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Abstract

When using large language models (LLMs)
in knowledge-intensive tasks, such as open-
domain question answering, external context
can bridge the gap between external knowledge
and the LLMs’ parametric knowledge. Recent
research has been developed to amplify con-
textual knowledge over the parametric knowl-
edge of LLMs with contrastive decoding ap-
proaches. While these approaches could yield
truthful responses when relevant context is pro-
vided, they are prone to vulnerabilities when
faced with noisy contexts. We extend the scope
of previous studies to encompass noisy con-
texts and propose adaptive contrastive decod-
ing (ACD) to leverage contextual influence ef-
fectively. ACD demonstrates improvements in
open-domain question answering tasks com-
pared to baselines, especially in robustness by
remaining undistracted by noisy contexts in
retrieval-augmented generation.

1 Introduction

While large language models (LLMs) (Touvron
et al., 2023; Achiam et al., 2023) achieve re-
markable performance levels across diverse bench-
marks, they sometimes struggle to generalize to
knowledge-intensive tasks, such as open-domain
question-answering (QA; Chen et al., 2017), and
may also fail to capture long-tail knowledge, lead-
ing to unfaithful output generation (Mallen et al.,
2023; Kandpal et al., 2023). One common ap-
proach to address these limitations is fine-tuning
the model, but this results in a quadratic rise in
computational demands as the size of the LLMs
increases exponentially (Longpre et al., 2023). To
overcome this, researchers have been investigating
strategies to combine non-parametric knowledge
with LLMs during response generation without ex-
plicit re-training (Asai et al., 2023a). This approach
leverages external information from knowledge
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Figure 1: An illustration of adaptive contrastive decod-
ing (ACD). Entropy (H) changes depending on context
relevance, affecting the adaptive weight (αACD). Noisy
context leads the model to incorrectly answer "Diede
De Groot" when employing regular greedy decoding.
ACD applies context-based adjustments, enabling the
correct answer, "Sloane Stephens," despite the noise.

bases and enhances the capability of the LLMs
dynamically, ensuring that the information is both
current and accurate.

Early studies in this field attempt to append
query-relevant context to generate more accurate re-
sponses. Especially, contrastive decoding (Li et al.,
2023; Malkin et al., 2022; Liu et al., 2021) yields
significant enhancement in various tasks by ampli-
fying the influence of the given context at decoding
step (Shi et al., 2023; Zhao et al., 2024). While
such methods work well when context informa-
tion is correct and faithful, in real-world scenarios,
context information is not always correct and may
contain some noisy and unfaithful information. For
instance, if the retrieval system pulls in irrelevant
or contradictory information, it could lead to incor-
rect responses (Wang et al., 2024; Wu et al., 2024;
Yu et al., 2024). This highlights the necessity for
a generation model that can gauge the appropriate-
ness of the context by itself, being robust to noise
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and unfaithful data to ensure the output remains
reliable (Yoran et al., 2024).

To assess whether the existing contrastive de-
coding approaches can be utilized in practice, we
extend the setting to situations where the gold-
standard context is not guaranteed, specifically in
the retrieval-augmented generation (RAG) frame-
work (Yao et al., 2022; Shi et al., 2024; Izacard
et al., 2023). In this paper, we demonstrate that
existing context-aware contrastive decoding ap-
proaches experience performance drops in open-
domain question answering, especially when the
retrieved context is noisy. To address this issue, we
propose adaptive contrastive decoding (ACD),
adaptively weighting the contrastive contextual in-
fluence on the parametric knowledge, making it
suitable for noisy context settings (Figure 1).

Incorporating the distinction between contextual
and parametric knowledge, our approach aims to
mitigate the dominance of potentially noisy con-
textual information in model output. We control
contrastive contextual influence based on context’s
contribution to the LLM’s uncertainty reduction,
thereby minimizing its disruptive effect during de-
coding. Through in-depth experiments with three
open-domain QA datasets, we demonstrate the po-
tential of the proposed approach with increased
overall performance. Moreover, ACD enhances
the performance significantly on the noisy context
scenario while minimizing performance degrada-
tion on the gold context scenario compared to the
baselines.

