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Abstract

Long document question answering (DocQA)
aims to answer questions from long documents
over 10k words. They usually contain content
structures such as sections, sub-sections, and
paragraph demarcations. However, the index-
ing methods of long documents remain under-
explored, while existing systems generally em-
ploy fixed-length chunking. As they do not con-
sider content structures, the resultant chunks
can exclude vital information or include irrel-
evant content. Motivated by this, we propose
the Multi-view Content-aware indexing (MC-
indexing) for more effective long DocQA via
(i) segment structured document into content
chunks, and (ii) represent each content chunk in
raw-text, keywords, and summary views. We
highlight that MC-indexing requires neither
training nor fine-tuning. Having plug-and-play
capability, it can be seamlessly integrated with
any retrievers to boost their performance. Be-
sides, we propose a long DocQA dataset that
includes not only question-answer pairs, but
also their document structure and answer scope.
Compared to state-of-art chunking schemes,
MC-indexing has significantly increased the re-
call by 42.8%, 30.0%, 23.9%, and 16.3% via
top k = 1.5, 3, 5, and 10 respectively. These
improved scores are the average of 8 widely
used retrievers (2 sparse and 6 dense) via exten-
sive experiments.

1 Introduction

Document question answering (DocQA) is a piv-
otal task in natural language processing (NLP) that
involves responding to questions using textual doc-
uments as the reference answer scope. Conven-
tional DocQA systems (as depicted in Figure 2a)
comprise three key components: (i) an indexer
that segments the document into manageable text
chunks indexed with embeddings, (ii) a retriever
that identifies and fetches the most relevant chunks

†These authors contributed equally

Question (a): HOW TO BAKE A CHOCOLATE CAKE?
Desired Reference Text: You can bake a chocolate cake
by ... : 1. Preparation: ... 2. Gather Ingredients: ... 3. Dry
Ingredients Mixture: ... 4. Wet Ingredients Mixture: ... 5.
Combine Mixtures: ... 6. Bake the Cake: ... (500 words)
Actual Chunks Retrieved: ... You can bake a chocolate
cake by: 1. Preparation: ... (100 words)

(a) The whole section (approx. 500 words) is required to
answer the question. The retrieved chunk only has 100 words.

Question (b): WHAT IS THE HARDWARE SPECIFICATIONS
(CPU, DISPLAY, BATTERY, ETC) OF DELL XPS 13?
Desired Reference Text: ... 11th Gen Intel Core i7 ...
a 13.4-inch FHD InfinityEdge display ... battery life ...
backlit keyboard ... Thunderbolt 4 ports ... (250 words)
Actual Chunks Retrieved:
1. ... an 11th Gen Intel Core i7 processor ... 13.4-inch FHD
InfinityEdge display ... (Content: Dell XPS 13, 100 words)
2. ... new M1 Pro chip ... 14-inch Liquid Retina XDR
display showcases ... (Content: MacBook Pro, 100 words)
3. ... a powerful Intel Core M processor ... 13.3-inch 4K
UHD touch display ... (Content: Dell XPS 12, 100 words)

(b) The whole section (approx. 250 words) is required to
answer the given question related to Dell XPS 13. Missing in-
formation (e.g, model name) leads to conflicting information.

Figure 1: Bad cases from fixed-length chunking due to
relevant text missing and inclusion of irrelevant text.

to the corresponding question, and (iii) a reader that
digests the retrieved answer scope and generates an
accurate answer. Unlike the retriever (Robertson
and Zaragoza, 2009; Karpukhin et al., 2020; Khat-
tab and Zaharia, 2020a) and reader (Nie et al., 2019;
Lewis et al., 2020; Izacard and Grave, 2021) that
are vastly studied, the indexer received relatively
less attention.

Existing indexing schemes overlook the impor-
tance of content structures when dealing with long
documents, as they are usually organized into chap-
ters, sections, subsections, and paragraphs (Yang
et al., 2020; Buchmann et al., 2024), i.e., structured.
The widely used fixed-length chunking strategy can
easily break the contextual relevance between text
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chunks for long documents. Such chunking er-
rors can be further aggravated by the retriever and
the reader. Moreover, determining the boundary
between chunks can be tricky, requiring delicate
design to prevent contextual coherence disruption.
Ideally, each chunk should represent a coherent
and content-relevant textual span. Otherwise, it
can lead to the exclusion of relevant information
or the inclusion of irrelevant text, as exemplified
in Figure 1. Our empirical study on fixed-length
chunking reveals that setting the chunk length to
100 results in over 70% of long answers/supporting
evidence being truncated, i.e., incomplete. Such
incompleteness still exists at 45%, despite an in-
crease of chunk length to 200.1

Meanwhile, most existing retrieval systems rely
solely on the raw text of chunks to determine rel-
evance to a query. While raw-text-based seman-
tic embeddings effectively address queries seek-
ing specific short-form details, they often fail to
capture complete semantic essence of the text.
When inquiring high-level information, such as
event summaries or comparisons, raw-text embed-
dings may fall short. Additionally, reliance on
raw text poses practical constraints, as models e.g.,
DPR (Karpukhin et al., 2020), E5 (Wang et al.,
2022), BGE (Xiao et al., 2023) based on BERT (De-
vlin et al., 2019) typically have a token limit of 512.
This leads to potential truncation and loss of infor-
mation during the indexing process. Zhang et al.
(2022) attempt to embed the entire document with
multiple representations, however, these embed-
dings are not applicable to individual chunks.

To mitigate aforementioned gaps, we present
Multi-view Content-aware Indexing, termed MC-
indexing, for more effective retrieval over long
documents. Our method involves content-aware
chunking of structured long documents, whereby,
instead of employing naïve fixed-length chunking,
the document is segmented into section chunks.
The content-aware chunking can effective eliminate
chunking errors. Each of these section chunks is
then indexed in three different views, representing
each chunk with raw-text, a list of keywords, and
a summary. The keyword and summary view can
provide richer but more concise representation of
section chunks, thereby significantly enhancing the
semantic richness of each chunk. For retrieval,
we aggregate the top relevant chunks from each
view. Note that the entire process of MC-indexing

1More statistics of chunking errors are in Appendix A.

is unsupervised. We leverage on the strength of
existing retrievers for the embedding generation of
raw-text, keyword, and summary views.

To our best knowledge, existing DocQA datasets
do not provide content structure. Hence, we trans-
form an existing long documents dataset, namely
WikiWeb2M (Burns et al., 2023), into a QA
dataset, by adding annotations to the documents.
In addition, we complement Natural Questions
dataset (Kwiatkowski et al., 2019) with content
structure, and filter only long documents for our
experiment. Distinct from other QA datasets, our
documents are longer (averaging at 15k tokens) and
contain detailed content structure. Our contribu-
tions are in fourfold:
• We propose a long document QA dataset anno-

tated with question-answer pair, document con-
tent structure, and scope of answer.

• We propose Multi-view Content-aware indexing
(MC-indexing), that can (i) segment the long
documents according to their content structures,
and (ii) represent each chunk in three views, i.e.,
raw-text, keywords, and summary.

• MC-indexing requires neither training nor fine-
tuning, and can seamlessly act as a plug-and-play
indexer to enhance any existing retrievers.

• Through extensive experiments and analysis,
we demonstrate that MC-indexing can signifi-
cantly improve retrieval performance of eight
commonly-used retrievers (2 sparse and 6 dense)
on two long DocQA datasets.

2 Related Work

Chunking Methods. Chunking is a crucial step
in either QA or Retrieval-Augmented Generation
(RAG). When dealing with ultra-long text docu-
ments, chunk optimization involves breaking the
document into smaller chunks. Existing systems
focus on how to retrieve relevant chunks, but ne-
glecting how text content is chunked. In practice,
fixed-length chunking is a commonly used method
that is easy to be implemented. It chunks text at a
fixed length, e.g., 200 words. Sentence chunking in-
volves dividing textual content based on sentences.
Recursive chunking employs various delimiters,
such as paragraph separators, newline characters, or
spaces, to recursively segment the text. Chen et al.
(2023b) use propositions for dense retrieval, where
each proposition is a concise and self-contained fac-
toid. Raina and Gales (2024) propose to represent
each chunk as a set of atomic pieces of informa-

2674



Fixed Length
Chunking

Documents

......

Fixed Length
Snippets

Indexing

...

Retrieval

Snippet
Indexings

Retrieved
Snippet(s)

Answer
GenerationQuestion

......

Document Indexing Retrieval & Question Answering

Question

Question
Answering

(a) Conventional DocQA system: document → fixed length snippets → retrieved snippets → answer

Documents

Multi-view
Indexing

...

...

...

Keywords
view

Summary
view

Raw-text
view

......

Section Content

Retrieval

Retrieved
Content(s)

Answer
GenerationQuestion

......

