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Abstract

The robustness of recent Large Language Mod-
els (LLMs) has become increasingly crucial
as their applicability expands across various
domains and real-world applications. Retrieval-
Augmented Generation (RAG) is a promis-
ing solution for addressing the limitations of
LLMs, yet existing studies on the robustness
of RAG often overlook the interconnected rela-
tionships between RAG components or the po-
tential threats prevalent in real-world databases,
such as minor textual errors. In this work, we
investigate two underexplored aspects when
assessing the robustness of RAG: 1) vulner-
ability to noisy documents through low-level
perturbations and 2) a holistic evaluation of
RAG robustness. Furthermore, we introduce
a novel attack method, the Genetic Attack on
RAG (GARAG), which targets these aspects.
Specifically, GARAG is designed to reveal vul-
nerabilities within each component and test the
overall system functionality against noisy doc-
uments. We validate RAG robustness by ap-
plying our GARAG to standard QA datasets, in-
corporating diverse retrievers and LLMs. The
experimental results show that GARAG consis-
tently achieves high attack success rates. Also,
it significantly devastates the performance of
each component and their synergy, highlight-
ing the substantial risk that minor textual in-
accuracies pose in disrupting RAG systems in
the real world. Code is available at https:
//github.com/zomss/GARAG.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; OpenAI, 2023b) have enabled remarkable
advances in diverse Natural Language Processing
(NLP) tasks, especially in Question-Answering
(QA) tasks (Joshi et al., 2017; Kwiatkowski et al.,
2019). Despite these advances, however, LLMs
face challenges in having to adapt to ever-evolving
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Figure 1: Impact of noisy documents in real-world databases
on the RAG system: The retriever selects a noisy document,
causing the reader to produce incorrect answers.

or long-tailed knowledge due to their limited para-
metric memory (Kasai et al., 2023; Mallen et al.,
2023), resulting in a hallucination where the mod-
els generate convincing yet factually incorrect
text (Li et al., 2023a). Retrieval-Augmented Gen-
eration (RAG) (Lewis et al., 2020) has emerged
as a promising solution by utilizing a retriever to
fetch enriched knowledge from external databases,
thus enabling accurate, relevant, and up-to-date re-
sponse generation. Specifically, RAG has shown
its superior performance across diverse knowledge-
intensive tasks (Lewis et al., 2020; Lazaridou et al.,
2022; Jeong et al., 2024), leading to its integra-
tion as a core component in various real-world
APIs (Qin et al., 2024; Chase, 2022; OpenAI,
2023a). Given its extensive applications, ensuring
robustness under diverse conditions of real-world
scenarios becomes critical for safe deployment.
Thus, assessing potential vulnerabilities within the
overall RAG system is vital, particularly by assess-
ing its components: the retriever and the reader.

However, existing studies on assessing the ro-
bustness of RAG often focus solely on either re-
trievers (Zhong et al., 2023; Zou et al., 2024; Long
et al., 2024) or readers (Li et al., 2023b; Wang et al.,
2023; Zhu et al., 2023). The robustness of a single
component might only partially capture the com-
plexities of RAG systems, where the retriever and
reader work together in a sequential flow, which is
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crucial for optimal performance. In other words,
the reader’s ability to accurately ground informa-
tion significantly depends on the retriever’s capa-
bility of sourcing query-relevant documents (Baek
et al., 2023; Lee et al., 2023). Thus, it is important
to consider both components simultaneously when
evaluating the robustness of an RAG system.

While concurrent work has shed light on the se-
quential interaction between two components, they
have primarily evaluated the performance of the
reader component given the high-level perturbed
errors within retrieved documents, such as context
relevance or counterfactual information (Thakur
et al., 2023; Chen et al., 2024; Cuconasu et al.,
2024). However, they have overlooked the impact
of low-level errors, such as textual typos due to
human mistakes or preprocessing inaccuracies in
retrieval corpora, which often occur in real-world
scenarios (Piktus et al., 2021; Le et al., 2023).
Additionally, LLMs, commonly used as readers,
struggle to produce accurate predictions when con-
fronted with textual errors (Zhu et al., 2023; Wang
et al., 2023). Note that these are the practical is-
sues that can affect the performance of any RAG
system in real-world scenarios, as illustrated in Fig-
ure 1. Therefore, to deploy a more realistic RAG
system, we should consider: “Can minor document
typos comprehensively disrupt both the retriever
and reader components in RAG systems?”

In this paper, we evaluate the RAG system’s ro-
bustness against textual typos in the database by
generating a perturbed counterpart of the clean doc-
ument retrieved for a given query. Initially, we
establish two attack objectives to qualitatively mea-
sure the negative impact of the adversarial docu-
ment on the RAG system’s retrieval and ground-
ing capabilities. To comprehensively assess sys-
tem resilience under these objectives, we pro-
pose a novel black-box adversarial attack method,
GARAG, which uses a genetic algorithm to search
for the most adversarial document with low val-
ues for both loss objectives among the perturbed
documents. The method begins by generating an
initial population of adversarial documents by in-
jecting minor textual errors into the original doc-
ument while ensuring that answer tokens remain
unaltered. Through an iterative process of mutation,
crossover, and selection to refine the population,
the method searches for the most adversarial docu-
ment for a given query by effectively exploring the
vast search space of typos space and exploiting the
most adversarial documents. To sum up, GARAG

assesses the holistic robustness of an RAG system
against minor textual errors, offering insights into
the system’s resilience through iterative adversarial
refinement.

We validate our method on three standard QA
datasets (Joshi et al., 2017; Kwiatkowski et al.,
2019; Rajpurkar et al., 2016), with diverse retriev-
ers (Karpukhin et al., 2020; Izacard et al., 2022) and
LLMs (Touvron et al., 2023; Chiang et al., 2023;
Jiang et al., 2023). The experimental results reveal
that adversarial documents with low-level pertur-
bation generated by GARAG significantly induce
retrieval and grounding errors, achieving a high at-
tack success rate of approximately 70%, along with
a significant reduction in the performance of each
component and the overall system. Our analyses
also highlight that lower perturbation rates pose a
greater threat to the RAG system, emphasizing the
challenges of mitigating such inconspicuous yet
critical vulnerabilities.

Our contributions in this paper are threefold:
• We point out that the RAG system is vulnerable

to minor but frequent textual errors within the
documents, prevalent in real-world scenarios.

• We propose a black-box adversarial attack
method, GARAG, based on a genetic algorithm
searching for adversarial documents targeting
both components within RAG simultaneously.

• We experimentally show that GARAG effectively
attacks the RAG system with significant perfor-
mance degradation, validating the vulnerability
to textual typos.