2 Related Works

Context-Augmented Generation Approaches
for context-augmented generation have been de-
veloped to enhance the model’s limited paramet-
ric knowledge by providing external knowledge,
enabling more factual and contextually accurate
responses during inference (Zhou et al., 2023; He
et al., 2024). To sufficiently incorporate the infor-
mation from the context in model generation, con-
trastive decoding approaches are applied to over-
write the model’s parametric knowledge with exter-
nal knowledge (Shi et al., 2023; Zhao et al., 2024).
These context-aware contrastive decoding methods
to generate responses faithful to the given context
show effective performance in summarization (See
et al., 2017; Narayan et al., 2018), knowledge con-
flict (Longpre et al., 2022), and question answering
with gold-standard contexts.

Robustness in RAG Frameworks While
retrieval-augmented generation enables LLMs
to become factual and reliable with the retrieved
external knowledge, there are still concerns about
incorrectly retrieved irrelevant contexts (Yoran
et al., 2024). To address hallucination errors posed
by irrelevant contexts, some researchers take an
approach to train LLMs that can adaptively retrieve
relevant context (Asai et al., 2023b; Wang et al.,
2024). Another approach aims to selectively use
retrieved contexts after assessing their truthfulness
or relevance through context verification with
prompting strategies or training untruthful context
detectors (Yu et al., 2024; Zhang et al., 2024).
These approaches highlight the ongoing efforts
to advance the robustness and accuracy of LLMs
in multiple directions to manage potentially
misleading information.

3 Methodology

3.1 Problem Formulation

At decoding time step t, given the input x and pre-
ceding sequences y<t, a pretrained auto-regressive
LLM θ computes the logit zt ∈ R|V |, where V
is the vocabulary, for the t-th token. In the open-
domain QA task, a question q serves as the input x,
and zt relies solely on the LLM’s parametric knowl-
edge. When both q and the retrieved context c are
provided as x, the logit is denoted as zct ∈ R|V |.

3.2 Contrastive Decoding

In cases where context cannot be blindly trusted,
directly following the context-augmented distribu-
tion can increase the risk of being misled. Thus,
we adopt the approach of adding the contextual
influence, which contrasts with the LLM’s para-
metric knowledge, to the parametric distribution
zt. With the contrastive decoding objective, zct and
zt are ensembled to reflect the influence of exter-
nal context on the LLM’s parametric knowledge at
each decoding step t. The probability distribution
Pθ(Yt|x, y<t) is modified by weighted adjustment
based on the difference between zct and zt, as rep-
resented in the following equation.

Pθ(Yt | x, y<t) = softmax(zt + α (zct − zt)) (1)

The contrastive adjustment enables the LLM to in-
tegrate external context c into its prediction, lever-
aging the weight α to control the impact of c on
the final probability distribution.
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3.3 Adaptive Weight on Contextual Influence

The degree to which contextual influence is incor-
porated into zt needs to be controlled based on
the provided context’s informativeness. In practice,
however, it is often unknown whether the context
is gold or noisy. To address this, we investigate
whether the model could adjust accordingly with a
simple entropy-based approach.

The LLM’s uncertainty is expressed with the
entropy H(Yt) of its probability distribution
Pθ(Yt|x, y<t) (Huang et al., 2023; Kuhn et al.,
2023). While H(Yt) reflects how much uncertainty
the model has based on its parametric knowledge
under the given question, H(Y c

t ) is influenced by
the external knowledge within the retrieved context
c. Generally, when the context is added, the en-
tropy decreases (Kendall and Gal, 2017). However,
if the context is noisy, irrelevant, or provides no
information to answer the given question, it may
contribute to increased uncertainty instead.

Intuitively, if the retrieved context provides in-
formative cues for answering the question, then
H(Y c

t ) is expected to be lowered compared to
H(Yt). Conversely, if the context is non-helpful
or even confusing the model prediction, H(Y c

t )
in predicting the next token is likely to be higher.
This scenario would be particularly evident when
the model knows the answer with low H(Yt).

Considering the above scenarios, the motivation
behind the adaptive weight αACD is to assign a
relatively smaller weight in cases where the con-
text increases uncertainty by being uninformative
or confusing for the model in answering the given
question. Thus, the value of αACD is set as the
proportion of uncertainty contributed by H(Yt) rel-
ative to the total uncertainty when considering both
H(Yt) and H(Y c

t ):

αACD =
H(Yt)

H(Yt) +H(Y c
t )

(2)

Under the condition where H(Yt) > H(Y c
t ),

αACD value approaches to 1, indicating that when
the context c is provided, the uncertainty associ-
ated with predicting the next token decreases. Con-
versely, when H(Yt) < H(Y c

t ), αACD value ap-
proaches to 0, reflecting minimal influence from c.
Note that when H(Yt) = H(Y c

t ), αACD becomes
0.5, resulting in an ensemble of two distributions,
zt and zct , with equal weighting.