QuestionMulti-view Content Indexing

Document Indexing

Content-aware
Chunking

Question
Answering

Retrieval & Question Answering

(b) MC-indexing: document → section content → multi-view content indexing → retrieved sections → answer

Figure 2: Comparison between conventional fixed length chunking and our proposed MC-indexing.

tion. However, these methods often fail to preserve
semantic integrity of critical content.

In contrast, advanced chunking methods pro-
vided by LayoutPDFReader 2, Docugami 3, and
MinerU (Contributors, 2024) are able to detect the
layout of input document and then chunk the text
by the smallest subdivision according to the docu-
ment’s content structure. We refer these techniques
as content-aware chunking (see Section 3.2), which
ensures each chunk to be semantically coherent,
thus reducing chunking error.

Long Document Retrieval. Traditional retriev-
ers retrieve short consecutive chunks from the re-
trieval corpus, limiting the overall understanding of
the context of long documents. To overcome this
drawback, several methods focusing on long docu-
ment question answering have been proposed. Nie
et al. (2022) propose a compressive graph selec-
tor network to select question-related chunks from
the long document and then use the selected short
chunks for answer generation. AttenWalker (Nie
et al., 2023) addresses the task of incorporating
long-range information by employing a meticu-
lously crafted answer generator. Chen et al. (2023a)
convert the long document into a tree of summary
nodes. Upon receiving a question, LLM navigates
this tree to find relevant summaries until sufficient
information is gathered. Sarthi et al. (2024) utilize
recursive embedding, clustering, and summarizing
chunks of text to build a tree with different lev-

2https://github.com/nlmatics/llmsherpa
3https://www.docugami.com/

els of summarization. However, existing methods
only consider the retrieval of long documents from
one view, limiting the semantic completeness and
coherence.

3 Methodology

3.1 Overview of MC-indexing

As shown in Figure 2b, MC-indexing consists of
two stages. (1) Indexing: given a input document,
we first chunk the document into content-aware
chunks (Section 3.2). We then represent each sec-
tion chunks with three distinct views: raw-text,
keywords, and summary view (Section 3.3). (2)
Retrieval and Question Answering: Given a user
query, we use existing retriever to fetch top-k rele-
vant chunks constructed by our MC-indexing. The
query along with retrieved results are fed into LLM
to generate the final answer.

3.2 Content-aware Chunking

We elaborate how Content-Aware chunking is per-
formed in order to obtain section chunks. Given
a piece of structured document (e.g., Markdown,
Latex, and HTML), we first extract the table of con-
tents of the document (or header information, in
the event where the table of content is not readily
available). Upon acquiring this information, we
identify the smallest division in the document, such
as a section, subsection, or sub-subsection, depend-
ing on the structure of the content. It is reasonable
to assume that these smallest divisions function as
atomic, coherent semantic units within the docu-
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ment. The text present in each smallest division is
the desired section chunk.

Chunking text based on the smallest division,
as opposed to fixed length chunking, ensures that
information in each chunk cannot contain infor-
mation across two different sections. Most impor-
tantly, we preserve the semantic integrity during the
chunking process, leading to each section chunk to
be an atomic and coherent semantic unit. Note that
different sections may have a hierarchical relation-
ship between them. We ignore them for now and
assume a flat structure between different chunks.

3.3 Multi-View Indexing and Retrieval
Most dense retrieval methods primarily use raw
text from each chunk to determine the relevancy of
each chunk with respect to a given query. However,
raw-text alone may not fully represent the semantic
meaning of each chunk. Hence, we propose to
use the summary view and the keyword view, to
exploit complementary semantic information under
multi-view mechanism (Dong et al., 2022).

The summary view represents each section
chunk with a succinct summary. It captures the key
information of each section. The summary can be
more easily fits within the dense retrieval model’s
maximum input limit. To compensate for the po-
tential omission of critical details in the generated
summaries, we introduce a keyword view. This
view characterizes each section chunk by a list of
essential keywords, including significant concepts,
entities, and terms from the section. The detailed
generation process of summary and keywords are
discussed in Section 5.5.

Finally, we describe the procedure for utilizing
multi-view indexing to retrieve top-k relevant sec-
tions with respect to a given question. For each
of the views, e.g., raw-text, summary, keywords,
we simply rank the sections using each view to
first retrieve the top-k

′
results. Setting k

′ ≈ 2k/3
works since empirically we expect on average a to-
tal of 3k

′
/2 unique results after deduplication (see

more details in Appendix E.1). Thereafter we feed
the retrieved results along with the given question
to LLM for answer generation (see Figure 10 for
prompt details). Note that MC-indexing is indepen-
dent of retriever selection. MC-indexing can utilize
the strengths of any existing retrievers, and further
improve their retrieval performance. Moreover, as
a plug-and-play boost for retrievers, MC-indexing
requires no additional training or fine-tuning to in-
tegrate effectively.

Statistics NQ WikiWeb2M
Test Train Test Train

questions 586 36.8k 3027 82.6k
sections/doc 34.1 33.2 75.0 42.7
tokens/doc 17.4k 17.4k 28.1k 15.2k
tokens/sec 510 525 375 356
tokens/ans 827 581 109 104

Table 1: Document statistics for NQ and WikiWeb2M.

4 Dataset Construction

In our work, we focus on long and structured docu-
ment, thus we collect dataset corpus based on the
following two factors. (1) Presence of structured
information: The content of long documents is
usually divided into multiple sections. For exam-
ple, a research paper is organized into various sec-
tions such as Abstract, Introduction, Methodology
and Conclusion. Structured documents have ex-
plicitly labelled sections along their correspond-
ing text. Most of the existing QA datasets (e.g.,
SQuAD (Rajpurkar et al., 2016), TriviaQA (Joshi
et al., 2017), Ms Macro (Bajaj et al., 2018)) do not
include the content structure of source documents.
Due to the absence of structure information, they
are not considered in our work. (2) Sufficiently
Long Document: The main focus of our study is
on context retrieval in long documents. Short doc-
uments, being within the LLM’s capacity, do not
necessitate a structured layout for question answer-
ing. Hence, to ensure the challenge of our dataset,
we select only documents with at least 15k words.

According to these criteria, we select Wikipedia
Webpage 2M (WikiWeb2M) (Burns et al., 2023)
and Natural Questions (NQ) (Kwiatkowski et al.,
2019) datasets. We discuss dataset processing and
annotations on these datasets in finer detail.

4.1 Wikipedia Webpage 2M (WikiWeb2M)

WikiWeb2M is designed for multimodal webpage
understanding rather than QA. The dataset stores
individual sections within each Wikipedia article.
Thus, on top of the structured information, we an-
notate additional question-answer pairs and their
answer scope. We utilize commercial LLM to
construct questions for selected articles (over 10k
tokens) in WikiWeb2M. To ensure that the ques-
tions rely on long answer scope span, we define
the 8 types of questions.4 For each section given,
we request LLM (using prompt shown in Figure

4Refer to Appendix B.1 for more details about the type,
definition, and statistics of question annotations.
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6) to generate (i) three questions, (ii) the corre-
sponding answers to the each question, and (iii)
the answer scope for each answer. We then eval-
uate the retrieval efficiency and answer quality of
MC-indexing by utilizing the constructed data.

Using this approach we have generated ques-
tions for 83,625 sections from 3,365 documents.
For evaluation, in order to demonstrate the effec-
tiveness of our method in long DocQA, we only
use questions generated from documents with 28k
to 30k tokens, resulting in 30 documents for evalu-
ation. The remaining questions not used in evalua-
tion are intended for training / fine-tuning.

4.2 Natural Questions (NQ)
The NQ dataset provides rendered HTML of
Wikipedia articles alongside the questions and an-
swer scope. By parsing the rendered HTML, we
are able to extract the section name and the corre-
sponding texts in each section of the document. We
augment the NQ dataset with our extracted struc-
tured information. We omit sections such as ‘See
Also’, ‘Notes’, and ‘References’, which refer as
references for the main content, to reduce noise
during retrieval. We follow NQ’s train/test split
setting in our work. However, we only retain the
question whose corresponding document has more
than 10k tokens. For dev set, there exists multiple
annotations. We only retain questions where all
annotations reside within the same section. After
filtering, we obtain 36,829 and 586 question-article
pairs for train/test respectively. Again, we empha-
sise that our approach does not require fine-tuning
and solely utilises the test-set.

4.3 Quality Assurance
In this section, we elaborate our quality assessment
and hallucinations check of LLM annotations. Re-
cent studies (Gilardi et al., 2023; Pan et al., 2023)
show that advanced commercial LLMs can outper-
form skilled crowd-workers in various annotation
tasks, offering cost efficiency and time savings.

In our work, the annotation tasks required strict
adherence to predefined rules and context. To en-
sure the reliability of the annotations and to min-
imize potential hallucinations, we implemented
a rigorous protocol. This involves (1) directing
LLM to strictly follow specific guidelines tailored
to leverage the given context effectively, and (2)
conducting a random sampling of LLM’s annota-
tions for a detailed cross-validation process. For
this cross-validation, we involve expert annotators

(authors of our work) to assess the consistency and
reliability of the annotations. Our inter-annotator
agreement scores achieve 90% in overall. This in-
dicates that the annotations are highly reliable and
align well with expert judgments.

