
(-40.9)

52.9
91.6 / 54.8

(-36.8)
59.1

95.5 / 58.5
(-37.0)

56.3
(+1.5)Table

Content Column
Adding

81.0 / 79.7
(-1.3)

94.7
81.5 / 70.3

(-11.2)
83.4

90.7 / 87.5
(-3.2)

83.8
(+4.1)

Word-Level
Paraphrase

87.3 / 63.7
(-23.6)

70.6
88.3 / 66.0

(-22.3)
72.9

94.3 / 73.8
(-20.5)

68.8
(+2.8)

Question
Sentence-Level
Paraphrase

83.6 / 71.5
(-12.1)

81.3
83.8 / 72.3

(-11.5)
83.1

92.2 / 83.7
(-8.5)

78.0
(+5.7)

Mix —
87.0 / 60.3

(-26.7)
66.8

88.5 / 63.4
(-25.1)

69.5
94.0 / 72.0

(-22.0)
66.8

(+3.4)

Table 5: Robustness evaluation results of Text-to-SQL, E2E TQA, and SYNTQA models on ROBUT-WIKISQL.
ACC represents the Pre- and Post-perturbation Accuracy; R-ACC represents the Robustness Accuracy. Bold
numbers indicate the highest Post-perturbation Accuracy in each perturbation type. Red numbers show the accuracy
degeneration due to the perturbation. Green numbers demonstrate the improvement over the best individual model.
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