With αACD, the vocab v with maximum proba-
bility is selected as the next token under the follow-

ing distribution:

P̂θ(Yt | x, y<t) = softmax(zt + αACD (zct − zt))
(3)

Informed by αACD and contextual contrast, the
adjustment process determines the degree to which
the model’s parametric knowledge is superseded,
thus optimizing the assimilation of contextual in-
formation throughout decoding.

4 Experimental Results

4.1 Experimental Settings

Datasets and Models We conduct experiments
on open-domain QA datasets, TriviaQA (Joshi
et al., 2017), Natural Questions (NQ; Kwiatkowski
et al., 2019), and PopQA (Mallen et al., 2022) with
Wikipedia contexts.2

We use auto-regressive language models,
LLAMA2 (7B & 13B, Touvron et al., 2023),
LLAMA3 8B,3 and MISTRAL 7B (Jiang et al.,
2023). Utilizing CONTRIEVER-MSMARCO (Izac-
ard et al., 2022) as a retriever, the top-1 retrieved
context is appended to each question.

Evaluation Metric Following Zhao et al. (2024),
we use few-shot prompts with 5 examples. We
report Exact Match (EM) as an evaluation metric,
which verifies whether the generated sequences
precisely match one of the candidate answers.

Baselines As fundamental baselines, regular
greedy decoding has been employed in open-book
(RegOpn) and closed-book (RegCls) settings. We
compare our method against existing context-aware
contrastive decoding methods, including Context-
Aware Decoding (CAD; Shi et al., 2023) and Multi-
Input Contrastive Decoding (MICD; Zhao et al.,
2024). MICD uses inputs with and without con-
text, along with an additional input with adversarial
context, to generate the output distribution. MICD
presents two methods, referred to as MICDF and
MICDD, which offer fixed and dynamic α, respec-
tively. Similar to our approach, to leverage the
burden of hyperparameter search and dependency
on fixed α, MICDD also determines α dynami-
cally. In MICDD, α is assigned as the maximum to-
ken probability with context (maxPwc) if maxPwc

exceeds the maximum token probability without
context (maxPwoc); otherwise, it is calculated as
1− maxPwoc.

2Wikipedia dump from Dec. 2018.
3https://github.com/meta-llama/llama3
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Dataset (→) TriviaQA NQ PopQA

Model Method (↓) All SubsetGold SubsetNoisy All SubsetGold SubsetNoisy All SubsetGold SubsetNoisy

LLAMA2 7B

RegCls 59.00 - - 25.48 - - 28.36 - -
RegOpn 60.23 87.40 33.50 31.39 61.31 12.40 38.49 81.21 7.77
CAD 49.02 73.69 24.75 25.57 51.61 9.05 33.70 72.18 6.03
MICDF 60.36 85.72 35.39 29.45 56.10 12.54 35.73 74.25 8.03
MICDD 63.23 86.03 40.79 30.36 52.18 16.52 39.01 77.39 11.42
ACD 64.85 88.01 42.06 32.91 56.60 17.88 41.29 82.77 11.46

LLAMA2 13B

RegCls 63.77 - - 30.80 - - 32.70 - -
RegOpn 62.81 88.52 37.51 33.35 62.96 14.58 40.03 83.20 8.98
CAD 52.62 76.78 28.85 27.87 55.96 10.05 35.86 76.38 6.71
MICDF 63.53 87.40 40.04 32.63 59.67 15.48 38.16 77.04 10.21
MICDD 66.52 87.68 45.69 34.38 57.32 19.83 41.65 79.27 14.60
ACD 67.37 89.36 45.74 36.12 61.17 20.24 43.35 83.98 14.14

LLAMA3 8B

RegCls 61.67 - - 28.34 - - 32.65 - -
RegOpn 61.27 86.94 36.02 33.30 63.10 14.40 39.73 82.95 8.64
CAD 49.70 72.45 27.31 29.17 58.39 10.64 35.86 76.82 6.40
MICDF 61.01 85.40 37.00 27.62 51.89 12.22 37.99 77.12 9.85
MICDD 64.01 86.08 42.28 30.72 53.96 15.98 41.35 79.32 14.04
ACD 66.32 89.20 43.81 35.48 62.03 18.65 43.25 84.48 13.60