5 Experiment

5.1 Baseline Systems

Chunking and Indexing. Our experiment consists
of 5 chunking/indexing methods as follows: (i)
Fixed-length chunking (FLC), (ii) Recursive Fixed-
length chunking, known as RAPTOR (Sarthi et al.,
2024), (iii) Atomic chunking (Raina and Gales,
2024), (iv) Content-aware chunking, and (v) our
proposed MC-indexing. Refer to Appendix C for
more implementation details.
Retrieval. We apply MC-indexing and baselines
on 2 sparse (TF-IDF and BM25) and 6 dense (DPR,
ColBERT, Contriever, E5, BGE, and GTE) retriev-
ers. The description and implementation details of
these retrievers are written on Appendix D.

5.2 Evaluation Metrics

We evaluate the performance of MC-indexing and
other baselines based on (i) recall of retrieval and
(ii) quality of answer generation.
Recall of Retrieval. The retriever scores each
chunk in the document based on its relevance to
the question, and returns the top k chunks with the
highest scores. We define recall as the proportion
of the ground truth answer scope that is success-
fully retrieved by retriever. For instance, if each
of three retrieved chunks overlaps with 10%, 50%
and 0% of the ground truth answer scope, the recall
is the sum of all individual scores to be 0.6. The re-
call gives us a clear indication of how effective our
chunking strategy has boosted the retriever. The
details of evaluating recall@top-k = 1.5, 3, 5, 10,
and the rational of choosing recall rather than pre-
cision are further elaborated in Appendix E.
Answer Generation. As the final goal of DocQA
is to generate accurate answer, it is essential for
us to evaluate the quality of final answer based on
retrieved chunks. We evaluate the answers via pair-
wise evaluation using advanced commercial LLM
as evaluator. Specifically, we prompt LLM (see
Figure 11) to score each answer. To avoid any posi-
tional bias, which may cause LLM to favor the ini-
tial displayed answer, we switch answer positions
in two evaluation rounds. The winning answer is
determined based on scores in two rounds.
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Chunking Scheme
Sparse Retrieval Dense Embedding Retrieval

AvgTF-IDF BM25 DPR ColBERT Contriever E5 BGE GTE
2M NQ 2M NQ 2M NQ 2M NQ 2M NQ 2M NQ 2M NQ 2M NQ

To
p
k
=

1
.5

FLC: 100 tokens 47.8 14.6 45.8 7.8 35.3 25.1 54.2 27.4 54.2 22.9 57.7 33.0 55.8 27.9 56.3 29.8 37.2
FLC: 200 tokens 51.1 19.4 56.1 11.7 40.6 35.7 62.0 37.1 61.9 29.8 67.0 41.9 63.2 37.3 63.7 38.1 44.8
FLC: 300 tokens 60.9 20.8 61.6 13.9 41.5 41.3 64.0 37.5 64.4 35.0 68.1 47.9 64.6 41.1 65.1 41.8 48.1
RAPTOR 15.1 20.2 16.3 13.5 14.1 21.0 22.8 37.8 23.4 38.6 25.3 38.0 25.2 38.3 25.6 36.7 25.7
Atomic Unit 51.0 30.1 49.9 38.1 28.1 39.1 45.5 36.7 48.2 35.7 48.0 42.2 46.8 38.5 45.9 43.8 41.7
Atomic Unit: Plus 73.3 47.1 75.6 51.2 54.0 54.5 65.1 51.9 71.1 51.6 73.4 58.5 69.6 55.6 71.5 60.8 61.6
Content: raw-text 59.0 22.5 66.7 19.6 49.0 39.6 67.1 43.2 72.1 34.5 76.3 43.5 72.7 45.9 74.0 47.8 52.1
Content: keyword 47.4 16.7 57.8 12.8 46.5 31.3 69.2 38.9 67.0 30.4 70.0 44.2 65.8 39.8 68.3 41.0 46.7
Content: summary 66.2 24.4 72.2 17.6 54.3 43.3 74.0 42.7 72.8 37.0 73.3 53.2 71.8 47.4 73.3 45.6 54.3
MC-indexing 79.2 40.9 83.7 36.9 67.7 58.4 85.1 62.3 83.8 52.2 87.0 69.6 83.7 63.1 84.0 62.3 68.7

To
p
k
=

3

FLC: 100 tokens 58.3 21.2 58.7 12.9 46.9 35.4 64.4 39.2 65.0 35.2 69.5 46.3 69.4 41.1 69.5 43.0 48.5
FLC: 200 tokens 67.7 30.2 70.2 21.9 55.0 48.7 70.9 50.8 73.5 43.6 77.8 56.7 75.7 52.9 77.5 54.2 58.0
FLC: 300 tokens 70.7 32.3 74.9 23.7 58.4 54.4 73.8 50.0 75.6 51.7 81.2 62.1 77.7 57.6 78.2 59.2 61.3
RAPTOR 30.1 34.8 34.2 26.3 27.1 34.3 41.4 52.1 43.0 54.5 45.0 55.2 47.8 56.2 46.1 56.1 42.8
Atomic Unit 64.4 47.1 65.6 51.2 43.1 54.5 56.6 51.9 60.8 51.6 62.4 58.5 60.0 55.6 61.6 60.8 56.6
Atomic Unit: Plus 79.8 60.7 81.7 64.7 63.9 70.2 72.5 64.7 79.0 67.6 80.1 73.2 77.7 69.0 79.2 74.1 72.4
Content: raw-text 75.2 46.8 81.4 41.6 66.5 69.5 80.0 68.9 86.1 62.6 88.1 77.3 85.6 73.9 86.4 74.4 72.8
Content: keyword 69.5 39.9 73.8 30.7 64.9 59.7 84.2 65.5 82.5 63.3 83.6 75.6 83.3 70.1 84.5 70.3 68.8
Content: summary 83.1 51.9 86.1 39.1 71.1 72.4 86.8 71.1 86.6 64.5 88.1 81.6 86.9 76.9 87.3 76.3 75.6
MC-indexing 86.6 54.1 89.3 47.6 77.2 75.1 91.0 77.1 90.5 70.8 92.8 85.3 90.6 78.8 90.8 77.8 79.7

To
p
k
=

5

FLC: 100 tokens 65.5 28.4 65.2 19.2 54.8 45.4 70.6 46.7 70.9 43.3 77.7 55.2 75.8 50.8 76.8 52.0 56.1
FLC: 200 tokens 74.1 39.2 77.2 30.1 64.9 60.2 76.1 59.5 78.9 54.0 83.6 66.3 81.6 61.6 82.4 63.9 65.9
FLC: 300 tokens 76.7 42.5 80.8 34.9 65.7 66.8 78.8 60.3 81.9 62.8 85.9 73.1 83.1 68.6 84.1 70.0 69.8
RAPTOR 47.0 46.1 48.9 36.6 37.9 47.8 56.8 62.5 60.4 64.3 60.6 63.3 62.6 69.1 60.8 70.0 55.9
Atomic Unit 71.4 59.3 73.6 61.0 51.4 66.5 62.7 60.5 69.2 64.3 71.3 70.1 67.4 64.8 69.1 70.4 65.8
Atomic Unit: Plus 83.5 72.9 85.7 71.9 71.3 79.4 77.8 75.4 83.6 77.8 84.9 82.3 82.3 78.3 84.0 81.7 79.6
Content: raw-text 80.0 63.5 85.3 53.8 74.2 80.7 84.5 78.2 90.2 74.2 91.3 87.9 89.2 82.6 89.7 84.1 80.6
Content: keyword 76.5 53.8 80.2 43.3 73.0 75.1 89.0 76.6 87.5 75.8 87.8 85.8 87.8 82.8 88.9 82.0 77.9
Content: summary 88.1 66.5 89.5 51.9 78.2 84.8 90.7 81.9 90.8 78.1 91.7 90.9 90.7 86.4 91.2 86.5 83.6
MC-indexing 90.5 67.6 93.6 60.1 81.9 87.5 93.4 85.2 92.8 82.1 94.5 91.8 93.0 89.2 93.1 88.0 86.5

