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Abstract
With the recent advancement of Large Lan-
guage Models (LLMs), efforts have been made
to leverage LLMs in crucial social science
study methods, including predicting human fea-
tures of social life such as presidential voting.
Existing works suggest that LLMs are capable
of generating human-like responses. Neverthe-
less, it is unclear how well LLMs work and
where the plausible predictions derive from.
This paper critically examines the performance
of LLMs as social predictors, pointing out the
source of correct predictions and limitations.
Based on the notion of mutability that classifies
social features, we design three realistic set-
tings and a novel social prediction task, where
the LLMs make predictions with input features
of the same mutability and accessibility with
the response feature. We find that the promis-
ing performance achieved by previous studies
is because of input shortcut features to the re-
sponse, which are hard to capture in reality;
the performance degrades dramatically to near-
random after removing the shortcuts. With the
comprehensive investigations on various LLMs,
we reveal that LLMs struggle to work as ex-
pected on social prediction when given ordinar-
ily available input features without shortcuts.
We further investigate possible reasons for this
phenomenon and suggest potential ways to en-
hance LLMs for social prediction.

1 Introduction

Social Prediction is one of the crucial elements in
social studies (Hofman et al., 2017), with a body of
literature (Liben-Nowell and Kleinberg, 2003; Bak-
shy et al., 2011; Cheng et al., 2014) devoted to esti-
mating inaccessible features, either unobserved or
missing, based on observed ones. Historically, so-
cial prediction is made by statistical models such as
linear regression (Uyanık and Güler, 2013). With
the development of machine learning, supervised
methods have been adopted, e.g. random forest
and neural networks (Chen et al., 2021b). How-
ever, the classic machine learning methods notably
rely on extensive labeled training data, which is
labor-intensive, especially in social studies. Addi-
tionally, the predictive power of machine learning

*These authors contributed equally to this work.

methods is limited (Mackenzie, 2015; Athey, 2018)
and can hardly model the complicated phenomenon
in social life.

With the rapid advancement in Large Language
Models (LLMs), undertaking text-related tasks is
empowered with a new paradigm (Zhuang et al.,
2023; Tan et al., 2023; Nijkamp et al., 2022; Chen
et al., 2021a; Zhou et al., 2022; Wei et al., 2022).
The extensive world knowledge (Zhao et al., 2023)
and inference abilities (Creswell et al., 2022) en-
able LLMs to mitigate the limitations of classic ma-
chine learning methods in social prediction. Recent
works leverage LLMs in predicting or simulating
human responses, such as voting decisions (Argyle
et al., 2022; von der Heyde et al., 2023) and polit-
ical attitude (Rosenbusch et al., 2023). They take
advantage of LLMs to augment existing datasets
with previously inaccessible features due to unob-
servability, data missing, sensitivity and privacy
issues. Promising performance is reported. How-
ever, the common methodology of these works is
worth being skeptical about: it first creates datasets
with a well-constructed survey; next, except for
the response feature, any other features are candi-
dates as input, even if they and the response feature
are almost semantically equivalent and thus nearly
(in)accessible.

This methodology introduces a question: If the
observed features are nearly equivalent and thus
nearly accessible, why did the original survey avoid
directly collecting the key response feature, yet
bother to predict by other features? This issue
hinders the exploration of LLMs’ authentic social
prediction ability and the underlying mechanisms,
as well as the realistic and practical implementa-
tion of proposed methods. Our paper responds to
it, critically checking and revising social prediction
in a group of settings considering the accessibility
of features.

To study it, our preliminary investigation revis-
its the famous case of voting prediction (Argyle
et al., 2022) with LLMs. We define shortcut as the
observed features approximately equivalent and
(in)accessible with the response feature, which
should be masked in input. The result indicates that
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LLMs’ performance is bolstered by the presence of
shortcuts to the desired response features. Specifi-
cally, the presence of shortcuts directly associated
with the feature to be predicted leads to exceptional
performance, even replacing LLMs with machine
learning models. Unfortunately, this effectiveness
comes with a decline when eliminating shortcuts
(detailed in Sec.2 and Sec.3). This performance gap
leads us to question the true capability of LLMs in
social predictions, challenging the prevailing per-
ception of their prowess (Argyle et al., 2023). The
research community is urged to be more cautious
and skeptical when employing this method. Fur-
thermore, we shed light on the potential causes
and solutions to the under-performance, hinting at
future works to comply with the realistic settings
when delving into social prediction studies.