MISTRAL 8B

RegCls 63.72 - - 29.64 - - 29.04 - -
RegOpn 60.45 86.85 34.48 32.55 64.67 12.18 38.28 81.26 7.36
CAD 44.69 66.89 22.85 24.10 52.25 6.25 33.93 73.95 5.15
MICDF 63.33 88.43 38.62 31.80 61.10 13.22 36.58 76.00 8.23
MICDD 66.97 89.24 45.05 33.24 57.89 17.61 39.87 78.46 12.11
ACD 67.82 90.16 45.83 35.37 62.17 18.38 41.47 82.90 11.68

Table 1: EM accuracy of full data (All) and subsets with gold (SubsetGold) and noisy contexts (SubsetNoisy). The
highest score is in bold, and the second-best is underlined.
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Figure 2: EM accuracy of each method in LLAMA2-7B.
EM of three datasets used are averaged for each subset,
Unknown-gold and Known-noisy.

4.2 Main Results

Performance on RAG As shown in Table 1,
ACD outperforms the baselines across all datasets
and models within the RAG framework, partic-
ularly when considering the full test data (All).
When analyzing the performance by dividing the
data into two subsets based on whether the retrieved
context is gold (SubsetGold) or not (SubsetNoisy),
ACD achieves either the best or second-best perfor-
mance. MICDD demonstrates performance com-
parable to ACD on SubsetNoisy. However, it shows
a significant drop on SubsetGold, indicating a ten-
dency to ignore gold context while handling noisy
context. It is notable that both CAD and MICDF

exhibit a significant drop in their performance un-
der noisy conditions.

Performance under Parametric Knowledge
We aim to analyze the model’s performance across
various aspects, focusing specifically on its para-
metric knowledge. We estimate whether the model
possesses relevant parametric knowledge for a
given question based on its accuracy in a closed-
book setting (RegCls). We consider two subsets un-
der the following conditions: (1) Known-noisy: the
model has parametric knowledge of the given ques-
tion and noisy context is retrieved. (2) Unknown-
gold: the model does not have parametric knowl-
edge of the given question and gold context is re-
trieved.

From Figure 2, we observe that ACD outper-
forms the baselines in Known-noisy. Notably,
two approaches with adaptively adjusted weight,
ACD and MICDD, perform well in Known-noisy,
while other baselines show a relative strength in
Unknown-gold. However, these baselines also ex-
perience significant performance drops in Known-
noisy, indicating distraction by noisy context de-
spite correctly answering when only the question is
provided. In both cases, ACD demonstrates better
performance compared to MICDD, overall show-
ing a tendency towards reliability.

4.3 Analysis
Correlation between Adaptive Weight and Con-
text Noisiness While other baselines rely on
the fixed hyperparameter of weight α, ACD and
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α NQ TriviaQA PopQA

Max
MICDD 51.53 59.76 65.49
ACD 65.78 73.37 74.84

Avg.
MICDD 54.18 63.78 72.64
ACD 68.80 72.32 78.90

First
MICDD 53.92 62.95 68.81
ACD 73.27 80.45 80.08

Table 2: AUROC between α used in each method and
the noisiness of the retrieved context.
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Figure 3: EM accuracy on NQ-swap with contexts re-
placing the gold answer with a random entity span.

MICDD adjust α during the decoding step. It de-
pends not only on the noisiness of the retrieved
context but also on whether the model’s parametric
knowledge contains an answer to the given ques-
tion. To exclude cases that are not directly related
to the analysis of how weight is adjusted based on
context quality and the model’s parametric knowl-
edge, we use the same subsets, Known-noisy and
Unknown-gold.

Adaptive weights αACD and αMICD are extracted
at each decoding step and analyzed across three
metrics: maximum, average, and the first within
the generated sequence. As an evaluation metric,
the area under the receiver operator characteristic
curve (AUROC) between α and the noisiness of
the retrieved context is measured. AUROC of each
α for LLAMA 2-7B is reported in Table 2. Un-
der every metric and dataset, ACD demonstrates
a higher AUROC compared to MICDD. Aligned
with our motivation, when the model is knowledge-
able and presented with noisy context, αACD tends
to be lower, emphasizing greater reliance on para-
metric knowledge. Conversely, when the model
lacks knowledge and is provided with gold con-
text, αACD is adjusted to prioritize reliance on the
provided context.