To
p
k
=

1
0

FLC: 100 tokens 73.3 38.8 73.0 29.2 65.7 60.9 77.8 60.3 80.0 55.9 83.8 68.6 83.2 63.6 83.9 64.8 66.4
FLC: 200 tokens 81.1 52.4 83.5 44.2 74.9 73.8 82.5 70.8 85.5 69.8 88.4 78.7 88.2 75.2 88.5 75.8 75.8
FLC: 300 tokens 82.7 60.8 86.9 52.1 75.6 79.7 85.7 75.8 87.9 77.6 89.9 85.1 89.0 83.3 89.9 81.1 80.2
RAPTOR 67.8 63.9 69.2 63.9 56.9 67.5 74.9 78.0 79.1 81.0 79.0 79.7 81.2 83.3 79.4 83.7 74.3
Atomic Unit 78.1 72.9 79.9 71.9 60.9 79.4 70.9 75.4 77.1 77.8 78.3 82.3 76.0 78.3 77.0 81.7 76.1
Atomic Unit: Plus 88.9 85.5 90.2 85.7 81.4 88.5 85.2 87.7 90.3 88.7 90.3 92.1 89.0 89.8 89.6 92.0 88.4
Content: raw-text 85.3 82.4 89.3 74.2 83.5 89.9 90.2 90.6 93.6 88.7 94.3 96.2 92.6 93.7 93.7 93.0 89.5
Content: keyword 84.5 76.6 86.8 67.2 82.3 89.8 92.9 90.8 91.9 89.2 93.0 94.4 93.0 92.2 93.7 92.5 88.2
Content: summary 92.9 84.5 93.3 76.8 86.9 94.2 94.3 92.2 94.4 90.9 95.2 96.4 94.1 94.5 94.6 94.5 91.8
MC-indexing 94.5 85.7 95.3 78.2 88.8 95.0 96.0 94.8 95.8 92.7 96.5 97.2 95.3 95.4 96.0 95.4 93.3

Table 2: Main results: recall of ground truth span. The best score is in boldface and second best score is underlined.
Last column is the average scores of all previous columns.

For Score-based evaluation, each answer’s scores
from the two rounds are combined. The answer
with higher overall score is the winner. The re-
sult is a tie if both answers have same score. For
Round-based evaluation, the scores from each
round are compared, and the winner of each round
is determined by the higher score. The overall win-
ner is the one that wins both rounds. In cases where
each answer wins a round, or answers tie in both
rounds, the result is marked as a tie.

5.3 Main Results
We display our main result in Table 2 and sum-
marise the our analysis with several key observa-
tions as follows: (1) The size of chunk significantly
impacts the recall. As shown in Table 2, the im-

provement from FLC-100 to FLC-300 is around
10-15%. We believe that larger chunks are able
to retain more information of the answer scope
in a single chunk, which lead to better prediction
from the retrieval. (2) Each view of multi-view
strategy tends to help retrieval achieves a higher re-
call than FLC. Among each individual view, utiliz-
ing summary view generate the best results, while
raw-text view generate the second best results. De-
spite keywords view down-performs overall due
to text having poor semantic structure, we observe
that keyword is able to solve some tasks which the
other two view unable. This contributes to a posi-
tive impact (see Section 5.5.1). (3) The multi-view
strategy, which consolidates top-ranked results of
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Figure 3: The evaluation results of answer generation.

raw-text, keywords, and summary views, can sub-
stantially outperform all baselines. We believe the
improvement is mainly contributed by the content-
aware chunking and multi-view indexing strategy.
Different views are able to rank the relevance of
sections to question from different perspectives,
thus providing complimentary information.

Considering that recall at top-k chunks tends to
favor longer chunks, we conduct experiments by
standardizing the context length across different
chunking schemes (refer to Appendix F).

5.4 Evaluation of Answer Generation

We compare the performance of MC-indexing
against FLC-300 via the relevance of generated
answers. For our experiments, we employ vari-
ous retrieval methods, including BM25, DPR, Col-
BERT, and BGE. For each of MC-indexing and
FLC-300, we first use these retrievers to sample
the sections related to the question. Given the re-
trieved sections, we proceed to generate answers
using the prompt provided in Figure 10. The gen-
erated answers are then compared using pairwise
comparison (see Section 5.2).

The results of this comparative assessment are
displayed in Figure 3. We find that MC-indexing
consistently demonstrates higher win rates than
loss rates against FLC-300 across all retrievers and
both evaluation metrics.

Positional bias may cause LLM to assign higher
scores to the first answer in the prompt. Unlike
score-based evaluation, which takes into account
the magnitude of score differences, round-based
evaluation is purely predicated on the number of
rounds won by each answer. Consequently, we
anticipate that the round-based evaluation will yield
more ties than the score-based evaluation.

5.5 Multi-view Indexing Strategy

Multi-view indexing involves two well-studied
NLP tasks: text summarization and keywords ex-

Multi-view via Top1.5 Top3 Top5 Top10 Avg

B
M

25

Proprietary 83.7 89.3 93.6 95.3 90.5
Llama2-7B 79.7 87.4 89.3 93.1 87.4
Mistral-7B 80.3 89.3 93.6 93.6 89.2

D
PR

Proprietary 67.7 77.2 81.9 88.8 78.9
Llama2-7B 69.1 77.1 82.1 89.4 79.4
Mistral-7B 68.1 76.0 82.3 89.4 78.9

C
ol

B
’ Proprietary 85.1 91.0 93.4 96.0 91.4

Llama2-7B 84.7 89.6 93.1 96.0 90.9
Mistral-7B 83.6 88.5 92.1 95.8 90.0

E
5

Proprietary 87.0 92.8 94.5 96.5 92.7
Llama2-7B 87.6 91.9 94.1 96.2 92.4
Mistral-7B 86.9 91.8 94.2 96.2 92.3

G
T

E Proprietary 84.0 90.8 93.1 96.0 91.0
Llama2-7B 84.6 90.7 93.0 95.7 91.0
Mistral-7B 84.2 90.1 92.3 95.7 90.6

Table 3: Using different LLMs for summary generation
and keywords extraction during multi-view indexing.

traction. In this section, we first conduct the ab-
lation study to explore the significance of each
view. We then elaborate on using different LLMs
for summary and keywords generation. Finally, we
report the computational efficiency of constructing
summary and keywords during indexing.

5.5.1 Ablation Study

We conducted an in-depth study by ablating each
view from our multi-view indexing strategy and
measuring the performance by recall. From the
results presented in Table 4, we observe that: (1)
Removing the summary view leads to the most sig-
nificant decrease in performance, ranging between
2 and 8%. (2) Eliminating the raw-text view re-
sults in the second-most considerable performance
drop, varying between 2 and 5%. (3) Disregard-
ing the keywords view contributes to a decrease of
performance ranging from 1 to 4%.

Thus, we infer that the impact of each view on
the recall performance of retrieval, from the most to
the least significant, is as follows: summary view,
raw-text view, and keywords view. In conclusion,
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Chunk Scheme Top1.5 Top3 Top5 Top10 ∆
T

F-
ID

F MC-indexing 79.2 86.6 90.5 94.5 -
- w/o raw text 71.2 82.6 87.4 93.3 -4.1
- w/o keyword 76.8 85.6 89.1 93.8 -1.4
- w/o summary 68.2 77.8 82.1 87.9 -8.7

B
M

25

MC-indexing 83.7 89.3 93.6 95.3 -
- w/o raw text 78.2 85.9 91.0 93.8 -3.2
- w/o keyword 81.6 87.8 92.1 94.0 -1.6
- w/o summary 74.9 83.8 88.4 91.5 -5.8

D
PR

MC-indexing 67.7 77.2 81.9 88.8 -
- w/o raw text 61.3 72.0 77.6 86.1 -4.7
- w/o keyword 63.6 73.9 79.2 86.7 -3.0
- w/o summary 59.3 69.9 75.6 84.2 -6.7

C
ol

B
E

R
T MC-indexing 85.1 91.0 93.4 96.0 -

- w/o raw text 82.3 89.5 91.8 95.3 -1.7
- w/o keyword 82.0 88.6 91.3 94.4 -2.3
- w/o summary 78.4 86.3 90.1 94.1 -4.2

C
on

tr
ie

ve
r MC-indexing 83.8 90.5 92.8 95.8 -

- w/o raw text 79.1 87.4 90.4 94.7 -2.8
- w/o keyword 81.5 89.0 91.5 95.0 -1.5
- w/o summary 78.9 87.3 90.6 94.4 -2.9

E
5

MC-indexing 87.0 92.8 94.5 96.5 -
- w/o raw text 80.6 89.0 92.1 95.4 -3.4
- w/o keyword 84.6 91.3 93.3 96.0 -1.4
- w/o summary 83.9 90.3 92.8 95.5 -2.1

B
G

E

MC-indexing 83.7 90.6 93.0 95.3 -
- w/o raw text 78.3 87.0 90.5 94.1 -3.2
- w/o keyword 81.0 89.0 91.3 94.3 -1.8
- w/o summary 79.7 88.1 91.1 94.2 -2.4

G
T

E

MC-indexing 84.0 90.8 93.1 96.0 -
- w/o raw text 79.6 87.7 90.6 94.5 -2.9
- w/o keyword 81.8 89.2 91.8 94.7 -1.6
- w/o summary 80.4 88.5 91.4 94.5 -2.3

Table 4: Ablation study of recall on WikiWeb2M, ∆
refers to the average decrease of top 1.5, 3, 5, and 10.

each view plays a crucial role in improving recall
performance. More ablation results on NQ dataset
are shown in Appendix G.