Our contributions are listed below:

• We introduce a novel social prediction
task Soc-PRF Prediction (stands for
Social Profile Prediction). Informed
by theoretical social studies (Bailey, 1998),
we categorize social features into two groups,
and the degrees of feature accessibility com-
ply with the principle of "intra-group homo-
geneity, inter-group heterogeneity". Predic-
tion across the groups avoids shortcuts and
delves deeper into LLMs’ abilities.

• We conduct comprehensive experiments of
social prediction with various LLMs, includ-
ing closed-sourced models GPT 3.5 (OpenAI,
2022), GPT 4 (Achiam et al., 2023), and Gem-
ini Pro (Anil et al., 2023), as well as lighter
open-sourced models like Llama-7B, Llama-
7B-chat (Touvron et al., 2023) and Mistral-
7B (Jiang et al., 2023). The results reveal the
incapability of LLMs in rigorous yet realistic
settings.

• Our studies suggest that LLMs are reluctant to
work on social prediction with ordinary input
features without shortcuts. We further explore
the potential reasons and future directions to
enhance LLMs for social prediction.

2 Revisit Voting Prediction with LLMs

Large Language Models (LLMs) have demon-
strated impressive performance in predicting voting
decisions in the United States (Argyle et al., 2022;

Veselovsky et al., 2023). In this section, we revisit
this voting prediction study with LLMs (Argyle
et al., 2022) and take a further step beyond it.

2.1 Reflecting on Voting Prediction

The work of (Argyle et al., 2022) adopts the
American National Election Studies (ANES)
to construct the dataset. ANES is a survey
conducted in every presidential election year,
with features about American public views and
political decisions. To elicit LLMs’ prediction
of the response feature (aka individual voting

decision), this study selects 10 input features:
racial/ethnic self-identification, gender,
age, ideological self-identification,
party identification, political interest,
church attendance, if discussing politics

with family/friends, patriotism feelings,
state of residence. With these 10 input
features and a question to elicit predictions, they
build the prompts with an example below:

Racially, I am white. I am male. Ideolog-
ically, I describe myself as conservative.
Politically, I am a strong Republican ...
In 2016, I voted for: .

However, intuitively two of the input fea-
tures are near-equivalent to voting decision,
i.e. ideological self-placement and party

identification. It is evident from political sci-
ence studies (Miller, 1991; Dalton, 2016) that given
the partisan nature of American politics, voting
decision are closely related to these two features;
besides, they share similar degrees of difficulty to
capture due to privacy and costs. To validate this
assertion, we first calculate their Cramer’s V* with
vote decision. The Cramer’s V scores are 0.86

and 0.76 respectively, indicating these two features
are highly correlated with vote decision.

Worse still, these features are rarely found and
nearly (in)accessible with the response features.
Referring to a survey on political social data min-
ing (dos Santos et al., 2021), only 1.89% of the
studies conducted have access to election-related
input features. Consequently, including features
closely related to the election as inputs is also im-
practical.

*Cramer’s V is a measurement of association between
features; the score 0 indicates no association and 1 indicates a
perfect association.
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We term features in this context as shortcuts,
which are nearly semantic-equivalent and nearly ac-
cessible with the response feature, and thus should
not be used as input features.

Figure 1: Performance of voting prediction by Random
Forest and GPT 3.5. For each model: = Full +
Accuracy; = w/o shortcut + Accuracy; = Full +
Kappa; = w/o shortcut + Kappa.

2.2 Further Experiments of Voting Prediction

Next, we conduct further experiments on the im-
pacts of shortcuts on social prediction. We choose
both GPT-based approaches and classic super-
vised machine learning models. For GPT-based
approaches, the backbone GPT 3.5 model and
prompts are the same with (Argyle et al., 2022);
for classic supervised machine learning, we choose
the Random Forest Classifier†. There are two set-
tings on features: (1) Full, taking all the 10 input
features; (2) w/o shortcut, taking input features
except the 2 shortcuts. Given the balanced distribu-
tion of the voting decision (51.9% vs. 48.1%),
the metric to use is Accuracy; in addition, Cohen’s
Kappa‡ κ is adopted to evaluate the agreement be-
tween the predicted and true voting decision.

As shown in Fig. 1, the GPT-based approach
with all input features achieved the accuracy of
90.82% and Cohen’s Kappa κ of 0.83, successfully
reproducing the results of (Argyle et al., 2022).