Handling Knowledge Conflict With a knowl-
edge conflict QA dataset, NQ-swap (Longpre et al.,
2022), we verify whether the two decoding meth-
ods with dynamic weight, ACD and MICDD, can
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Figure 4: EM across alpha values ranges from 0.0 to
1.0. The dashed line indicates EM score with αACD.

generate context-based responses without consid-
ering a conflicting context as a noisy context. The
conflicting context in the NQ-swap dataset is con-
structed by replacing the answer entity span in the
original gold context with a random entity of the
same type. Figure 3 illustrates that ACD consis-
tently exceeds the performance of MICDD across
all models and achieves results comparable to open-
book regular decoding. The results indicate that the
ACD’s approach remains effective even in settings
where the context is relevant to the question but
contradicts the model’s parametric knowledge.

Ablation on αACD To assess the impact of αACD

on performance, we fix the value of α within a
range [0, 1] and examine whether employing ACD
is more effective than optimizing a fixed weight.
In Figure 4, it can be observed that using a fixed
α results in degraded performance compared to
ACD. Increasing the alpha value, which enhances
the contextual influence on the output distribution,
initially leads to a rise in the EM score. However,
beyond a certain point, further increasing α results
in a decline in the EM score. In scenarios with
potential noisy context, a fixed α value may not
ensure optimal performance. Therefore, employing
an adaptive weight, αACD, to adjust the impact of
contextual knowledge based on entropy is crucial
for improving overall performance.

5 Conclusion

In this work, we mainly tackle handling noisy con-
texts in open-domain QA on the RAG framework.
Our proposed method, ACD, dynamically adjusts
contextual influence during decoding by quantify-
ing the model’s uncertainty that is either reduced or
increased by the retrieved context. Our results show
that ACD improves performances across various
dimensions by considering the LLM’s parametric
knowledge and context noisiness. These findings
highlight ACD’s potential to enhance the reliability
of retrieval-augmented generation.
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Limitations

Similar to other contrastive decoding approaches,
the inference cost of our approach is higher than the
conventional greedy decoding. Specifically, while
CAD incurs twice the inference cost and MICD
incurs three times the cost, ACD also incurs twice
the inference cost of conventional greedy decoding.

Our research is limited the base models and does
not encompass chat or instruction-following mod-
els trained with reinforcement learning from hu-
man feedback (RLHF) or instruction fine-tuning
(Ouyang et al., 2022; Chung et al., 2022). These
aligned models often generate token distributions
that vary significantly based on the presence or ab-
sence of contextual instruction or templates. For in-
stance, an instruction-following model might start
its generation with "According to the given con-
text ..." when context is provided, while directly
generating the answer in absence of context. This
alignment with the provided instructions poses an-
other challenge to be tackled when the contrastive
decoding approach is utilized.

Our current focus is primarily on short-form QA
tasks. Expanding to QA tasks with long-form gen-
eration will enable a wider range of applications.
Under long-form QA tasks, our approach can be
further developed to investigate scenarios where the
context is only partially relevant to the question.
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Answer the following questions:

<few-shots>

Question: <question>
Answer:

Table 3: Template used in closed-book generation.

Answer the following questions:

<few-shots>

Context: <context>
Question: <question>
Answer:

Table 4: Template used in open-book generation.

Appendix

A Implementation Details

A.1 Instructions
The templates we use throughout the experiment
are in Table 3 and Table 4. The template used in
open-book generation (Table 4) is applied to get
context-augmented distribution zct . Also, to obtain
zt, the template in Table 3 is used.

A.2 Datasets
For NQ and TriviaQA, general world knowledge is
required to answer the given question. In PopQA,
tackling long-tailed information, less popular fac-
tual knowledge is asked. For NQ and TriviaQA,
few-shot examples are adopted from train data. For
PopQA, we randomly sample 5 examples with dif-
ferent relationship types for sample diversity. The
number of test data in used is 3,610 for NQ, 11,313
for TriviaQA, and 14,262 for PopQA.