5.5.2 Multi-view Indexing via various LLMs
Firstly, we apply the proprietary LLM to gener-
ate summary and keywords. We acknowledge
that using such approach on larger scale of long
documents could be cost-intensive. Hence, we
have attempted using a far less cost-intensive open-
sourced models (e.g., Llama2-7B and Mistral-7B)
instead. Our findings suggest that open-sourced
models are capable of generating reliable summary
and keywords. The final results, as shown in Ta-
ble 3, indicate that using Llama2-7B and Mistral-
7B for multi-view indexing is nearly as effective as
using proprietary LLM model.

5.5.3 Efficiency of Multi-view Indexing
we report the computational overhead and effi-
ciency of both proprietary LLM and open-sourced
model (Mistral-7B). Note that both input and out-
put of MC-indexing can influence the computa-

Task of MC-indexing avg #words Latency
input output Proprietary Mistral

Summarization 400 172 8 sec 18 sec
Keywords Extraction 400 80 10 sec 5 sec

Table 5: Computational efficiency of MC-indexing. The
input consists of the prompt instructions and raw text of
the chunk, where output refers to LLM generation.

tional overhead. We sample 1,000 sections from
WikiWeb2M and NQ dataset, and report the aver-
age approximation of the details in Table 5. Mistral-
7B is inferenced using a single V100 graphic card
with batch size set to 1.

We want to highlight that the inference speed of
Mistral-7B can be significantly shortened by using
(i) latest optimization technique such as paged at-
tention (Kwon et al., 2023) and flash attention (Dao
et al., 2022), and (ii) higher performance graphic
cards such as A100, H100, and H200, and (iii)
smaller expert model specifically distilled for sum-
marization and keywords extraction.

5.6 Does MC-indexing improve FLC?

MC-indexing improves the performance of FLC by
(i) incorporating document structures and (2) using
multi-view indexing. In this section, we discuss
results (Table 6) of applying MC-indexing on FLC
(300 tokens). More results of MC-indexing impact
on FLC (200 tokens) are shown in Table 9.

Content-awareness. We evaluate the capability
of content awareness in boosting FLC. We first seg-
ment the document into section chunks, and further
apply FLC on each section. Hence, a section may
have multiple chunks but each chunk is only be as-
sociated with a section. In this way, content-aware
chunking reduces possibility of the ground truth
answer scope being split, i.e., chunking error (see
Appendix A). As shown in Table 6, given same
chunk length, FLC improves by 3-8% after content
information is incorporated.

Multi-view Indexing. We evaluate if MC-
indexing can work well on unstructured documents.
When content structure is no longer available, we
first apply FLC rather than content-aware chunk-
ing on unstructured documents. Each fixed length
chunk is then indexed with our multi-view indexing
strategy for more efficient retrieval. We observe
that the multi-view indexing significantly improves
the performance of FLC by 3-7%, as shown in Ta-
ble 6. This result indicates the effectiveness of
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Chunk Scheme Top1.5 Top3 Top5 Top10 ∆
T

F-
ID

FFLC: 300 tokens 60.9 70.7 76.7 82.7 -
- w/ content 64.5 76.2 80.3 85.2 +3.8
- w/ multi-view 69.5 75.2 82.6 88.8 +6.3

B
M

25

FLC: 300 tokens 61.6 74.9 80.8 86.9 -
- w/ content 66.3 76.4 81.1 85.4 +1.3
- w/ multi-view 69.9 79.3 84.3 89.2 +4.6

D
PR

FLC: 300 tokens 41.5 58.4 65.7 75.6 -
- w/ content 48.8 61.8 69.4 78.5 +4.3
- w/ multi-view 50.1 60.8 70.0 79.0 +4.7

C
ol

B
’FLC: 300 tokens 64.0 73.8 78.8 85.7 -

- w/ content 73.0 82.5 87.1 91.8 +8.0
- w/ multi-view 72.7 81.7 85.7 91.9 +7.4

C
on

t’FLC: 300 tokens 64.4 75.6 81.9 87.9 -
- w/ content 73.5 85.0 89.0 93.0 +7.7
- w/ multi-view 69.3 80.0 86.6 91.1 +4.3

E
5

FLC: 300 tokens 68.1 81.2 85.9 89.9 -
- w/ content 75.9 86.9 90.4 93.7 +5.5
- w/ multi-view 74.2 83.7 88.8 93.5 +3.8

B
G

EFLC: 300 tokens 64.6 77.7 83.1 89.0 -
- w/ content 75.1 85.5 89.5 92.8 +7.1
- w/ multi-view 69.3 79.7 86.5 92.2 +3.3

G
T

EFLC: 300 tokens 65.1 78.2 84.1 89.9 -
- w/ content 75.7 87.1 91.2 95.1 +8.0
- w/ multi-view 70.4 81.8 87.7 93.2 +4.0

Table 6: Using MC-indexing on FLC 300 tokens, ∆
refers to the average increase of top 1.5, 3, 5, and 10.

MC-indexing on unstructured documents.

5.7 Can Long-context LLM resolve Long
Document QA?

Recently, there is a growing interest in utilizing
LLMs for QA tasks (Chen et al., 2023a; Sarthi
et al., 2024). However, feeding LLM directly with
long documents are infeasible due to its token limit
constraints. For instance, LLaMA (Touvron et al.,
2023a), LLaMA 2 (Touvron et al., 2023b), and
Mistral (Jiang et al., 2023) have token limit of to
2k, 4k, and 8k, respectively, which is too less for
long documents. Furthermore, Liu et al. (2023)
indicates that LLMs struggle in retaining and ref-
erencing information from earlier portions of long
documents. In this section, we test if proprietary
LLMs (e.g., GPT-3.5 and 4), can effectively under-
stand long documents. We have opted for Span-QA
setting to simplify the process, where gold answer
is a span of raw text from the input document. We
then measure the precision, recall, and F1 score of
the retrieved span based on gold answer.

GPT-3.5 takes in document with 15k tokens as

(a) Span-QA using GPT3.5 (b) Span-QA using GPT4

Figure 4: GPT on span-QA using Full Doc vs Section

context, while GPT-4 taking longer documents with
30k tokens. They are given 2,000 questions to an-
swer, which questions are all sourced from our
Wiki-2M dataset. On the other hand, we use only
the section (370 tokens in average) containing gold
answers as context to GPT, to observe if GPT per-
forms more proficiently on shorter answer scope.
As depicted in Figure 4, our research indicates that
the performance of GPT-3.5 and GPT-4 in span-
based QA deteriorates substantially when given
long documents as compared to a specific section.
When GPT-4 is applied to documents of around 30k
words, the recall is a mere 52.3%. This score is far
lower than that of the existing index-then-retrieve
systems, which can yield a recall of 90-97%.

6 Conclusion

In this paper, we propose a new approach: Multi-
view Content-aware indexing (MC-indexing) for
more effective long document question answer-
ing. Specially, we propose a long document QA
dataset which annotates not only the question-
answer pair, but also the document structure and
the document scope to answer this question. We
propose a content-aware chunking method to seg-
ment the document into content chunks according
to its organizational content structure. We design
a multi-view indexing method to represent each
content chunk in raw-text, keywords, and summary
views. Through extensive experiments, we demon-
strate that content-aware chunking can eliminate
chunking errors, and multi-view indexing can sig-
nificantly benefit long DocQA. For future work,
we would like to explore how to use the hierarchi-
cal document structure for more effective retrieval.
Moreover, we would like to train or finetune a re-
triever that can generate more fine-grained or nu-
anced embeddings across multiple views.
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Limitations

Our method considers the structured format of a
document. When the document lacks clear indi-
cations of content structure, applying our content-
aware chunking technique becomes challenging.
However, we would like to emphasize that our work
focuses on structured indexing and retrieval of long
documents, and long documents usually have struc-
tured content to be utilised. It is unusual to en-
counter lengthy and poorly structured documents
in which the authors have written tens of thousands
of words without providing clear document section
or chapter demarcations.

To study the usability of our method to unstruc-
tured documents, we apply the multi-view index-
ing on fixed-length chunking (FLC) documents, as
mentioned in Section 5.6. We observe that multi-
view indexing significantly improves FLC by 3-7%.
Consequently, despite some performance reduc-
tion in MC-indexing when applied to unstructured
documents, it substantially improves existing FLC
methods.

Potential Risks

In this work, we utilize two existing datasets:
Wikipedia Webpage 2M (WikiWeb2M) (Burns
et al., 2023) and Natural Questions (NQ)
(Kwiatkowski et al., 2019) datasets. Both datasets
are from public resource, Wikipedia, which we be-
lieve the potential risk of malicious or unintended
harmful content is minimal.
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A Chunking Error

Chunking is a technique in natural language pro-
cessing (NLP) and text analysis. It helps dis-
sect large text into small, manageable segments
or chunks (Dong et al., 2023), making it easier to
process and analyze large volumes of data.