†Since supervised classifiers need labeled data to train,
we split the dataset into 80%/10%/10% as training, valida-
tion, and test sets. The supervised setting offers models more
information and eases the tasks.

‡Cohen’s Kappa κ has values ranging from 0 to 1, where 1
indicates stronger agreement and 0 indicates almost no agree-
ment.

However, after removing two shortcuts, the per-
formance of both methods drops dramatically: the
performance of GPT 3.5 drops to the accuracy of
61.60% and κ of 0.43; similarly, Random Forest
drops from 90.29%, 0.78 to 69.22%, 0.23. As a
comparison, in the Full setting, even the simple
Random Forest achieves results as almost good as
GPT, and also outperforms GPT in w/o shortcut
setting. Given the nearly half-half distribution of
voting decision, the performance without short-
cut features is considerably unsatisfactory.

Our preliminary study suggests LLMs’ promis-
ing social prediction performance reported by prior
works (Argyle et al., 2022) possibly derives from
the existence of shortcut features. This finding mo-
tivates us to question if LLMs are really powerful
in social prediction, or if the startling results are
merely because of the shortcut features. To explore
it, we propose a set of tasks that avoid shortcut
features as inputs and resemble realistic scenarios.

3 Social Profile Prediction

In this section, we introduce a social prediction task
evaluating LLMs’ predictive power without short-
cuts. First, we coin a social prediction dataset based
on survey data and methods to eliminate shortcut
features. Then we introduce three settings to simu-
late real-world scenarios. Finally, we demonstrate
and discuss the performance of LLMs’ prediction
in new settings.

3.1 Task and Dataset

As illustrated in Sec. 2, the inclusion of shortcut
features can affect the evaluation of the authentic
social prediction power of LLMs. To address it, we
design Soc-PRF Prediction as shown below.

The dataset derives from Gallup World
Poll (Gallup, 2009), one of the most prestigious so-
cial surveys that guarantees reliability and diversity
of features §. In this paper, we construct our dataset
on its data from the USA and primarily between
2016 and 2020. To ensure information complete-
ness, sample individuals with missing demographic
features are removed. After careful data cleaning,
the dataset includes 4,941 profiles of American in-
dividuals (samples). From feature views, we pick a

§Initialized in 2006, Gallup World Poll is conducted in over
150 countries and follows strict random sampling. Questions
are designed by political scientists, measuring key indicators
of social life, such as law, finance, civic engagement, etc.,
along with individual demographic data.
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Figure 2: Correlation between features. The met-
ric is Cramer’s V ↑. The labels IA, SL, EC,
CE, AL stand for features of Internet Access, Social
Life, Economic Confidence, Civic Engagement, and
Approval of Leadership.

subset of features to construct the profiles of indi-
viduals, encompassing 16 social features reflecting
various socio-demographic characteristics. Details
are shown in Sec. 3.2.

3.2 General Settings stemming from Realistic
Scenarios

In social studies, social datasets mainly derive from
two methodologies: either traditional surveys or
online data collection (Couper, 2017; Diaz et al.,
2016; Callegaro et al., 2014). Following the state-
ment in Sec. 1, features are not always available
in realistic scenarios. To simulate this situation,
we first retrieved the works of social studies and
selected the concept mutability¶ to classify the so-
cial features into two groups: high-mutable and
low-mutable. Most of the time, features with high
mutability (like viewpoint, ideology, social behav-
ior, etc.) and low mutability (like age, gender,
profession, etc.) can hardly be collected simul-
taneously. For example, online data collection,
such as crawling posts from social networking
platforms, has the advantage of collecting high-
mutability features by analyzing real-time attitudes
and opinions with natural language processing
(NLP) tools (Alghamdi and Alfalqi, 2015; Vayan-

¶Mutability measures the features’ propensity to change or
be influenced by social context. For more details please refer
to social studies as (Bailey, 1992; Brensinger and Eyal, 2021;
Sen and Wasow, 2016; Halley, 2017)

sky and Kumar, 2020; Hussein, 2018; Yue et al.,
2019). In contrast, low mutability features (e.g.
demographic features) often remain inaccessible
unless the users reveal them online. Survey data
from in-person interviews is complementary, cap-
turing low-mutability features precisely, while the
capture of highly mutable features is constrained
to limited topics/years/individuals and inevitably
missing data.