A.3 Baselines
Baselines using regular greedy decoding are eval-
uated under two different settings. In the closed-
book setting, only the question is provided. In
the open-book setting, the retrieved context is em-
ployed. The same top-1 retrieved context is utilized
for every baseline and ACD.

CAD introduces a context-aware contrastive de-
coding approach that employs a contrastive out-
put distribution to accentuate discrepancies in
model predictions with and without context. This
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R@1 R@5 R@10 R@20 R@100

NQ 38.81 65.65 73.91 79.56 88.01
TriviaQA 49.60 71.32 76.72 80.39 85.71
PopQA 41.83 61.54 68.63 74.55 83.95

Table 5: Recall@100 performance for CONTRIEVER-
MSMARCO

method effectively overrides model priors conflict-
ing with provided context, offering significant per-
formance enhancements in tasks requiring reso-
lution of knowledge conflicts. MICD further en-
hances context grounded generation by integrat-
ing contrastive decoding with adversarial irrelevant
passages. From a computational time perspective,
MICD requires three times more than conventional
greedy decoding, while CAD and ACD require
twice as much.

MICD proposes two usage directions, referred
to as MICDF and MICDD, which offer fixed and
dynamic α, respectively. MICDD determines α in
use by comparing the highest token probabilities
with and without given context. Throughout the
experiments, fixed value of α is set to the value
used in Zhao et al. (2024), 0.5 and 1.0 for CAD
and MICDF , respectively.

A.4 Retriever Performance

To assess performance in the RAG framework, the
top-1 context from top-100 contexts retrieved by
CONTRIEVER-MSMARCO (Izacard et al., 2022) is
utilized. Recall@100 is reported for each dataset
in Table 5.

A.5 Knowledge Conflict

For the NQ-swap dataset, we utilize the questions
and entity-swapped contexts provided in Hong et al.
(2024), which includes 3,650 samples. This total
excludes 5 few-shot samples and those with con-
texts presented in a tabular format due to the lim-
ited context length. In the case of NQ-swap, each
data point has a given context. Since it is a task
that does not use a retriever, for MICD, we use
the fixed negative context taken from the MICD
as an adversarial context. MICD reports that the
performance difference between fixed negative and
the most distant context is negligible.

NQ TriviaQA PopQA

LLAMA2-7B

αACD 32.91 64.85 41.29
αoracle 35.35 (+2.44) 65.31 (+0.46) 44.10 (+2.81)

LLAMA2-13B

αACD 36.12 67.37 43.35
αoracle 38.75 (+2.63) 68.19 (+0.82) 47.01 (+3.66)

LLAMA3 8B

αACD 35.48 66.32 43.25
αoracle 36.98 (+1.50) 66.10 (-0.22) 46.47 (+3.22)

MISTRAL 7B

αACD 35.37 67.82 41.47
αoracle 38.37 (+3.00) 67.29 (-0.53) 44.53 (+3.06)

Table 6: EM score comparison between ACD (αACD)
and ACD with oracle alpha value (αoracle).

B Results

B.1 Results on Known-noisy and
Unknown-gold

For Known-noisy and Unknown-gold, the exact val-
ues of EM accuracy on each case are reported in
Table 8 and Table 9, respectively.

B.2 AUROC between Adaptive Weight and
Context Noisiness

AUROC of ACD and MICDD for three models not
reported in Table 2 is reported in Table 10.

C Additional Analysis

C.1 Upper-bound of Alpha
In our approach, the parameter α is expected to
be close to 1 when the retrieved context contains
information that helps answer the given question,
and close to 0 otherwise. To evaluate the upper-
bound performance of ACD, we assume that we
have prior knowledge of whether the context in use
is gold or noisy. Under this assumption, we fix the
α value to 1.0 if the context is gold and to 0.0 if the
context is noisy.

For TriviaQA dataset, the performance of ACD
is comparable to αoracle, with less than 1 point
difference (Table 6). NQ and PopQA show a differ-
ence of approximately 2-3 points, indicating that
the method for calculating the α weight could be
further enhanced in future research.

C.2 Case Study
We conduct the case study on αACD, examining
its value in cases of Known-noisy and Unknown-
gold. Table 7 shows the generations from LLAMA2
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Sample RegCls RegOpn ACD

Case Generation H(Yt) Generation H(Y c
t ) Generation αACD

Known-noisy Question: who does the voice
Moira Kelly 2.9160 Whoopi Goldberg 5.4562 Moira Kelly 0.3483of nala in the lion king?