As previously discussed in Section 1, FLC tends
to cause significant chunking errors. Such chunk-
ing errors can significantly affect the performance
of the quality of final answer. In this section, we
elaborate the chunking errors from two fixed-length
chunking strategies on two datasets.

Firstly, the existing FLC method is content-
agnostic. This is due to the fact the method di-
vides the entire document into fixed-length chunks,
which may inadvertently break a coherent section
into separate parts. Alternatively, we recommend a
different FLC approach that segments each section
of the document into fixed-length chunks. This
would ensure that a chunk doesn’t span across two
different sections, thereby more robust to chunking
errors. In summary, our proposed content-aware
chunking strategy ensures that no chunk extends
over two sections, effectively reducing chunking er-
rors. Results shown in Table 7 highlight the impact
of content-aware chunking on chunking error.
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Figure 5: Pie chart of question type distribution.

B WikiWeb2M: More Annotation Details

B.1 Question Generation for WikiWeb2M

We aim to generate question that tends to rely on a
long answer scope. Typically, the length of answer
scope ranges from 50 to 500 tokens. We define
questions of the following 8 types:
• Narrative and Plot Details: inquire specific de-

tails or sequence of events in a narrative (e.g., a
story, movie, or historical account).

• Summarization: require the summarization of a
long passage, argument, or complicated process.

• Inferential and Implied: depend on understand-
ing subtleties and reading across a long passage.

• Information Synthesis: inquire the synthesis of
information dispersed across a long passage.

• Cause and Effect: understand the causal relation-
ship between events in a long passage.

• Comparative: ask for comparisons between dif-
ferent ideas, characters, or events within a text.

• Explanatory: ask for explanations of complex
concepts or processes that are described in detail.

• Themes and Motifs: consider entire text to iden-
tify patterns and conclude on central messages.

The distribution of generated question types is
shown in Figure 5.

B.2 Question Answer Annotation for
WikiWeb2M

For each given section, we request proprietary
LLM to generate 3 questions, the corresponding
answers and identify the raw text that maps to the
answer. In our prompt from Figure 6, we provide
LLM the raw text of the given section, the descrip-
tion of the 8 question types from Appendix B.1 and
our designed prompt instruction. Our prompt in-
struction ensures LLM to generate the continuous

context sentences to sufficiently answer the ques-
tion. The answer scope is then used to evaluate the
retrieval efficiency of MC-indexing.

C Implementation Details of
Chunking/Indexing Baselines

C.1 Fixed-length chunking (FLC)

We firstly segment the document into individual
sentences using NLTK library 5. This is to avoid
the first and last sentence in each chunk being trun-
cated. Subsequently, we merge consecutive sen-
tences into fixed length chunks, with approximately
100, 200 or 300 tokens. Note that in order to pre-
vent chunking sentences in the middle, the number
of tokens per chunk is not exactly same to the pre-
defined length.

C.2 Recursive Fixed-length chunking

We follow Sarthi et al. (2024) to implement RAP-
TOR scheme, which consist of the document index-
ing process (recursive fixed-length chunking) and
retrieval process (hierarchical tree traversal). The
implementation is based on the source code, which
is available on GitHub.6.

Document Indexing. The document is divided
into chunks of 300 tokens. The chunks are
then used to construct RAPTOR tree construction,
which the procedures are as follows: the chunks
are initialised as the leaf nodes of the tree. Each
node is embedded using a chosen dense embedding
model, and clustered based on Gaussian Mixture
Models (GMMs). The nodes in each cluster are
summarised using large language model and re-
embedded. The summarised text and embedding
of the each cluster is initialised as node, a layer
above the leaf node. The clustering and embedding
process are repeated until the number of nodes
are too less to be clustered. For ColBERT, tree
construction is not possible. This is due to the
fact ColBERT relies on post interactions between
the embedding of both query and chunk. In other
words, the embedding of the chunk is dependent
to query and could not be constructed standalone.
Sparse retrieval does not have embedding model,
hence making tree construction not possible. For
these three experiments, we used text-embedding-
ada-002 to embed the chunks and construct the
tree.

5https://www.nltk.org/api/nltk.tokenize.html
6https://github.com/parthsarthi03/raptor
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Chunk Retrieval. For tree retrieval, there are
two methods available, namely tree traversal and
collapsed tree respectively. We choose the tree
traversal approach as it allows retrieving a fixed
number of leaf nodes, which is required to calcu-
late recall of retrieval for each top-k (see Section
5.2). Given that our top-k sampling is k, and the
tree has n layers, the steps for tree traversal are
as follows: the query is embedded with the same
embedding model used for tree construction. The
cosine similarity between the embedding of query
and nodes are computed. k nodes are sampled in
the root layer based to form set Si. The cosine simi-
larity for each child node in Si are calculated and k
nodes are sampled to form set Si+1. The iteration
continues until it reaches the last layer of the tree,
which Sn consists of k number of leaf nodes. We
calculate the recall of retrieval based on the original
token positions of the corresponding chunk of the
retrieved leaf nodes. For k = 1.5, we set k as 1 for
half of the query and k as 2 for the other half. As it
is not possible to embed the query using sparse re-
trieval, we modify the sampling procedure of every
layer based on the retrieval relevance score of the
text in each nodes given the query.

C.3 Atomic Unit Chunking

The atomic unit chunking scheme loosely fol-
lows text chunking ideas described in (Raina and
Gales, 2024), with some modification to ensure
fair comparison with our models and various base-
line methodologies. The procedures of atomic unit
chunking are as follows: we first split each long
text documents into 2000-token segments using
the NLTK library. Then a LLM is instructed to
split each 2000-token segment into atomic chunks,
where the prompt template is given in Figure 12.

Atomic Unit: Plus. Since the lengths of atomic
unit chunking is usually much shorter than the
section length in NQ and WikiWeb2M, for abal-
ation purposes controlling for chunk length, we
also increased number of passages to be retrieved
under the Atomic Unit: Plus such that the number
of tokens retrieved is close to (top-k retrieved ×
average number of token per section). Note that
since the average length of chunks produced by
atomic chunking is 94 and 233 for WikiWeb2M
and NQ respectively, and average number of tokens
in each section produced by raw-text chunking is
375 and 510 for WikiWeb2M and NQ respectively,
the number of chunks retrieved in Atomic Unit :

Plus is 4 times and 2 times in WikiWeb2M and
NQ respectively the number of chunks retrieved in
Atomic Unit chunking scheme.

Atomic Chunking Details. Since the LLM
might not faithfully reproduce sentences in each
section (e.g. leaving out certain words, sentences;
paraphrasing content etc.), we map contiguous sen-
tences, where each sentence is tokenized using
NLTK, from the original document to correspond-
ing sections produced by the LLM. These contigu-
ous subsequence of sentences would form the pas-
sages to be retrieved. We describe the procedures
as follows: Let the i-th section generated by the
designated LLM be denoted by Si and the j-th orig-
inal sentence in the original text be denoted by yj
where the indices are ordered according to their
order of appearance. We first breakdown each sec-
tion Si into sentences using NLTK where the k-th
sentence from the generated section Si is denoted
by si,k. For each section Si, we define the distance
between a sentence yj and the section generated by
the LLM to be

D(yj , Si) = min
si,k∈Si

d(yj , si,k)

where d is the Levenshtein Distance7 function be-
tween two strings (note the abuse of notation here
for Si is not strictly a set of sentences). Start-
ing from i, j = 1, we find the first j1 such that
D(yj1 , S1) > D(yj1 , S2). All sentences y1 to
yj1−1 will first be mapped to S1. Similarly, we
recursively define ji ≥ ji−1 to be the first index
such that D(yji , Si) > D(yji , Si+1). Thus the
contiguous sequence of sentences yji , . . . yji+1−1

forms the i + 1-th section which we concatenate
to form a atomic semantic unit to be retrieved for
atomic chunking.

C.4 Content-aware chunking.
The content-aware chunking methods are variants
of our proposed MC-indexing. We first split the
long documents as section chunks. Hence, the
chunking process is content-aware, and each chunk
is a semantic coherent unit. Differing from MC-
indexing, we utilize only a single view from raw-
text, keywords, and summary views for retrieval.

D Retrieval Models

In our experiments (section 5), we implement 2
sparse retrievers and 6 dense retrievers on our pro-

7https://en.wikipedia.org/wiki/Levenshtein_
distance
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posed MC-indexing and other chunking/indexing
baselines. To facilitate understanding of these re-
trieval models, we first introduce the background of
these commonly used retrievers in Appendix D.1.
We then elaborate the implementation details in
Appendix D.2.

D.1 Introduction of Retrievers
Current approaches to content retrieval are pri-
marily classified into sparse and dense retrieval.
There are two widely-used sparse retrieval meth-
ods, namely TF-IDF (Salton et al., 1983) and
BM25 (Robertson et al., 1994). TF-IDF calculates
the relevance of a word to a document in the corpus
by multiplying the word frequency with the inverse
document frequency. BM25 is an advancement of
TF-IDF that introduces nonlinear word frequency
saturation and length normalization to improve re-
trieval accuracy.