2 Related Work

2.1 Robustness in RAG
The robustness of RAG, characterized by its ability
to fetch and incorporate external information dy-
namically, has gained much attention for its critical
role in real-world applications (Chase, 2022; Liu,
2022; OpenAI, 2023a). However, previous studies
concentrated on the robustness of individual com-
ponents within RAG systems, either retriever or
reader. The vulnerability of the retriever is cap-
tured by injecting adversarial documents, specially
designed to disrupt the retrieval capability, into
retrieval corpora (Zhong et al., 2023; Zou et al.,
2024; Long et al., 2024). Additionally, the ro-
bustness of LLMs, often employed as readers, has
been critically examined for their resistance to out-
of-distribution data and adversarial attacks (Wang
et al., 2021; Li et al., 2023b; Wang et al., 2023;
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Zhu et al., 2023). However, these studies overlook
the sequential interaction between the retriever and
reader components, thus not fully addressing the
overall robustness of RAG systems.

In response, there is an emerging consensus on
the need to assess the holistic robustness of RAG,
with a particular emphasis on the sequential interac-
tion of the retriever and reader (Thakur et al., 2023;
Chen et al., 2024). They point out that RAG’s vul-
nerabilities stem from retrieval inaccuracies and in-
consistencies in how the reader interprets retrieved
documents. Specifically, the reader generates in-
correct responses if the retriever fetches partially
(or entirely) irrelevant or counterfactual documents
within the retrieved set. The solutions to these chal-
lenges range from prompt design (Cho et al., 2023;
Press et al., 2023) and plug-in models (Baek et al.,
2023) to specialized language models for enhanc-
ing RAG’s performance (Yoran et al., 2024; Asai
et al., 2024). However, they focus on the high-
level errors within retrieved documents, which may
overlook more subtle yet realistic low-level errors
frequently encountered in the real world.

In this study, we spotlight a novel vulnerabil-
ity in RAG systems related to low-level textual
errors found in retrieval corpora, often originating
from human mistakes or preprocessing inaccura-
cies (Thakur et al., 2021; Piktus et al., 2021; Le
et al., 2023). Specifically, Faruqui et al. (2018)
pointed out that Wikipedia, a widely used retrieval
corpus, frequently contains minor errors within its
contents. Therefore, we focus on a holistic evalua-
tion of the RAG system’s robustness against perva-
sive low-level text perturbations, emphasizing the
critical need for systems that can maintain compre-
hensive effectiveness for real-world data.

2.2 Adversarial Attacks in NLP
Adversarial attacks involve generating adversarial
samples designed to meet specific objectives to
measure the robustness of models (Zhang et al.,
2020). In NLP, such attacks use a transformation
function to inject perturbations into text, accompa-
nied by a search algorithm that identifies the most
effective adversarial sample.

The operations of the transformation function
can be categorized into high-level and low-level
perturbations. High-level perturbations leverage
semantic understanding (Alzantot et al., 2018;
Ribeiro et al., 2018; Jin et al., 2020), while low-
level perturbations are based on word or character-
level changes, simulating frequently occurring er-

rors (Eger et al., 2019; Eger and Benz, 2020; Le
et al., 2022; Formento et al., 2023).

Search algorithms aim to find optimal adversar-
ial samples by identifying victim tokens in the orig-
inal document, chosen based on their word impor-
tance as calculated by a single target model. For
instance, deletion-based scoring (Gao et al., 2018)
identifies important tokens by assessing increases
in attack objectives when a token is deleted, while
gradient-based scoring (Yoo and Qi, 2021a) uses
the gradient of the attack objective for each to-
ken. Since these methods are unsuitable for multi-
objective scenarios, a genetic algorithm that ran-
domly selects tokens with elaborate exploitation is
more effective (Alzantot et al., 2018; Zang et al.,
2020; Williams and Li, 2023). To evaluate the ro-
bustness of the overall RAG system, which has non-
differentiable and dual objectives for a retriever and
a reader, we propose a novel attack algorithm in-
corporating a genetic algorithm.

3 Method

Here, we introduce our problem formulation and
a novel attack method, GARAG. Further details of
the proposed method are described in Appendix A.

3.1 Problem Formulation

Pipeline of RAG. Let q be a query the user re-
quests. In a RAG system, the retriever first fetches
the query-relevant document d, then the reader gen-
erates the answer grounded on document-query
pair (d, q). The retriever, parameterized with ϕ =
(ϕd, ϕq), identifies the most relevant document in
the database. The relevance score r is computed by
the dot product of the embeddings for document d
and query q, as rϕ(d, q) = Enc(d;ϕd)·Enc(q;ϕq).
Finally, the reader, using an LLM parameterized
with θ, generates the answer a from the document-
query pair (d, q), as a = LLM(d, q; θ).

Adversarial Document Generation. To simu-
late the adversarial document having typical noise
encountered in real-world scenarios, we introduce
low-level perturbations to mimic these conditions.
We generate an adversarial document d′ by trans-
forming the clean document d using a function f
that alters each token d into a perturbed version
d′. The function f randomly applies one of sev-
eral operations — inner-shuffling, truncation, key-
board errors, or natural typos — to each token, then
outputs the perturbed token: d′ = f(d). This ran-
domness reflects the unpredictable nature of textual
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typos. Therefore, we explore a broad search space
of potential adversarial documents generated from
d using f to identify the adversarial document for
the RAG system,

Attack Objective on RAG. To identify an ad-
versarial document d′ that challenges the capabil-
ities of the RAG, we compare its negative impact
against the original document d for a given query
q. The goal is for d′ to divert attention from d,
ensuring that d no longer appears as the top re-
sult for q. Additionally, d′ should mislead LLM
into generating an incorrect answer a′ when paired
with (d∗, q). To measure this negative impact, we
use two loss objectives: the Relevance Score Ratio
(RSR) and the Generation Probability Ratio (GPR)
for retrieval and grounding, respectively.

The RSR calculates the ratio of the relevance
score1 from the adversarial document d′ to the
score from the original document d for the given
query q. Conversely, the GPR calculates the ratio
of the generation probability2 of the correct answer
a from the original pair (d, q) to the probability
from the adversarial pair (d′, q). These two metrics
are formally represented as:

LRSR(d
′) =

erϕ(d,q)

erϕ(d
′,q) ,LGPR(d

′) =
pθ(a|d′, q)
pθ(a|d, q)

.

(1)
The values below 1 signify that a noisy document
d′ generated from the adversarial attack success-
fully satisfies the attack objectives of distracting
the retriever and misleading LLM. Note that, as
these objectives are designed for adversarial at-
tacks, they don’t directly align with each module’s
performance measured by conventional metrics.

Consequently, the search for an optimal adver-
sarial document within the RAG system is defined
as a dual-objective optimization problem, aiming to
minimize both the RSR and GPR simultaneously:

d∗ = argmin
d′∈D′

(LRSR(d
′),LGPR(d

′)) (2)

This optimization problem involves dual-model en-
vironments, resulting in non-differentiable condi-
tions. To design effective adversarial attack meth-
ods targeting the RAG system through noisy docu-
ment simulation, these methods must address the

1Given the potential for relevance scores to be negative,
we have structured the term to guarantee positivity.