The 16 selected social features are assigned
to low-mutability and high-mutability groups re-
spectively. The low-mutability features are socio-
demographic features, including age, gender,
marriage, education, employment, income, and
urbanicity of residence. The high-mutability fea-
tures are attitudes or behaviors of social life, with
topics of Internet Access, Social Life, Economic
Confidence, Civic Engagement, and Approval of
Leadership. To save space, we denote features of
them as IA, SL1, SL2, EC1, EC2, CE1, CE2, CE3,
AL. Please note mutability is continuous; features
even in the same group could have different de-
grees of mutability. For example, employment

status is more mutable than gender, while Civic
Engagement is more mutable than Internet Access.
The details of the features are shown in Ap-
pendix A.1.

According to features’ mutability, we design
three settings to assess the social prediction capa-
bility of LLMs, which simulate real-world scenar-
ios for social data: giving low-mutability features
to predict high-mutability features; giving high-
mutability features to predict high-mutability or
low-mutability features. Following the prior works
especially (Argyle et al., 2022), we employ the
same zero-shot prompt template without taking in
any labeled data.

3.3 Details of Settings

low2high. This setting takes in low mutability
features to predict high mutability features, re-
sembling traditional survey datasets mentioned in
Sec. 3.2. One example of the prompt is:

- I am a male in the USA. I am 42 years
old. My current marital status is married.
My highest completed level of educa-
tion is middle level. My current employ-
ment status is employed. My Annual
Household Income is $12600. I am from
a suburb of a large city.
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Figure 3: Performance of Random Forest, Random Guessing, and GPT-4. The metric is AUC.

- When I’m asked "Do you have access
to the Internet in any way, whether on a
mobile phone, a computer, or some other
device?", my answer is

Here the underlined text indicates the values of
individual features, and italicized text presents the
question to elicit final responses. For the subse-
quent settings, we utilize prompts with similar tem-
plates. In addition, as the LLMs are sensitive to
prompt settings, we design a new prompt template
with the second person ("you are") to replace the
first person ("I am"); the experiment results are
shown in Appendix A.3.
high2low: This setting denotes the prediction from
high-mutability to low-mutability features. The in-
puts include values of all 9 high mutability features,
followed by the question about one low mutability
feature. Serving as the inverse setting of low2high,
this setting is designed for profile construction us-
ing online data: with the in-time individual atti-
tudes extracted from online posts, the demographic
features are inaccessible.
high2high. High-mutability features are utilized
as input to predict other high-mutability features.
Different from high2low setting, to avoid short-
cuts, the high mutability features of the same topic
with the response feature are excluded from the
input prompts. This setting simulates a specific
real-world scenario, where individuals’ attitudes to-
ward one topic are collected, but opinions on other
topics remain unexpressed.
Backbone Models. The LLMs we use include:
GPT 3.5 (gpt3.5-turbo-1106) (OpenAI, 2022), GPT
4 (gpt4-1106-preview) (Achiam et al., 2023), Gem-
ini Pro (Anil et al., 2023), Llama-7B, Llama-7B-
chat (Touvron et al., 2023) and Mistral-7B (Jiang
et al., 2023). The temperature is set as 0.7 and

random seed as 0 when feasible.
Evaluation Metrics. Most features in the dataset
have imbalanced distributions. For example, the
feature IA has 91.82% samples with "yes" labels,
while only 8.18% samples with "no". In this sit-
uation, accuracy is not a proper metric (Gu et al.,
2009). Thus we employ AUC as the metric.

3.4 Feature Analysis

Remind that our study is motivated by the shortcut
features which are closely related to the response
feature, and thus inaccessible in realistic scenar-
ios. Mutability only guarantees the features are
of different accessibility, but says little about re-
latedness between features. To prevent the emer-
gence of shortcut features, we check the Cramer’s
V between all feature pairs. As shown in Fig. 2,
most Cramer’s V scores lie at low levels that are
lower than 0.5. The only large values (such as
0.58 between CE2 and CE3) come from the high
mutability features with the same topics (i.e., Civic
Engagement); however, all our settings do not in-
clude this kind of cases.

Then we evaluate the predictive power of the se-
lected features by a traditional supervised method.
Take the low2high setting as the example, we
train Random Forest Classifier with dataset split
by 80%/10%/10% as training/validation/test sets.
Then we compare its results with random guessing
as the baseline. Fig. 3 shows Random Forest Clas-
sifier outperforms the random guessing baseline
by a considerable margin. For example, the AUC
score of IA is 95.07, compared to 48.34 of random
guessing.