Recently, dense retrieval methods have shown
promising results, by encoding content into high-
dimensional representations. DPR (Karpukhin
et al., 2020) is the pioneering work of dense vec-
tor representations for QA tasks. Similarly, Col-
BERT (Khattab and Zaharia, 2020b) introduces an
efficient question-document interaction model, en-
hancing retrieval accuracy by allowing fine-grained
term matching. Contriever (Izacard et al., 2022)
further leverages contrastive learning to improve
content dense encoding. E5 (Wang et al., 2022) and
BGE (Xiao et al., 2023) propose novel training and
data preparation techniques to enhance retrieval
performance, e.g., consistency-filtering of noisy
web data in E5 and the usage of RetroMAE (Xiao
et al., 2022) pre-training paradigm in BGE. More-
over, GTE (Li et al., 2023) integrates graph-based
techniques to enhance dense embedding.

D.2 Implementation Details of Retrievers
Sparse Retrievers. In our experiments (sec-
tion 5), we implement 2 sparse retrievers that are
BM25 and TF-IDF (Term Frequency - Inverse
Document Frequency). Note that when calculating
scores for BM25 and TF-IDF for each question, we
restrict the set of corpus to chunks appearing in the
sole relevant Wikipedia article. For BM25, we use
the code from github repository https://github.
com/dorianbrown/rank_bm25. For TF-IDF we
use the TF-IDF Vectorizer from scikit-learn library
https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.
text.TfidfVectorizer.html. We briefly de-

scribe how we rank document using the TF-IDF
vectorizer here. First, given the corpus (i.e. the
chunks appearing in the sole relevant Wikipedia
article) we convert each chunk into a sparse vector
with each entry indicating the TF-IDF score of
each word appearing in the chunk. Next, we
convert the question into a sparse vector. Finally to
rank each chunk, we calculate the cosine similarity
between the question sparse vector and sparse
vectors of each individual chunk.

Dense Retrievers. In our experiments (section 5),
we implement 6 types of dense embedding re-
trievers. The dense retrieval models deployed are
namely DPR (Dense Passage Retriever), ColBERT,
Contriever, E5, BGE and GTE. These models use
the WordPiece tokenizer from BERT and also in-
herit the maximum input length of 512 tokens from
BERT (Devlin et al., 2019). We use pre-trained
checkpoints available on HuggingFace 8; the spe-
cific checkpoint information can be found in Ta-
ble 8 alongside other configuration details. Addi-
tionally, we make use of the sentence-transformer
library9 when deploying E5, BGE and GTE.

E Evaluation Metric Details

E.1 Top k Selection of MC-indexing

Due to the fact MC-indexing combines the results
from three views, we reduce the number of chunks
retrieved from each view to have a fair compari-
son with single-view baselines. We describe the
procedure for utilizing multi-view indexing to re-
trieve top-k relevant chunks with respect to a given
question in Section 3.3. For each of the views, e.g.,
raw-text, summary, keywords, we first retrieve the
top-k

′
chunks, where k

′ ≈ 2k/3. In this way, we
empirically obtain an average a total of 3k

′
/2 ≈ k

unique chunks after deduplication.

For top k = 3,5,10 evaluation. Specifically,
when comparing with top k = 3 single-view base-
lines, MC-indexing will only retrieve top k = 1
or 2 from each view. By combining the chunks
from each view and remove overlapping ones, MC-
indexing manages to retrieve an approximate of
3 chunks in total. Similarly for top k = 5, our
method retrieves only 3 chunks form each view.
For top k = 10, our method retrieves 6 or 7 chunks
from each view.

8https://huggingface.co/
9https://www.sbert.net/
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Model Dimension Base Model HuggingFace Checkpoint

DPR 768 bert-base https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base
https://huggingface.co/facebook/dpr-question_encoder-multiset-base

ColBERT 768 bert-base https://huggingface.co/colbert-ir/colbertv2.0
Contriever 768 bert-base https://huggingface.co/facebook/contriever-msmarco
E5 1024 bert-large https://huggingface.co/intfloat/e5-large-v2
BGE 1024 RetroMAE https://huggingface.co/BAAI/bge-large-en-v1.5
GTE 1024 bert-large https://huggingface.co/thenlper/gte-large

Table 8: Implementation details for Dense Models

Chunk Scheme Top1.5 Top3 Top5 Top10 ∆

T
F-

ID
FFLC: 200 tokens 51.1 67.7 74.1 81.1 -

- w/ content 58.9 72.9 77.8 82.7 +4.6
- w/ multi-view 64.1 74.3 80.1 85.7 +7.5

B
M

25

FLC: 200 tokens 56.1 70.2 77.2 83.5 -
- w/ content 60.6 71.7 77.2 82.4 +1.2
- w/ multi-view 64.3 74.9 80.1 86.0 +4.6

D
PR

FLC: 200 tokens 40.6 55.0 64.9 74.9 -
- w/ content 45.5 61.6 69.5 78.6 +4.9
- w/ multi-view 49.2 58.9 66.1 76.7 +3.9

C
ol

B
’FLC: 200 tokens 62.0 70.9 76.1 82.5 -

- w/ content 71.0 81.8 85.9 90.7 +9.5
- w/ multi-view 68.9 79.2 85.2 90.0 +8.0

C
on

t’FLC: 200 tokens 61.9 73.5 78.9 85.5 -
- w/ content 70.1 83.4 87.6 90.6 +7.9
- w/ multi-view 66.1 77.0 83.6 89.4 +4.1

E
5

FLC: 200 tokens 67.0 77.8 83.6 88.4 -
- w/ content 73.6 84.3 89.1 92.9 +5.8
- w/ multi-view 70.9 81.4 87.4 91.9 +3.7

B
G

EFLC: 200 tokens 63.2 75.7 81.6 88.2 -
- w/ content 71.9 82.7 87.1 91.3 +6.1
- w/ multi-view 67.6 77.8 84.9 92.0 +3.4

G
T

EFLC: 200 tokens 63.7 77.5 82.4 88.5 -
- w/ content 72.4 85.2 89.5 93.4 +7.1
- w/ multi-view 67.9 80.5 86.0 91.1 +3.4

Table 9: Using MC-indexing on FLC 200 tokens, ∆
refers to the average increase of top 1.5, 3, 5, and 10.

For top k = 1.5 evaluation. To evaluate the per-
formance of our method in greedy ranking, our
method retrieves exactly 1 chunk from each view.
This leads to 1.5 chunks being retrieved per query
after the deduplicating passages retrieved across
different views. To ensure a fair and consistent
comparison with baselines, we adapt our evaluation
strategy. We implement a retrieval approach where,
for each query, exactly one chunk is retrieved for
half of the questions and two chunks for the other
half, thus averaging 1.5 chunks overall.

Method Top1.5 Top3 Top5 Top10

MC-indexing 68.7 79.7 86.5 93.3
FLC-100 56.8 67.3 76.5 84.8
FLC-200 54.3 64.7 75.6 84.2
FLC-300 53.0 62.2 73.7 83.5

Atomic-Plus 61.6 72.4 79.6 88.4

Table 10: Recall at top-k with same context length. The
value is reported as the average score of 8 retrievers on
2 datasets. which has same setting as main experiments
(refer to Section 5.3 and Table 2).

E.2 Rationale of using recall@top-k
When evaluating performance of the retrieval sys-
tem, precision is a frequently used measure which
is used in research (Lee et al., 2021; Chen et al.,
2023b). Our decision to use recall as the primary
metric stems from capabilities of contemporary
LLMs used in QA systems.

In QA systems where the context length for an-
swer generation is constrained, such as those using
BERT (Devlin et al., 2019) with a token limit of
approximately 512, precision indeed becomes a
critical factor due to the limited amount of text that
can be processed at once. In such scenarios, en-
suring that the retrieved context contains precise,
relevant information is paramount.

However, modern LLMs (Touvron et al.,
2023a,b; Jiang et al., 2023) can process signifi-
cantly longer context, up to thousands of tokens,
thus making it feasible to prioritize completeness
and comprehensiveness over precision of informa-
tion retrieved. In particular, selecting recall as a
metric can better reflect the retriever’s effectiveness
in real-world applications where a complete, com-
prehensive retrieval can enhance a LLM’s answer
quality in Retrieval-augmented generation (RAG).