2The generation probability represents the joint probabil-
ities over the answer tokens given a single document and a
single question.

challenges of dual-objective and dual-model opti-
mization within a vast search space characterized
by unpredictable and diverse textual typos.

3.2 GARAG: Genetic Attack on RAG

In this work, we introduce a novel black-box adver-
sarial attack method called GARAG, employing a
genetic algorithm to address the dual-objective and
dual-model optimization problem in a large search
space. Initially, as shown in Figure 2, we divide the
search space into four zones based on the attack
objectives: safety, retrieval error, grounding error,
and holistic error. The adversarial document should
ideally be in a holistic error zone, where retrieval
and grounding errors intersect, and should be closer
to the origin, indicating a more significant negative
impact on the RAG system. Then, our proposed
method, GARAG, iteratively refines a population of
adversarial documents, methodically moving them
closer to the origin. This process involves explor-
ing the search space to discover new adversarial
documents and exploit the most adversarial ones
with crossover, mutation, and selection steps.

Formally, given the query-document pair (q,d)
where the document d = {di}Ni=1 is retrieved for
the query q, our objective is to generate the ad-
versarial counterpart d′ with N · prpert perturbed
tokens, where prpert is a pre-defined hyperparame-
ter and N is the number of tokens in d. The steps,
including crossover, mutation, and selection, are
repeated Niter times after initialization.

Initialization. Our attack begins with the initial-
ization step. We first construct the initial population
P0, consisting of adversarial documents d′

i, formal-
ized as P = {d′

i}Si=1, where S is the total number
of documents in the population. In detail, generat-
ing the adversarial document d′

i involves selecting
tokens for the attack, applying perturbations, and
assembling the modified document. Initially, to
determine which tokens to alter, a subset of in-
dices I ′ containing N · prpert. indices is randomly
selected from the complete set of token indices
I = {1, . . . , N}, where N represents the total num-
ber of tokens in the document d. This selection is
designed to exclude any indices that correspond
to the correct answer a within the document, thus
ensuring that the perturbations focus exclusively
on assessing the impact of noise. Each selected
token di is then transformed using the function f ,
yielding a perturbed version d′i, for i ∈ I ′ ⊂ I .
The final document d′ merges the set of unaltered
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Figure 2: (Left) The search space formulated by our proposed attack objectives, LRSR and LGPR. (Right) An overview of the
iterative process implemented by our proposed method, GARAG.

tokens T = {di|i /∈ I \I ′} with the set of modified
tokens, represented by T ′ = {d′j |j ∈ I ′}, forming
d′ = T ∪ T ′. In Figure 2, the figure on the right
shows the initialization step where the initial (par-
ent) documents are represented as orange-colored
dots, given the star-shaped original document.

Crossover & Mutation. Then, through the
crossover and mutation steps, the adversarial docu-
ments are generated by balancing the exploitation
of existing knowledge within the current popula-
tion (parent documents) and the exploration of new
documents (offspring documents). In detail, the
crossover step generates offspring documents by re-
combining tokens from pairs of parent documents,
incorporating their most effective adversarial fea-
tures. Subsequently, the mutation step introduces
new perturbations to some tokens in the offspring,
aiming to explore genetic variations that are not
present in the parent documents.

Formally, the crossover step selects Nparents pairs
of parent documents from the population P . Let
d′
0 and d′

1 be the selected parent documents along
with their perturbed token sets T ′

0 and T ′
1, respec-

tively. Then, the swapping tokens perturbed in each
parent document generate the offspring documents,
excluding those in the shared set T ′

0∩T ′
1. The num-

ber of swapping tokens is determined by the prede-
fined crossover rate prcross, applied to the number
of unique perturbed tokens in each document.

The mutation step selects two corresponding sub-
sets of tokens, M from the original token set T and
M ′ from the perturbed token set T ′, ensuring that
both subsets are of equal size |M | = |M ′|. The
size of these subsets is determined by the prede-
fined mutation probability prmut., which is applied
to prpert. · N . Tokens di ∈ M are altered using a
perturbation function f , whereas tokens d′j ∈ M ′

are reverted to their original states dj . Following
this, the sets of unperturbed and perturbed tokens,
Tnew and T ′

new, respectively, are updated to incorpo-

rate these modifications: Tnew = (T \M)∪M ′ and
T ′

new = (T ′ \M ′) ∪M . The newly mutated docu-
ment, d′

new, is composed of the updated sets Tnew
and T ′

new, and the offspring set O is then formed,
comprising these mutated documents. The off-
spring documents are represented by blue-colored
dots in the figure on the right in Figure 2.

Selection. The remaining step is to select the
most optimal adversarial documents from the com-
bined set P̂ = P ∪O, which includes both parent
and offspring documents. Specifically, each docu-
ment within P̂ is evaluated against the two attack
objectives, LRSR and LGPR, to assess their effec-
tiveness in the adversarial context. Therefore, we
incorporate a non-dominated sorting strategy (Deb
et al., 2002) to identify the optimal set of docu-
ments, known as the Pareto front. In this front,
each document is characterized by having all ob-
jective values lower than those in any other set, as
shown in the right of Figure 2. Then, the docu-
ments in the Pareto front will be located in a holis-
tic error zone closer to the origin. Additionally, to
help preserve diversity within the document pop-
ulation, we further utilize the crowding distance
sorting strategy to identify adversarial documents
that possess unique knowledge by measuring how
isolated each document is relative to others. Then,
the most adversarial document d∗ is selected from
a less crowded region of the Pareto front. Details
of a non-dominated sorting algorithm are described
in Appendix A.4.

Note that this process, including crossover, muta-
tion, and selection steps, continues iteratively until
a successful attack is achieved, where the selected
adversarial document d∗ prompts an incorrect an-
swer a′, as illustrated in the figure on the right in
Figure 2. If the process fails to produce a success-
ful attack, it persists through the predefined number
of iterations, Niter..
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Table 1: Results of adversarial attacks using GARAG, aver-
aged across three datasets, NQ, TQA, and SQuAD. The most
vulnerable results are in bold.

Attack Success Ratio (↑) End-to-End (↓)
Retriever LLM ASRR ASRL ASRT EM Acc

DPR

Llama2-7b 79.2 90.5 70.1 77.1 81.3
Llama2-13b 78.4 92.0 70.8 81.9 87.3

Vicuna-7b 88.7 80.7 69.8 57.2 79.3
Vicuna-13b 88.8 81.6 70.8 58.4 83.2

Mistral-7b 83.7 85.5 69.5 66.7 96.5

Contriever

Llama2-7b 85.3 91.0 76.6 75.0 79.6
Llama2-13b 82.0 92.0 74.2 80.7 87.3

Vicuna-7b 92.1 81.5 73.9 55.1 76.9
Vicuna-13b 91.3 83.2 74.7 53.5 79.5

Mistral-7b 89.2 86.6 75.9 63.1 95.3

w/o GARAG - - - 100 100

4 Experimental Setup

In this section, we describe the experimental setup.