In conclusion, all selected features are not short-
cuts, and they are still powerful enough in predic-
tion tasks.
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Table 1: Performance of LLMs of setting low2high. The IA, SL, EC, CE, AL stand for indexes of Internet
Access, Social Life, Economic Confidence, Civic Engagement, and Approval of Leadership.

Model IA SL1 SL2 EC1 EC2 CE1 CE2 CE3 AL

Random 48.34 52.09 48.47 52.12 50.07 49.89 49.16 49.32 48.60
Llama-7B 50.00 50.00 50.00 48.75 55.41 50.00 50.00 50.00 50.00

Llama-7B-chat 50.00 50.00 50.00 50.95 51.80 50.00 50.00 50.00 50.00
Mistral-7B 50.00 50.00 50.00 53.12 56.89 50.00 50.00 50.00 50.00
Gemini Pro 50.00 50.00 50.00 50.76 60.93 50.00 50.00 50.00 50.00

GPT-3.5 50.00 50.00 50.00 52.63 58.20 50.00 50.00 50.00 50.00
GPT-4 50.00 50.00 50.00 53.82 56.57 50.00 50.00 50.00 50.00

Table 2: Performance of LLMs of setting low2high.

Model age gender marriage education employment income urbanicity

Random 49.50 49.62 49.45 49.99 50.54 48.14 50.22
Llama-7B 33.50 49.81 50.00 55.15 50.00 50.05 49.85

Llama-7B-chat 40.00 50.00 50.00 35.21 50.33 51.18 50.09
Mistral-7B 33.55 49.81 50.00 55.15 50.00 50.05 49.85
Gemini Pro 38.80 51.14 50.00 66.70 50.00 50.10 49.75

GPT-3.5 41.35 50.00 51.29 57.76 49.59 50.95 50.94
GPT-4 40.75 50.00 50.88 65.65 52.01 53.80 52.09

3.5 LLMs as the Predictor

In this section, we leverage LLMs for the Soc-PRF

Prediction task in the three aforementioned set-
tings. The results of the three settings are illustrated
in Table 1, Table 2, and Fig. 4, respectively. In the
tables, "Random" indicates the random guessing
baseline. Note that for the settings high2high, we
only show part of the results because the observa-
tions are similar. As we adopt AUC as the metric,
when the models fail to predict the features, AUC
will be 50.00 for binary features. We note that the
performance of LLMs is closely similar to the ran-
dom guessing and is far from satisfactory. The poor
results appear consistently in all the settings and
with all the LLMs. These observations indicate that
LLMs struggle to predict individual features with
the given information in the proposed settings.

4 Discussions

Some may wonder if the degraded results are
caused by suboptimal or even trivial prompts: are
there other prompts that can make good predic-
tions? We admit there is a possibility, but this goes
beyond the range of our paper. The prompts can be
augmented by better-crafted prompts or examples
of labeled data (so-called few-shot), but the settings
will be incomparable with the prior works, and also

Figure 4: Performance of GPT 3.5 of setting high2high.
The metric is AUC score. The sign "-" indicates no
valid data, either because the input features (Y-axis) and
output features (X-axis) share the same topic, or they
are not conducted simultaneously in the survey.

converting the focus from LLMs’ authentic predic-
tive ability to advanced prompt engineering. Sim-
ilar to the critical work of self-correction (Huang
et al., 2023), we are not devoted to addressing ques-
tions like "what are the better social prediction
prompt templates to induce better performance?".
Rather, with the overwhelming evidence that sev-
eral representative LLMs fail on social prediction
with the popular and straightforward prompts, we
wonder "do LLMs really have social prediction
ability at the individual level, without the help
of other external resources?" Below we propose
deeper analysis and potentially helpful methods for
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social prediction.

4.1 Population v.s. Individual

As shown in the previous section, even advanced
LLMs like GPT 4 encounter challenges in accu-
rately predicting social features, only to yield out-
comes similar to random guessing. To explore the
underlying causes for such phenomena, we take
the distribution comparisons between predicted re-
sponse features and true counterparts. The case
study is conducted in low2high setting and the re-
sults are shown in Fig. 5. We have the following
observations:

(1) Although all the response features are high-
mutable, LLM’s predictions of relatively less muta-
ble features (such as IA and SL, first 2 sub-figures
of Fig. 5) are prone to have smaller discrepancies
with true distributions. This fact indicates LLMs
do contain global knowledge about these social
features, but they are only well-aligned at the pop-
ulation level. To validate this claim, we check
the distributions of predictions in the true posi-
tive group and the whole dataset: among all the
individuals, 88.60% are predicted as positive; how-
ever, among the true positive group (all the predic-
tions are expected to be positive), the proportion
of positive prediction is 90.52%. The gap is only
1.92%, which means the input features of individu-
als have few impacts on the prediction. We specu-
late that even conditioned by individual-level fea-
tures, the population-level pre-trained knowledge
prevails over that of individuals from prompts, lead-
ing LLMs to predict by simple sampling from the
population distribution, rather than making case-
specific predictions.