F Recall at top-k retrieval with same
context length

Intuitively, recall at top-k chunks tends to favor
longer chunks, as longer chunks are more likely to
contain the relevant information. To address this
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Chunk Scheme Top1.5 Top3 Top5 Top10 ∆
T

F-
ID

FMC-indexing 40.9 54.1 67.6 85.7 -
- w/o raw text 32.4 49.5 63.5 83.8 -4.8
- w/o keyword 34.5 51.2 64.5 84.3 -3.4
- w/o summary 32.4 47.6 60.1 82.6 -6.4

B
M

25

MC-indexing 36.9 47.6 60.1 78.2 -
- w/o raw text 25.9 41.6 52.0 72.9 -7.6
- w/o keyword 30.4 43.2 55.1 74.2 -5.0
- w/o summary 27.6 41.6 54.4 72.7 -6.6

D
PR

MC-indexing 58.4 75.1 87.5 95.0 -
- w/o raw text 53.1 71.0 81.7 93.5 -4.2
- w/o keyword 52.7 71.2 82.6 93.3 -4.0
- w/o summary 49.8 69.1 81.2 90.5 -6.4

C
ol

B
E

R
TMC-indexing 62.3 77.1 85.2 94.8 -

- w/o raw text 54.8 71.7 81.4 93.5 -4.5
- w/o keyword 55.8 72.5 81.1 93.7 -4.1
- w/o summary 55.6 72.4 81.2 93.2 -4.2

C
on

tr
ie

ve
rMC-indexing 52.2 70.8 82.1 92.7 -

- w/o raw text 46.9 65.5 79.4 89.2 -4.2
- w/o keyword 46.1 64.7 78.5 88.7 -4.9
- w/o summary 45.1 65.0 77.6 91.6 -4.6

E
5

MC-indexing 69.6 85.3 91.8 97.2 -
- w/o raw text 63.3 81.4 90.3 95.9 -3.2
- w/o keyword 62.8 80.0 91.3 96.4 -3.3
- w/o summary 60.9 80.3 91.1 96.7 -3.7

B
G

E

MC-indexing 63.1 78.8 89.2 95.4 -
- w/o raw text 58.0 74.9 86.2 94.0 -3.3
- w/o keyword 57.5 73.7 85.7 94.9 -3.7
- w/o summary 56.7 74.4 85.8 94.4 -3.8

G
T

E

MC-indexing 62.3 77.8 88.0 95.4 -
- w/o raw text 55.5 73.0 85.8 94.5 -3.7
- w/o keyword 57.3 74.7 86.1 94.8 -2.7
- w/o summary 57.7 74.0 85.0 94.0 -3.2

Table 11: Ablation study of recall on NQ, ∆ refers to
the average decrease of top 1.5, 3, 5, and 10.

concern, we standardize the context length across
different chunking schemes. In this section, we
adjust k such that the total amount of retrieved
text (context length) remains consistent, regardless
of the individual chunk size. The k values are
increased for methods utilizing shorter chunks to
ensure that the total context length compared was
equivalent across all methods.

As shown in the table 10, even when control-
ling for context length, our method consistently
outperforms the baselines. This suggests that our
method’s superior performance is not merely a re-
sult of favoring longer chunks, but is indicative of
its effectiveness in retrieving relevant information.

G Extended Ablation Study on NQ

In this section, we reported the ablation results of
MC-indexing on NQ dataset, serving as the exten-
sion of Section 5.5.1. From the data in Table 11, it’s
evident that: (1) Removing the raw-text view leads
to the most significant performance drop, ranging
between 3.2 and 7.6%. (2) Eliminating the sum-
mary view results in the second-most considerable
performance drop, varying between 3.2 and 6.6%.
(3) Disregarding the keywords view contributes to
a performance drop between 2.7 and 5%.

H Prompt Design

In this paper, we utilize the following prompts to
facilitate the respective process:
• The generation of WikiWeb2M question, ques-

tion type, answer, and answer contextual sen-
tences. The prompt is shown in Figure 6.

• The contextual sentences retrieval when provided
with a long document or a section of the docu-
ment. This is used to evaluate if existing LLMs
can directly cope with long document. The
prompt is shown in Figure 7.

• The generation of summary for the sections con-
sisting of more than 200 tokens. The generated
summary is used as additional view for document
indexing. The prompt is shown in Figure 8.

• The generation of the list of keywords for each
section. The generated keywords list is used
as additional view for document indexing. The
prompt is shown in Figure 9.

• The generation of atomic chunks are shown in
Figure 12. We further process these results in
the procedures described in Appendix C.3 under
Atomic chunking.

• The answer generation when provided with re-
trieved top k chunks or sections. The prompt is
shown in Figure 10.

• The automatic answer evaluation of two answers,
given the ground truth answer. This is used
to evaluate the answer quality. This prompt is
shown in Figure 11.
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You are a sophisticated question generator. You need to use the reference text to generate a question,
with its question type, and the supporting context sentences, and the short answer.

The generation should strictly follow the following guidelines:
(1) The question must be sufficiently answered by the reference text only;
(2) The question need to be short and accurate;
(3) All supporting context sentences must be the original text from the reference text;
(4) The question should need long context (more than 5 sentences) to answer accurately;
(5) The type of each question needs to be ONE from the following eight types:
1. **Questions about Narrative and Plot Details**: inquire about specific details or the sequence

of events in a narrative (such as a story, movie, or historical account) require understanding the
entire context to provide an accurate answer.

2. **Summarization Questions**: require the summarization of a long passage, argument, or a
complicated process rely on understanding the full context to capture the essence of the
content without omitting crucial details.

3. **Inferential and Implied Questions**: depend on understanding subtleties and reading between the
lines. They may involve inferring the author's intent, the mood of the characters in a story, or the
implications of certain actions, which can't be answered with a direct quote from the text.

4. **Questions Requiring Synthesis of Information**: necessitate the synthesis of information
dispersed across a long passage or multiple passages, requiring an understanding of the broader
context to answer correctly.

5. **Cause and Effect Questions**: to understand the causal relationship between events in a text, one
often needs to consider a substantial portion of the context to identify the factors that led to
a particular outcome.

6. **Comparative Questions**: ask for comparisons between different ideas, characters, or events
within a text often require a comprehensive understanding of each element being compared.

7. **Explanatory Questions**: ask for explanations of complex concepts or processes that are described
in detail within the text. Answering these questions accurately requires a deep understanding of the
entire explanation as presented.

8. **Questions about Themes and Motifs**: when asked about the overarching themes or motifs in a text,
one must consider entire work to identify patterns and draw conclusions about the central messages.

**Reference text**:
$text

Return the question and answer in the following json format:
{question:"...", type:"...", answer:"...", answer_context:"..."}

Figure 6: Prompt template used for question and answer generation.

You are helpful question answering assistant. Given a question and the reference text, you need to find
sufficient context to answer this question. The context sentences must be the original text of
reference text. Note that you must not answer these question.

**Question**: $question

**Reference Text**: $reference

Return the result in json format: {"context": ..., "}

Figure 7: Prompt template designed to find the relevant answer scope given the question and section text.

You are a helpful summarization assistant. Please help me summarize the following section into no more
than 10 sentences or 200 words.

**Section Name**:
$section_name

**Section Text**:
$section_text

Figure 8: Prompt template designed to generate atomic chunks for section given its corresponding name and text.
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You are a helpful keyword extractor. You need to extract keywords from the following section. The
keywords should consist of concepts, entities, or important descriptions that are related to the
section text, which could be used to answer any questions from users.

**Section Name**:
$section_name

**Section Text**:
**Beginning of text**
$section_text$
**End of text**

Please output format in list format: [...]. Do not output anything else aside from this list.

Figure 9: Prompt template designed to provide keywords for section given its corresponding name and text.

You are a helpful question answering assistant. You are good at answering question based on provided
contents.

**Contents**: $quotes

**Question**: $question

**Instruction:**
Assume you do not have any background and internal knowledge about this given contents and question.
You need to answer the question using the given contents only. The answer need to be short and accurate.

Figure 10: Prompt template designed to answer question based on the retrieved results.

You are a helpful assistant for evaluating answers. Given a question and ground truth answer, there
will be two possible answers. Provide a score from 0-10 for each answer.

**Question**: $question

**Ground truth answer**: $ground_truth_answer

**Answer 1**: $answer_1
**Answer 2**: $answer_2

**Instruction:**
Assume you do not have any background and internal knowledge about this given contents and question.
You need to evaluate each answer and give a score based on the ground truth answer.
You must write out your reasoning of the score based on relevance to the answer. If both answers are
exactly similar, you must ensure the scores and reasoning for both answers are the same.
Finally in a new line, you must return the scores and nothing else. The scores must be returned in the
following json format:
{"answer_1_score":"...", "answer_2_score":"..."}

Figure 11: Prompt template designed to provide score for each answer in pair-wise evaluations.

You are a helpful text chunking assistant that can divide a piece of text into sections.
Given a piece of text, your task is to partition the sentences in the given text into sections
according to the following guidelines:

1. The sentences in each section should make up one stand-alone atomic fact.
2. Each section should be a contiguous chunk of text from the given text. The text in each section
should be faithful and unchanged from the given text.
3. No sentences in the given text should be divided across two different sections.

Return each section on a new line.

Please breakdown the following text into sections:
$text

Figure 12: Prompt template designed to provide summary for section given its corresponding name and text.
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