4.1 Model

Retriever. We use two recent dense retriev-
ers: DPR (Karpukhin et al., 2020), a supervised
one trained on query-document pairs, and Con-
triever (Izacard et al., 2022), an unsupervised one.

Reader. Following concurrent work (Asai et al.,
2024; Wang et al., 2024) that utilizes LLMs as read-
ers for the RAG system, with parameters ranging
from 7B to 13B, we have selected open-source
LLMs of similar capacities: Llama2 (Touvron
et al., 2023), Vicuna (Chiang et al., 2023), and Mis-
tral (Jiang et al., 2023). Each model has been either
chat-versioned or instruction-tuned. To adapt these
models for open-domain QA tasks, we employ a
zero-shot prompting template for exact match QA
derived from Wang et al. (2024).

4.2 Dataset

We leverage three representative QA datasets: Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
TriviaQA (TQA) (Joshi et al., 2017), and SQuAD
(SQD) (Rajpurkar et al., 2016), following the se-
tups of Karpukhin et al. (2020). To assess the ro-
bustness of the RAG system, we randomly extract
1,000 instances of the triple (q,d,a). In each triple,
q is a question from the datasets, d is a document
from the top-100 documents retrieved from the
Wikipedia corpus corresponding to q, and a is the
answer generated by the LLM, which is considered
as correct for the specific question-document pair.

4.3 Evaluation Metric

To measure the effectiveness of GARAG and the ac-
tual impact of generated adversarial documents on

Table 2: Retrieval performance under RAG system us-
ing Llama-7b when the adversarial documents generated by
GARAG are injected into the retrieval corpus.

DPR Contriever

Dataset Attacked MAP@100 NDCG@100 ASRR MAP@100 NDCG@100 ASRR

NQ ✗ .417 .633 - .248 .489 -
✓ .356 .593 75.4 .219 .462 85.9

TQA ✗ .532 .740 - .337 .696 -
✓ .471 .696 78.2 .298 .559 84.9

SQD ✗ .321 .540 - .267 .498 -
✓ .279 .513 80.0 .223 .468 86.1

RAG systems, we incorporate two types of metrics
to show the effectiveness of the adversarial attacks
and the end-to-end QA performance measuring the
actual impact on the RAG system.

Attack Success Ratio (ASR). Attack Success
Ratio (ASR) is the ratio of the generated docu-
ments from the adversarial attack, located in the
holistic error zone (i.e., the values below 1 for LRSR
and LGPR). Specifically, ASR is for measuring the
effectiveness of the proposed method addressing
dual-objective optimization problems.

End-to-End Performance (E2E). To evaluate
the impact of the adversarial document on RAG
systems, we report it with standard QA metrics:
Exact Match (EM) and Accuracy (Acc). EM
evaluates if a prediction precisely matches the cor-
rect answer, while Acc checks if the answer span
is included in the predicted response. If the attack
fails (i.e., either value for LRSR or LGPR exceeds
1), we transmit the original document d to LLM
instead of the adversarial one d′ during prediction.

4.4 Implementation Details
The proposed method, GARAG, was configured
with hyperparameters: Niter was set to 25, Nparents
to 10, and S to 25. prpert, prcross, and prmut were
set to 0.2, 0.2, and 0.4, respectively. The opera-
tions of perturbation function f in GARAG consist
of the inner swap, truncate, keyboard typo, and nat-
ural typo, following Eger and Benz (2020)3. For
computing resources, we use A100 GPU clusters.

5 Results

In this section, we show our experimental results
with an in-depth analysis of the adversarial attack.

5.1 Main Result.
Table 1 shows our main results averaged over three
datasets using GARAG with two metrics: attack

3https://github.com/yannikbenz/zeroe
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Figure 3: Adversarial attack analysis on the NQ dataset using Contriever and Llama2-7b: (Left) Variations in ASR and EM
scores as the prpert increases from 0 to 0.9, with ASR shown in blue and EM in red. (Center) Variations in ASR and EM
scores across increasing iterations (Niter), also indicated in blue and red respectively. (Right) Distribution of correctness among
predictions depending on LGPR.

Figure 4: Confusion matrices of prediction from d∗ across
EM and Acc. on NQ with Contriever.

success ratio (ASR) and end-to-end performance
(E2E). First, a notable success rate of over 70%
across all scenarios indicates that GARAG effec-
tively locates adversarial documents within the
holistic error zone by simultaneously considering
retrieval and reader errors. Additionally, we ana-
lyze the E2E performance to assess how adversarial
attacks impact overall QA performance. Based on
the EM metric, the performance of RAG systems
decreased by an average of 30% and a maximum
of close to 50% in all cases. These findings imply
that noisy documents with minor errors, frequently
found in the real world, can pose significant risks
to downstream tasks using RAG.

Impact on Retrieval Ability. We qualitatively
explored the impact of adversarial documents on
the RAG system’s retrieval ability. After injecting
these documents into the original retrieval corpus,
we evaluated the results using conventional IR met-
rics like MAP and NDCG. As shown in Table 2,
the adversarial documents degrade retrieval perfor-
mance across all scenarios, despite being assessed
solely by the LRSR in the GARAG process without
considering the entire retriever corpus. Addition-
ally, as DPR achieves better retrieval performance
both before and after the attack, these results sug-
gest that retrievers with superior retrieval perfor-
mance tend to be more robust against typos.

Impact on Grounding Ability. We further ana-
lyze the response patterns of LLM to adversarial
documents, categorizing the results based on EM
and Acc as shown in Figure 4. For instance, an
EM of 0 and Acc of 1 indicates that the response

includes the correct answer along with irrelevant
tokens, whereas an EM and Acc of 0 means that the
response is entirely incorrect, likely a hallucination.
First, Llama2 tends to produce exact matches more
frequently, as evidenced by a high rate of (1,1)
outcomes. but struggles with completely incorrect
responses under adversarial conditions, indicated
by a lower proportion of (0,1). By contrast, Mistral,
despite fewer exact matches, consistently includes
the correct answer span in its responses. These
insights are vital for understanding how different
models perform in realistic scenarios, especially
when handling noisy or adversarially altered doc-
uments, highlighting the varied impacts of such
conditions on LLMs.

Impact of prpert and Niter Then, we further ex-
plore how varying the perturbation probability
prpert or the number of iterations Niter affects the
attack outcomes. As the left and center figures of
Figure 3 illustrate, there is an apparent correlation
between the attack success rates for the retriever
(ASRR) and the entire pipeline (ASRT ). More-
over, the consistently high success rate for the LLM
(ASRL) across all cases highlights a significant vul-
nerability in the reader against typos. These find-
ings highlight the critical role of the retriever as a
first line of defense in the RAG system. Interest-
ingly, in the left figure of Figure 3, the results indi-
cate that a lower proportion of perturbation within
a document leads to a more disruptive impact on
the RAG system. These experimental results sug-
gests that documents with a few typos, which are
common in the wild, could have a more detrimental
effect on performance.