(2) The patterns of highly mutable features, such
as CE1 and CE2 (last 2 sub-figures of Fig. 5), are
not captured by existing LLMs even at the popu-
lation level. Rather, LLMs prefer to predict more
negative responses to these features. This fact in-
dicates building accurate predictors with LLMs
for highly mutable features is more challenging,
requiring LLMs to be well-aligned not only to in-
dividual information but also to population-level
knowledge.

4.2 Incorporating Labeled Data

We try several popular methods below, only to find
social prediction is still a challenging task without
further advancement of LLMs.

The strong performance of the random forest
classifier in Fig. 3 indicates that our proposed pre-
diction task is reasonable if sufficient labeled data
is considered. Based on this finding, we explore the
effectiveness of incorporating supervision signals
to LLMs based on the low2high setting as the ex-
ample. We leverage the in-context learning ability
of LLMs (Dong et al., 2022; Zhang et al., 2023)
to incorporate a few labeled samples as demon-
strations. Specifically, for each individual profile,
we sample some other individual profiles from the
dataset as the reference. In addition to the vanilla
prompts introduced in Sec. 3.2, we append full
information (including the input and response fea-
tures) of these reference samples to the prompts.
One example of such prompts is:

- Here are self-descriptions of two
people:
- "I am a male in the USA ... When
I’m asked "Do you have access to
the Internet in any way, whether on a
mobile phone, a computer, or some other
device?", my answer is yes";
- "I am a female in the USA ... When
I’m asked "Do you have access to
the Internet in any way, whether on a
mobile phone, a computer, or some other
device?", my answer is no";

- I am a male in the USA. I am 42 years
old ...;
- When I’m asked "Do you have access
to the Internet in any way, whether on a
mobile phone, a computer, or some other
device?", my answer is

To improve the efficiency of demonstrations, we
select reference samples with tricks. (1) We choose
2 or 4 samples with the same year and marriage
features with the predicted sample, and the pos-
itive and negative labels are balanced within the
reference samples. (2) In addition, we adopt two
more sets of in-context learning with Active Learn-
ing algorithms (Margatina et al., 2023). Among
the demonstration selection methods, we select the
most powerful Diversity (Yu et al., 2022) and Simi-
larity (Liu et al., 2021) variants. The samples with
the most distinct or similar representations are se-
lected as context. Like the supervised methods,
these demonstrations allow LLMs to make predic-
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Figure 5: Distributions of Social Features. IA, SL, EC, CE, AL stand for features of Internet Access, Social
Life, Economic Confidence, Civic Engagement, and Approval of Leadership, respectively. Positive indicates
the options including yes, approve, satisfied, better, and Negative indicates the options including
no, disapprove, dissatisfied, worse. Besides, Excellent, Good, Fair, Poor are the options for
feature EC2 (assessment of economic condition).

tions aided by supervision signals from ground
truth.

The results of experiments are shown in Table 3.
It’s plausible that augmented prompts with demon-
strations help LLMs achieve better prediction per-
formance, but it’s worth noting the performance
gain is unstable and sometimes minimal. Besides,
incorporating 4 demonstrations (column 3) only
has marginal or no improvement compared to incor-
porating 2 demonstrations (column 2). The active
learning methods (columns 4-5) showcase similar
results. This observation suggests solely searching
for optimal prompts takes intensive effort while
pays off little, given the search space of prompts is
infinite and the outputs are sensitive to prompts.

Again, as this is not the focus of our work, we
leave the improvement of in-context prompts as a
further direction.

Table 3: Performance of LLMs (GPT-3.5) with demon-
strations. 2-Demos and 4-Demos indicate label-
balanced demonstrations; AL-Sim and AL-Div stand for
active learning with similar or diverse demonstrations.

