@inproceedings{susladkar-etal-2024-bahasa,
title = "{B}ahasa Harmony: A Comprehensive Dataset for {B}ahasa Text-to-Speech Synthesis with Discrete Codec Modeling of {E}n{G}en-{TTS}.",
author = "Susladkar, Onkar and
Tripathi, Vishesh and
Ahmed, Biddwan",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.154",
pages = "2731--2741",
abstract = "This research introduces a comprehensive Bahasa text-to-speech (TTS) dataset and a novel TTS model, EnGen-TTS, designed to enhance the quality and versatility of synthetic speech in the Bahasa language. The dataset, spanning 55.00 hours and 52K audio recordings, integrates diverse textual sources, ensuring linguistic richness. A meticulous recording setup captures the nuances of Bahasa phonetics, employing professional equipment to ensure high-fidelity audio samples. Statistical analysis reveals the dataset{'}s scale and diversity, laying the foundation for model training and evaluation. The proposed EnGen-TTS model performs better than established baselines, achieving a Mean Opinion Score (MOS) of 4.45 {\mbox{$\pm$}} 0.13. Additionally, our investigation on real-time factor and model size highlights EnGen-TTS as a compelling choice, with efficient performance. This research marks a significant advancement in Bahasa TTS technology, with implications for diverse language applications.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="susladkar-etal-2024-bahasa">
<titleInfo>
<title>Bahasa Harmony: A Comprehensive Dataset for Bahasa Text-to-Speech Synthesis with Discrete Codec Modeling of EnGen-TTS.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Onkar</namePart>
<namePart type="family">Susladkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishesh</namePart>
<namePart type="family">Tripathi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Biddwan</namePart>
<namePart type="family">Ahmed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This research introduces a comprehensive Bahasa text-to-speech (TTS) dataset and a novel TTS model, EnGen-TTS, designed to enhance the quality and versatility of synthetic speech in the Bahasa language. The dataset, spanning 55.00 hours and 52K audio recordings, integrates diverse textual sources, ensuring linguistic richness. A meticulous recording setup captures the nuances of Bahasa phonetics, employing professional equipment to ensure high-fidelity audio samples. Statistical analysis reveals the dataset’s scale and diversity, laying the foundation for model training and evaluation. The proposed EnGen-TTS model performs better than established baselines, achieving a Mean Opinion Score (MOS) of 4.45 \pm 0.13. Additionally, our investigation on real-time factor and model size highlights EnGen-TTS as a compelling choice, with efficient performance. This research marks a significant advancement in Bahasa TTS technology, with implications for diverse language applications.</abstract>
<identifier type="citekey">susladkar-etal-2024-bahasa</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.154</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>2731</start>
<end>2741</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bahasa Harmony: A Comprehensive Dataset for Bahasa Text-to-Speech Synthesis with Discrete Codec Modeling of EnGen-TTS.
%A Susladkar, Onkar
%A Tripathi, Vishesh
%A Ahmed, Biddwan
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F susladkar-etal-2024-bahasa
%X This research introduces a comprehensive Bahasa text-to-speech (TTS) dataset and a novel TTS model, EnGen-TTS, designed to enhance the quality and versatility of synthetic speech in the Bahasa language. The dataset, spanning 55.00 hours and 52K audio recordings, integrates diverse textual sources, ensuring linguistic richness. A meticulous recording setup captures the nuances of Bahasa phonetics, employing professional equipment to ensure high-fidelity audio samples. Statistical analysis reveals the dataset’s scale and diversity, laying the foundation for model training and evaluation. The proposed EnGen-TTS model performs better than established baselines, achieving a Mean Opinion Score (MOS) of 4.45 \pm 0.13. Additionally, our investigation on real-time factor and model size highlights EnGen-TTS as a compelling choice, with efficient performance. This research marks a significant advancement in Bahasa TTS technology, with implications for diverse language applications.
%U https://aclanthology.org/2024.findings-emnlp.154
%P 2731-2741
Markdown (Informal)
[Bahasa Harmony: A Comprehensive Dataset for Bahasa Text-to-Speech Synthesis with Discrete Codec Modeling of EnGen-TTS.](https://aclanthology.org/2024.findings-emnlp.154) (Susladkar et al., Findings 2024)
ACL