This phenomenon is counter-intuitive, as other
attack approaches typically show that more attack
vectors lead to stronger adversarial effects. We
speculate that this occurs because the training data
for neural retrievers generally consists of clean doc-
uments without typos, making it easier for the re-
triever to identify and reject documents with many
errors. In contrast, LLMs, which are also trained
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Table 3: Ablation study of GARAG on NQ with Contriever
and Llama-7b.

ASR E2E

ASRR ASRL ASRT EM

GARAG 85.9 91.1 77.5 70.1

Low-level Perturbations included f

Natural Typo 88.8 90.0 78.8 75.4
Keyboard Typo 84.6 91.4 76.2 71.2
Truncate 89.2 90.2 79.4 71.4
Inner Swap 83.4 87.8 71.4 78.0

Low-level Perturbations not included f

Punc. 93.0 93.7 86.7 68.9
Phonetic. 84.7 92.1 76.8 70.0
Visual. 77.7 90.5 68.8 72.5

Table 4: Adversarial attack on paraphrased query on NQ with
Contriever and Llama-7b.

Paraphrased Attacked ASRR ASRL ASRT EM

✗ ✗ - - - 100
✗ ✓ 85.9 91.1 77.5 70.1

✓ ✗ - - - 79.1
✓ ✓ 72.8 62.5 44.1 75.1

on clean texts, struggle to generate correct answers
when typos are present. The errors cause the docu-
ment to lose key information or clarity, making it
difficult for the model to infer the correct answer.

Impact of Lowering LGPR. Since the value of
LGPR does not directly indicate the likelihood of
generating incorrect answers with auto-regressive
models, we analyze the correlation between the
likelihood of generating incorrect answers and
LGPR. As illustrated in the right panel of Figure 3,
we categorize predictions into buckets based on
their LGPR ranges and calculate the proportion of
incorrect answers within each bucket. The results
validate our objective design, demonstrating that a
lower LGPR value is associated with a higher likeli-
hood of incorrect responses.

5.2 Analysis

Evaluation on Paraphrased Query. To create
a more realistic scenario, we tested the effect of
noisy documents with paraphrased queries that
were not used in the adversarial attack. After
generating an adversarial document for a given
document-query pair, we paraphrased the query
using GPT-3.5 (Brown et al., 2020). These para-
phrased queries, while not part of the adversar-
ial document generation, still seek the same an-
swers as the original ones. As shown in Table 4,
our results demonstrate the robustness of adversar-
ial documents generated by GARAG. While these
documents are less effective against paraphrased

Table 5: Comparison with other search methods on NQ with
Contriever and Llama-7b.

ASR E2E

ASRR ASRL ASRT EM

GARAG 85.9 91.1 77.5 70.1
GARAG on Retriever 96.6 18.0 18.0 94.4
GARAG on LLM 33.2 100.0 33.2 85.2

DS on Retriever 94.8 56.6 53.8 89.2
DS on LLM 16.0 100.0 16.0 90.4

GS on Retriever 26.5 75.0 4.6 93.2
GS on LLM 4.9 96.2 17.8 97.2

queries, resulting in lower ASR and higher EM
scores, they still degrade RAG system performance
after attacks. The paraphrased queries also destabi-
lize RAG systems, underscoring their vulnerability
in dynamic, real-world settings like human-RAG
system interactions.

Types of Low-level Perturbation. Table 3
presents the results of an ablation study on the oper-
ations included and excluded in the transformation
function f . Using multiple operations in f as the
default setup consistently outperformed all single
operations included in f , highlighting GARAG’s
ability to exploit promising areas in a vast search
space. Furthermore, the other types of low-level
perturbations not initially included in f—such as
punctuation insertion, phonetic similarity, and vi-
sual similarity—successfully comprise the RAG
system with a significant performance drop. No-
tably, punctuation insertion alone compromised
the system in 86% of the attacks, demonstrating
GARAG’s effectiveness in leveraging diverse per-
turbations for attacks.

Comparison with Other Search Methods. We
validated the effectiveness of our proposed method,
GARAG, by comparing it with two search methods
based on word importance calculated through dele-
tion scoring (DS) and gradient scoring (GS). Note
that both methods can target only a single module.
As shown in Table 5, these single-targeted methods
fail to comprehensively search for adversarial docu-
ments across all modules. Even when implemented
for single-module attacks, GARAG achieves sig-
nificantly higher ASR and lower E2E than other
methods, demonstrating the genetic algorithm’s ef-
fectiveness. This underscores the importance of
attacking both retriever and reader rather than tar-
geting a single module.

Defense Strategy. Various defense mechanisms
against adversarial attacks in NLP have been pro-
posed. Adversarial training, fine-tuning the model
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Table 6: Case study with Contriever and Llama-7b, where perturbed texts are in red and correct answers are in blue .

Question Who sang the first line of ‘We Are The World’?
Noisy Document We Are the World lines in the sing’s repetitive chorus proclaim, "We are the world, we are the children, we

are the onss who make a brighger day, so letś start giving". "We Are the World" pens with Lionel Richie
, Stevie Wonder , Paul Simon , Kenny Rogers , James Ingram , Tina Turner , and Billy Joel singing
the first verse. Michael Jackson and Diana Ross f0llow , completing the first choruc together. Dionne
Warwick, Willif Nelson, and Al Jarreau singe the second vers4 , before Bruce Springsteen, Kenny
Loggins, Steve Perry, and Daryl Hall go through the second chorus.

Answer Stevie Wonder, Tina Turner, Billy Joel, James Ingram, Kenny Rogers, Paul Simon, Lionel Richie
Prediction Michael Jackson

Figure 5: Distribution of grammatically correct documents
among d∗ on NQ with the Contriever and Llama2-7b.

on adversarial samples, is a popular approach (Yoo
and Qi, 2021b). However, this strategy is not
practically viable for RAG systems, given the pro-
hibitive training costs associated with models ex-
ceeding a billion parameters. Alternatively, a gram-
mar checker is an effective defense against low-
level perturbations within documents (Formento
et al., 2023). Our analysis, depicted in Figure 5,
compares the grammatical correctness of original
and adversarial documents via grammar checker
model 4 presented in Dehghan et al. (2022). It re-
veals that approximately 50% of the original and
clean samples are determined to be the nosiy docu-
ments containing grammatical errors. Also, even
within the adversarial set, about 25% of the samples
maintain grammatical correctness at a low perturba-
tion level. This observation highlights a critical lim-
itation: relying solely on a grammar checker would
result in dismissing many original documents and
accepting some adversarial ones. Consequently,
this underscores the limitations of grammar check-
ers as a standalone defense and points to more
sophisticated and tailored defense strategies.