Zero 2- 4- AL- AL-
Shot Demos Demos Sim Div

IA 50.00 71.61 82.67 60.46 54.19
SL2 50.00 50.60 50.04 48.54 50.65
EC1 52.63 50.52 53.47 49.11 56.64
CE1 50.00 60.17 55.34 54.15 54.13
CE2 50.00 53.22 52.79 55.90 60.34
AL 50.00 52.03 50.80 46.89 51.22

5 Related Work

With the advent of LLMs, predicting social fea-
tures with LLMs has been studied by numerous
works (Ziems et al., 2023; Veselovsky et al., 2023).
Among social studies, LLMs have been deployed
to predict the potential responses or outcomes with
ease, especially in scenarios where traditional meth-
ods are constrained by cost or ethical concerns.
In economics, Phelps and Russell (2023) studied
game theory by examining cooperative and com-
petitive behaviors with LLMs. Within political
science, Wu et al. (2023) deployed LLMs to pre-
dict the ideological views of politicians. For com-
munication studies, LLMs are used to simulate
and predict the potential outcomes of toxic dis-
course (Törnberg et al., 2023), the political affilia-
tion of Twitter posts (Törnberg, 2023), etc.

Additionally, there are growing interests in lever-
aging LLMs with social survey and interview, aim-
ing to replicate human-like responses to certain
questions or attributes of individuals. For example,
Argyle et al., 2022 proposed "silicon samples" that
deploy LLMs to simulate the people in a survey
or interview and predict their partisan views and
voting decisions. Dillion et al., 2023 examined
the LLMs response to psychological tests, com-
paring the decisions and judgements from LLMs
and humans. Aher et al., 2023 proposed sets of
experiments to check LLMs response to interview
and games. Besides, fine-tuning LLMs is a promis-
ing method for better prediction of social attitudes
across years of surveys (Kim and Lee, 2023). At
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the same time, discussions (Jansen et al., 2023)
are hold about the potential and risks of deploying
LLMs in social survey studies.

6 Conclusion

In this study, we introduce a survey-based social
prediction task to assess the LLMs’ predictive abil-
ity using general features. Through the replication
of experiments and ablation studies of voting pre-
diction tasks, we reveal a significant performance
gap between input prompts with and without short-
cut features. To further study the LLMs’ predic-
tive ability, we propose a real-world survey dataset
with rigorously selected features. Based on it, we
demonstrate the inability of LLMs to predict social
features only with general features. Furthermore,
our empirical studies further showcase the potential
reasons that constrain the LLMs’ predictive power.
In our future research, we aim to explore the effi-
cient methods of providing supervision signals and
reference information to improve LLMs prediction
performance. Moreover, with the abundant social
survey and online data, we plan to use fine-tuning
methods to fit the LLMs knowledge with social
prediction tasks.

Limitations

As not the focus of this paper, we do not propose
methods to address the poor performance issue of
social prediction, nor provide experiments with
better results to validate our suggestions. Second,
the LLMs are not further fine-tuned and the op-
timal prompts are not searched. Tailoring LLMs
to advance social prediction abilities and finding
optimal prompts are potential directions to ex-
plore. Besides, we merely deploy large-scale close-
sourced LLMs and less powerful open-sourced
LLMs. However, large-scale open-sourced LLMs,
such as the Llama-70B, have both access to fine-
tuning and enormous language capabilities. For
researchers with enough computing resources, we
encourage further experiments and tuning on large-
scale open-sourced LLMs.
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A Appendix

A.1 Questions for Features

We categorize the selected 16 features into two
groups, i.e. high-mutability and low-mutability
features. The details of high-mutability features
are shown in Table 4 and those of low-mutability
features are shown in Table 5. The column
"Question Abbrev." indicates the abbreviation of
the features, which are broadly used in this work.
The column "Question Identifiers" indicates the
identifier labels of the corresponding questions in
the original Gallup survey.

A.2 Feature Convert Methods

In the main experiments, there are features of
integer or several classes, such as marriage,
education, employment, income, etc. We
convert them into groups (with the number of
groups no larger than four). For income, we

calculate the 35% and 65% percentiles of the
annual household income. Based on them, we
categorize income into three classes: lower level,
middle level, and higher level. For features with
more than 4 classes, we combine similar classes to
make the number of classes as 2 or 3.