Gold answer: Moira Kelly

Unknown-gold Question: who was the actor that
Michael Tucker 6.6748 Michael Moriarty 1.5628 Michael Moriarty 0.8103played ben stone on law and order?

Gold answer: Michael Moriarty

Table 7: Case study on the value of αACD for Known-noisy and Unknown-gold cases in LLAMA2 7B. Each value
of entropy without context (H(Yt)), entropy with context (H(Y c

t )), and αACD is extracted at the first decoding step
(t = 0).

7B and how the values of entropy from closed-
book generation (RegCls) and open-book genera-
tion (RegOpn) affect αACD at the first decoding
time step.

In the case of Known-noisy, when the model
generates the answer correctly even without the
given context, the retrieved noisy context yields rel-
atively higher entropy, resulting in αACD value of
0.3483. Conversely, in the case of Unknown-gold,
the model’s generated answer is incorrect, aligning
with a relatively high entropy value of 6.6748. In
this scenario, the retrieved gold context guides the
model to correctly answer the question, which is re-
flected in a relatively lower entropy value of 1.5628.
Thus, the value of αACD, adjusted with these en-
tropy values, yields a relatively higher weight on
the context at 0.8103.

NQ TriviaQA PopQA

LLAMA2-7B

RegOpn 45.13 68.12 33.47
CAD 29.22 48.91 25.97
MICDF 51.07 72.37 36.81
MICDD 72.92 86.33 56.04
ACD 76.72 88.79 54.58

LLAMA2-13B

RegOpn 47.18 69.77 32.53
CAD 32.04 52.48 22.66
MICDF 54.17 75.05 38.55
MICDD 76.31 88.24 59.38
ACD 75.15 88.78 56.11

LLAMA3-8B

RegOpn 46.20 68.50 33.39
CAD 32.91 50.51 23.00
MICDF 43.25 70.67 39.07
MICDD 61.18 83.70 59.80
ACD 64.14 86.59 56.87

MISTRAL-7B

RegOpn 41.04 64.57 31.03
CAD 19.17 42.63 20.80
MICDF 48.12 71.99 36.48
MICDD 69.58 86.84 57.14
ACD 70.62 89.36 53.55

Table 8: EM accuracy of Known-noisy case.
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NQ TriviaQA PopQA

LLAMA2-7B

RegOpn 47.78 68.18 74.42
CAD 43.90 62.22 66.12
MICDF 40.47 61.51 64.63
MICDD 29.82 50.43 65.17
ACD 36.03 57.10 73.41

LLAMA2-13B

RegOpn 46.52 65.09 75.04
CAD 45.77 61.07 69.43
MICDF 41.79 62.03 65.85
MICDD 30.72 47.77 64.70
ACD 36.19 53.98 72.38

LLAMA3-8B

RegOpn 48.12 68.47 74.10
CAD 48.00 60.52 70.41
MICDF 38.15 61.40 65.55
MICDD 33.33 48.45 64.81
ACD 41.67 61.24 72.52

MISTRAL-7B

RegOpn 49.57 64.82 73.09
CAD 45.38 56.02 67.81
MICDF 43.28 63.59 66.58
MICDD 32.06 54.97 66.37
ACD 37.73 57.70 73.03

Table 9: EM accuracy of Unknown-gold case.

α NQ TriviaQA PopQA

LLAMA2 13B

Max
MICDD 52.77 60.09 61.84
ACD 69.24 75.31 74.12

Avg.
MICDD 57.86 62.00 71.79
ACD 71.61 73.41 77.92

First
MICDD 54.80 46.13 68.44
ACD 73.07 77.96 80.51

LLAMA3 8B

Max
MICDD 50.75 52.59 63.72
ACD 63.12 57.82 75.00

Avg.
MICDD 51.80 52.83 67.99
ACD 64.08 59.67 75.90

First
MICDD 45.70 39.07 69.21
ACD 67.48 75.45 80.31

MISTRAL 7B

Max
MICDD 56.98 64.95 61.93
ACD 71.27 77.46 74.11

Avg.
MICDD 63.66 69.27 73.82
ACD 76.02 78.20 79.08

First
MICDD 56.84 68.98 71.73
ACD 75.75 84.11 82.07

Table 10: AUROC between α used in each method and
the noisiness of the retrieved context. The best AUROC
is in bold.
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