Case Study. We further qualitatively assess the
impact of low-level textual perturbations within a
document in Table 6. Note that since we ensure
that the answer spans remain unperturbed, LLMs
should ideally generate correct answers. However,
interestingly, an LLM fails to identify the correct
answers, which are mentioned in the document, but
instead generates an incorrect answer, “Michael

4https://huggingface.co/imohammad12/GRS-Grammar-
Checker-DeBerta

Jackson,” included in the document. To this end,
we would like to emphasize that addressing typo-
graphical errors is a complex challenge that re-
quires many considerations in defense against the
threat of typos, which seems relatively trivial. In
our all experiments, we didn’t perturb the tokens
included in the correct answer span, as shown in
Table 6, and we empirically validated that RAG
systems often can’t generate correct answers from
the document, even including the correct answers.
This poses a critical question: Should we discard
such documents because of typographical errors or
find ways to use this information effectively within
them? These considerations highlight the need for
comprehensive and sophisticated defense strate-
gies, underscoring the ongoing vulnerability within
RAG systems.

In Appendix B, we provide detailed results of
adversarial attacks for each dataset and analysis in-
cluding comparing high-level perturbation attacks
and attacking closed-source models.

6 Conclusion

In this work, we highlighted the importance of as-
sessing the overall robustness of the retriever and
reader components within the RAG system, par-
ticularly against noisy documents containing mi-
nor typos that are common in real-world databases.
Specifically, we proposed two objectives to eval-
uate the resilience of each component, focusing
on their sequential dependencies. Furthermore, to
simulate real-world noises with low-level pertur-
bations, we introduced a novel adversarial attack
method, GARAG, incorporating a genetic algorithm.
Our findings indicate that noisy documents criti-
cally hurt the RAG system, significantly degrading
its performance. Although the retriever serves as a
protective barrier for the reader, it still remains sus-
ceptible to minor disruptions. Our GARAG shows
promise as an adversarial attack strategy when as-
sessing the holistic robustness of RAG systems
against various low-level perturbations.
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Limitation

In this work, we explored the robustness of the
RAG system by using various recent open-source
LLMs of different sizes, which are widely used as
reader components in this system. However, due
to our limited academic budget, we could not in-
clude much larger black-box LLMs such as the
GPT series models, which have a hundred billion
parameters. We believe that exploring the robust-
ness of these LLMs as reader components would
be a valuable line of future work. Furthermore,
GARAG aims for the optimal adversarial document
to be located within a holistic error zone, by simul-
taneously considering both retrieval and grounding
errors. However, we would like to note that even
though the adversarial document is located within
the holistic error zone, this does not necessarily
mean that the reader will always generate incorrect
answers for every query, due to the auto-regressive
nature of how reader models generate tokens. Nev-
ertheless, as shown in the right figure of Figure 3
and discussed in its analysis, we would like to em-
phasize that there is a clear correlation: a lower
LGPR value is associated with a higher likelihood
of incorrect responses.

Ethics Statement

We designed a novel attack strategy for the purpose
of building robust and safe RAG systems when
deployed in the real world. However, given the
potential for malicious users to exploit our GARAG
and deliberately attack the system, it is crucial to
consider these scenarios. Therefore, to prevent
such incidents, we also present a defense strategy,
detailed in Figure 5 and its analysis. Addition-
ally, we believe that developing a range of defense
strategies remains a critical area for future work.
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A Implementation Detail

A.1 Operations

We explore four types of low-level perturbations,
capturing the unpredictable and diverse nature of
textual typos from Eger and Benz (2020). The
operations of transformation function f in our work
are as follows:

• Inner-Shuffle: Randomly shuffles the letters
within a subsequence of a word token, limited
to words with more than three characters.

• Truncate: Removes a random number of let-
ters from a word token’s beginning or end.
This operation is restricted to words with more
than three characters, with a maximum of
three characters removed.

• Keyboard Typo: Substitutes a letter with its
adjacent counterpart on an English keyboard
layout to simulate human typing errors. Only
one character per word is replaced.

• Natural Typo: Replaces letters based on com-
mon human errors derived from Wikipedia’s
edit history. This operation encompasses a
variety of error types, including phonetic er-
rors, omissions, morphological errors, and
their combinations.

Additionally, we explore other types of low-level
perturbations, such as punctuation insertion and
phonetic and visual similarity. The operations of
these low-level perturbations are as follows:

• Punctuation Insertion: Insert random punc-
tuations into the beginning or end of a word
token. We insert a maximum of three identical
punctuations into the beginning or end of the
word. Exploited punctuations are " ,.’!?; ".

• Phonetic Similarity: Swap the characters
in a word into the other tokens having pho-
netic similarity with the original ones. We
exploit two types of phonetic similarity at-
tacks from Eger and Benz (2020) and Le et al.
(2022).

• Visual Similarity: Swap the characters in a
word into the other tokens having visual simi-
larity with the original ones. We exploit two
types of phonetic similarity attacks from Eger
et al. (2019).

A.2 Details of Attack Objectives

In this section, we explain the details of the attack
objectives: the Relevance Score Ratio (RSR) and
the Generation Probability Ratio (GPR).

First, the Relevance Score Ratio (RSR) calcu-
lates the ratio of the relevance score from the adver-
sarial document d′ to the score from the original
document d for a given query q. This ratio mea-
sures the superiority of the relevance score for q
between d and d′. For instance, if the RSR value
is below 1, the relevance score from d′ is higher
than that from d. Although this ratio is relative to
the original document d and does not capture the
actual rank in the retriever corpus, we validated
the actual performance degradation of the retriever
models, as shown in Table 2.

The Generation Probability Ratio (GPR) calcu-
lates the ratio of the generation probabilities of the
correct answer a from the original pair (d, q) to
the probability from the adversarial pair (d′, q).
The generation probability of the answer a for a
document-query pair (d, q) is the joint probabil-
ity over the answer tokens in a, represented as
p(a|d, q) = ∏L

i=1 p(ai|a<i,d, q). This ratio mea-
sures the likelihood that the adversarial document
will cause the LLM to generate the correct answer
a compared to the original document d. For in-
stance, if the GPR value is below 1, the adversarial
document d′ is more successful in distracting the
LLM than the original document d. Although this
measurement does not directly imply generating
incorrect answers, we validate the correlation be-
tween GPR and the correctness of predictions, as
shown in the right panel of Figure 3. These results
highlight that lowering the GPR tends to induce the
generation of more incorrect answers.

A.3 Process of GARAG
The detailed process of GARAG is showcased in
Algorithm 1. Our process begins with the initializa-
tion of the adversarial document population, and
then the population repeats the cycles of crossover,
mutation, and selection.