A.3 Results of Prompts with the Second
Person

In the main experiments, we design the prompts in
the first person. However, as the responses of
LLMs possibly change even when the prompts
have subtle differences, we explore whether the
first person or the second person performs better.
Following the prompt template in Sec 3, we
replace the expression in the first person with the
second person. Table 6 and Table 7 show the
results of the setting low2high and high2low

respectively. It can be observed that the
performance is similar to that with the first person,
and our conclusions still hold.

Table 4: Questions and Options of High-mutability Features of Gallup Dataset.

Topic Question
Abbrev.

Question
Identifiers Question Options

Communication Use IA WP16056 Do you have access to the internet in any way,
whether on a mobile phone, a computer, or some
other device?

yes, no

Social Life SL1 WP27 If you were in trouble, do you have relatives or
friends you can count on to help you whenever you
need them, or not?

yes, no

SL2 WP10248 In the city or area where you live, are you satisfied
or dissatisfied with the opportunities to meet people
and make friends?

satisfied, dissatisfied

Economic Confidence EC1 WP148 Right now, do you think that economic conditions in
this country, as a whole, are getting better or getting
worse?

better, worse

EC2 M30 How would you rate your economic conditions in
this country today – as excellent, good, fair, or poor?

excellent, good, fair,
poor

Civic Engagement CE1 WP108 Have you donated money to a charity in the past
month?

yes, no

CE2 WP109 Have you volunteered your time to an organization
in the past month?

yes, no

CE3 WP110 Have you helped a stranger or someone you did not
know who needed help?

yes, no

Approval of Leadership AL WP150 Do you approve or disapprove of the job
performance of the leadership of this country?

approve, disapprove
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Table 5: Questions and Options of Low-mutability Features of Gallup Dataset.

Immutable Attribute Question
Abbrev.

Question
Identifiers. Options

Age age age -
Gender gender WP1219 1. Man, 2. Woman

Marital Status marriage WP1223 1. Single/Never been married, 2. Married, 3.
Separated, 4. Divorced, 5. Widowed, 6. Domestic
Partner;

Highest Completed Level of
Education

education WP3117 1. Completed elementary education or less (up to 8
years of basic education); 2. Secondary - 3 years
Tertiary/Secondary education and some education
beyond secondary education (9-15 years of
education); 3. Completed four years of education
beyond high school and/or received a 4-year college
degree;

Employment Status employment EMP_2010 1. Employed full time for an employer, 2. Out of
workforce, 3. Employed part time do not want full
time, 4. Employed full time for self, 5. Employed
part time want full time, 6. Unemployed;

Annual Household Income income INCOME_1 -
Living of Urbanicity urbanicity WP14 1. A suburb of a large city, 2. A small town or

village, 3. A large city, 4. A rural area or on a farm;

Table 6: Performance of LLMs of setting low2high with prompts in the second person. The IA, SL, EC, CE, AL stand
for indexes of Internet Access, Social Life, Economic Confidence, Civic Engagement, and Approval of Leadership.

Model IA SL1 SL2 EC1 EC2 CE1 CE2 CE3 AL
Random 48.34 52.09 48.47 52.12 50.07 49.89 49.16 49.32 48.60

Llama-7B 50.00 50.00 50.00 50.04 53.16 50.00 50.00 50.00 50.00
Llama-7B-chat 50.00 50.00 50.00 54.93 57.54 50.00 50.00 50.00 50.00

Mistral-7B 50.00 50.00 50.00 53.74 56.75 50.00 50.00 50.00 50.00
Gemini Pro 50.00 50.00 50.00 51.20 62.01 50.00 50.00 50.00 50.00

GPT-3.5 50.00 50.00 50.00 53.82 57.18 50.00 50.00 50.00 50.00
GPT-4 50.00 50.00 50.00 51.85 59.45 50.00 50.00 50.00 50.00

Table 7: Performance of LLMs of setting low2high with prompts in the second person.

Model age gender marriage education employment income urbanicity
Random 49.50 49.62 49.45 49.99 50.54 48.14 50.22
Llama-7B 33.55 50.00 50.00 25.90 50.00 67.86 50.00
Llama-7B-chat 41.80 50.00 50.00 52.83 50.00 50.15 50.00
Mistral-7B 33.70 50.00 50.00 25.90 50.00 50.05 50.00
Gemini Pro 41.80 50.00 50.00 68.20 50.00 55.90 49.64
GPT-3.5 40.60 50.00 54.80 57.10 58.60 51.25 50.00
GPT-4 44.05 50.00 55.16 69.34 52.52 54.79 50.05
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