A.4 Sorting Algorithm
In this study, we utilize the sorting algorithms from
NSGA-II (Deb et al., 2002) to identify the most ad-
versarial documents within extensive search spaces
of noisy documents derived from an original docu-
ment. The algorithm employs non-dominated sort-
ing coupled with crowding distance sorting to or-
ganize the population.
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Algorithm 1: Genetic Attack on RAG
Input: Query q, Document d, Number of iterations

Niter, Number of parents Nparent, Population
size S, Perturbation rate prper, Crossover rate
prcross, Mutation rate prmut

Function: Non-dominated sorting NDS, Crowd
sorting CS

Output: Adversarial document d′∗

// Initialization

P0 ← {d′
i}Si=1 with prper;

for i = 1 to Niter do
// Crossover
O ← CROSSOVER(Pi−1, Nparent, prcross);
// Mutation
O ← MUTATE(O, prmut);
// Selection

P̂i ← Pi−1 ∪O;
for d′ in P̂i do

Evaluate LRSR(d
′) and LGPR(d

′);

P̂i ← CS(NDS(P̂i));
d∗ ← Top-1(P̂i) ;
if a ̸= LLM(d∗, q; θ) and LRSR(d

∗) < 1 then
return d∗ as adversarial example;

Pi ← Top-S(P̂i);

d∗ ← Top-1(PNiter) ;
return d∗ as adversarial example;

Algorithm 2: Non-Dominated Sorting Algorithm
Input: Population P
Output: Document Set Fi having the front level i
for d′ ∈ P do

Sd′ ← ∅;
nd′ ← 0;
for d′′ ∈ P do

if d′ ≺ d′′ then
Sd′ ← Sd′ ∪ {d′′};

else
if d′′ ≺ d′ then

nd′ ← nd′ + 1;

if nd′ = 0 then
d′

rank ← 1;
F1 ← F1 ∪ {d′};

i← 1;
while Fi ̸= ∅ do

Q← ∅;
for d′ ∈ Fi do

for d′′ ∈ Sp do
nd′′ ← nd′′ − 1;
if nd′′ = 0 then

d′′
rank ← i+ 1;

Q← Q ∪ {d′′};

i← i+ 1;
Fi ← Q;

Non-Dominated Sorting. Initially, non-
dominated sorting arranges the adversarial
documents into different front levels, ensuring that

documents within the same level do not dominate
one another. The domination relation between the
adversarial documents is defined as follows:

Definition A.1 (Domination). Given two adver-
sarial documents d′

i and d′
j perturbed from the

original document d leading to generate correct
answer a for a query q, d′

i is said to dominate
d′
j (i.e., d′

j ≺ d′
i) if the following conditions are

satisfied:

• LRSR(d
′
i) < LRSR(d

′
j)

• LGPR(d
′
i) < LGPR(d

′
j)

The specifics of non-dominated sorting are illus-
trated in Algorithm 2.

Crowding Distance Sorting The crowding dis-
tance sorting is applied to rank the documents
within each front level. The crowding distance
is a crucial part of the algorithm, helping maintain
population diversity by giving higher preference to
solutions in less crowded regions.

The process of calculating crowding distance in
a population begins by assigning each individual a
crowding distance value of zero. The population
is then sorted in ascending order for each objec-
tive function. Boundary points, the first and last
individuals in each sorted list, are assigned an in-
finite crowding distance to ensure their selection.
For all other individuals, the crowding distance is
calculated by normalizing the difference in objec-
tive function values between adjacent individuals,
adjusted by the range of the objective values in the
population, as given by d(i) = d(i) + fi+1−fi−1

fmax−fmin
.

This calculation is repeated for each objective func-
tion. Finally, the individual crowding distances
computed for each objective are summed to esti-
mate the density of solutions surrounding a partic-
ular solution, facilitating the selection of diverse
solutions in multi-objective optimization.

A.5 Template

We adopt the zero-shot prompting template optimal
for exact QA tasks, following (Wang et al., 2024),
for all LLMs exploited in our experiments.
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QA Template for LLMs

[INST] Documents:
{Document}

Answer the following question with a very
short phrase, such as "1998", "May 16th, 1931", or
"James Bond", to meet the criteria of exact match
datasets.

Question: {Question} [/INST]

Answer:

B Additional Results

B.1 Overall Result

Table 9 shows the overall results across three QA
datasets, two retrievers, and five LLMs.

B.2 Comparison with HotFlip

Table 7: Comparison with HotFlip Attack on NQ with Con-
triever and Llama-7b.

ASR E2E

ASRR ASRL ASRT EM

GARAG 85.9 91.1 77.5 70.1
GARAG on Retriever 96.6 18.0 18.0 94.4
GARAG on LLM 33.2 100.0 33.2 85.2

HotFlip on Retriever 100.0 79.0 79.0 59.6
HotFlip on LLM 6.1 99.9 6.1 94.9

We compare the vulnerability of low-level pertur-
bations with high-level perturbations implemented
by HotFlip (Ebrahimi et al., 2018) targeting each
module within RAG systems, following the settings
of Zhong et al. (2023). Note that HotFlip is for
high-level perturbations based on word swap, not
for low-level perturbations targeting our work. As
shown in Table 7, HotFlip on the retriever showed
a higher attack success rate and significant perfor-
mance degradation compared to LLM, confirming
the retriever acts as a shield for the RAG system.
Also, HotFlip, with its gradient-based optimization,
inevitably finds more adversarial documents than
GARAG, showing a lower EM score than GARAG
after the attack. However, as ours is the black-box
attack just relying on the outputs of the model, not
requiring any gradient calculation, it can applied to
more diverse scenarios such as exploiting diverse
types of perturbations or attacking closed-source
models such as ChatGPT (Brown et al., 2020).

B.3 Adversarial Attack on Closed-source
Model

We further explore the applicability of black-box at-
tacks on the closed-source model, GPT-3.5. Since

Table 8: Adversarial attack with GARAG on NQ to GPT-3.5

Retriever ASR E2E

ASRR ASRL ASRT EM

DPR 64.7 85.3 50.0 88.2
Contriever 74.0 86.3 60.3 83.6

OpenAI limits access to their models, prevent-
ing operations such as gradient calculation for
loss objectives, gradient-based attacks like Hot-
Flip (Ebrahimi et al., 2018) cannot be applied.
However, our proposed method, GARAG, can as-
sess the vulnerability of such models as it only
requires model outputs for adversarial attacks. Ta-
ble 8 presents the results of adversarial attacks on
GPT-3.5 with two types of retrievers: DPR and
Contriever. Although GPT-3.5 showed some weak-
ness to textual typos, it was more robust than the 7B
to 13B size models primarily tested in this experi-
ment. Additionally, the results align with our previ-
ous experiments, demonstrating that DPR, which
has stronger search performance, is more robust
against typos.

B.4 Changes in Population Distribution
Across Iterations in GARAG

Figure 6: The process of population refinement by GARAG
on NQ with Contriever and Llama-7b

We provide a detailed distribution of how the
population is refined through the iterative process,
as illustrated in Figure 6. As the iteration number
increases, the population distribution progressively
converges towards the holistic error zone, demon-
strating the effectiveness of GARAG in optimiza-
tion.

B.5 Case Study

We conducted case studies with diverse LLMs, in-
cluding Llama-7b, Vicuna-7b, and Mistral-7b, as
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shown in Table 10. In all these studies, while the
correct answer tokens were not perturbed — allow-
ing for the possibility of grounding correct infor-
mation — the LLMs typically failed to answer the
correct knowledge within the document. This often
resulted in incorrect predictions or even halluci-
nations, where the answer was not just wrong but
absent from the document. However, there was an
exception with Mistral-7b, which generated the cor-
rect answer and additional explanatory text. While
this prediction did not meet the Exact Match (EM)
metric, it was semantically correct.
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Table 9: Adversarial attack results of GARAG on three QA datasets across different retrievers and LLMs.

NQ TriviaQA SQuAD

ASR(↑) E2E(↓) ASR(↑) E2E(↓) ASR(↑) E2E(↓)
Retriever LLM ASRR ASRL ASRT EM Acc. ASRR ASRL ASRT EM Acc. ASRR ASRL ASRT EM Acc.

DPR

Llama2-7b 75.4 89.8 66.0 76.8 80.6 78.2 91.7 70.2 81.6 85.3 84.1 90.1 74.2 73.0 78.
Llama2-13b 71.3 91.7 63.5 82.8 88.2 83.9 92.0 76.1 76.7 83.3 80.0 92.4 72.7 86.3 90.5

Vicuna-7b 83.0 81.6 65.1 62.0 79.2 91.1 79.5 70.8 58.4 81.7 92.0 81.1 73.4 51.2 76.9
Vicuna-13b 82.8 80.9 64.4 58.5 83.3 91.8 83.5 75.4 59.2 85.7 91.7 80.5 72.5 57.4 80.5

Mistral-7b 78.5 85.9 65.1 69.1 96.5 84.7 84.9 69.8 66.5 97.7 87.8 85.7 73.5 64.4 95.2

Contriever

Llama2-7b 85.9 91.1 77.5 70.1 74.7 84.9 90.7 76.0 82.0 86.9 85.2 91.2 76.4 72.9 77.2
Llama2-13b 78.9 91.2 70.5 78.7 85.7 81.0 91.9 72.9 86.2 91.7 86.1 93.0 79.1 77.2 84.5

Vicuna-7b 90.8 81.3 72.4 52.2 72.5 93.0 80.8 74.0 60.3 81.5 92.6 82.5 75.2 52.7 76.7
Vicuna-13b 87.5 85.5 73.3 63.9 95.4 88.8 86.4 75.2 66.2 97.8 91.2 88.0 79.3 59.2 92.6

Mistral-7b 87.5 85.5 73.3 63.9 95.4 88.8 86.4 75.2 66.2 97.8 91.2 88.0 79.3 59.2 92.6
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Table 10: Case study on NQ with Contriever, where perturbed texts are in red and correct answers are in blue .

Llama-7b

Question Which site of an enzyme is called allosteric site?
Noisy Document A;losteric enzyme Long-range allostery is esprcially imponant in cell signaling. Allosteric regulation is

also particularly important in the cell’s abil9ty to adjusy enzyme activity. The term "allostery" comes from
the Greek "allos", "other," and "stereos", " silid (object)." This is in reference to the fact that the regulatory
site of an allosteric protein is physically distinct from its active site. The protein catalyst (enzyme) may be
paft of a multi-subunit complex, and/or may transiently or permanently associatr with a Cofactor (e.g.
adenosine triphosphate). Catalysis of biochejical reactions is vital due to the very law reaction rates of the
uncatalysed reactioms .

Answer Regulatory site
Prediction Active site

Question Who did Cora marry in once upon a time?
Noisy Document The Millerś Daughter (Once Upon a Time) to the King and accepts Henry ’s resultant marriage proposal.

The day before her wedding, Cora ques6ions her olans ; she is unlikely to become qjeen as Henry is fifth
in linf to the throne, while Rumplestiltskin, with whom she has been having an affair, offers her love. They
agree to amend the contratc so Cora owes Rumplestiltskin "his" child. He also agrees to teach her how
to take a heart, so that she can kilk King Savier. That night, she confromts the king. He reveals that he
knows of her relationship with Rumplestiltskin; telling her that " pove is weakness," he ays

Answer Henry
Prediction Rumplestiltskin

Vicuna-7b

Question What is the 3rd largest state in USA?
Noisy Document Wextern United States LGBT community, and Oakland, California has a large percen5age of residents

being African-American, as well as Long Beadh , California which also has a large Black community.
Ths state of Utah has a Mormon majority (estimate at 62.4% in 2004), while some cities like Albuquerque,
Nrw Mexico; Billkngs , Montqna ; Spokane, Washington; and Tucson, Arizona are located near Indian
Reservations. In remote areas there are settlements of Alaskan Natives and Native Hawaiians. Fqcing
both the Pacitic Ocean and the Mexican border, the West has been shaped by a cariety of ethnic groups.
Hawaii is the only state in the union in which

Answer California, Alaska
Prediction Oregon

Question When did the movie peter pan come out
Noisy Document Peter Pan as an adult by Robin Williams, with iblue eyes and dark brown hair; in flashbacks to him in his

youth, his hwir is light brown. In this film his ears ap;ear poin only when he is Petef Pan, not as Peter
Banning. His Pan attire resembles the D9sney outfit (minus the cap). In the lvie-action 2003 " -eter
Pan" film, he is portrayed by Jeremy Su,pter , who has blond hair and blue-green eyes. His outfit is made
of leaves and vines. J.M. Barrie created his character based on his older brother, Davic , who died in an
ice-skating accieent the day before

Answer 25 December 2003, 2003
Prediction 1998

Mistral-7b

Question Make it or break it who goes to the Olympics?
Noisy Document Make It or Break It A new gymnast, Max (Josh Bowman), cpmes to The Rock, wttracting the attention of

Lauren and Payson . Though Max seems more interested in Payson , she is more focused on her dream.
Lauren tells Payson that Max is her nww boyfriend; Max denies this. Mas, Austin, and Payson hope
Kaylie train in secret, as they try to convince Sasha that Kaylie is ready to compete at Worlds. In the week
of Emily’s departure, Kelly Parke becomes closer to Kaylie , des-ite the scheming of her stage her, Sheila
(Kathy Najimy). Kaylie offers her comfort as Kelly’s mom is only sup[ortive of Kelly’s

Answer Jordan, Payson, Lauren, Colleen, Kaylie
Prediction Kaylie goes to the Olympics

Question When did Michael Jordan get his last ring?
Noisy Document Hisfory of basketball A large place of this is due to the transcendent stars that have played the game through

the years. It was because of the play of Michael Jordan that basketball started to rsach international
audiences, especially on the 992 United States men’s Olympic basketball team, known as the Dream Team.
After his fianl championship and second retirement in 1998 , there was a void as in who would be the face
of basketball. So;n after with the help of Shaquille O’Neal, Koge Bryant would go on to win three straight
championships from 2000–2002 with the Los Angeles kers , helping make basketball

Answer 1998
Prediction 2002. (This is based on the context of the given document stating that Kobe Bryant and Shaquille O’Neal)
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