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Abstract

Personalized product search aims to learn per-
sonalized preferences from search logs and ad-
just the ranking lists returned by engines. Pre-
vious studies have extensively explored exca-
vating valuable features to build accurate inter-
est profiles. However, they overlook that the
user’s attention varies on product attributes(e.g.,
brand, category). Users may especially prefer
specific attributes or switch their preferences
between attributes dynamically. Instead, exist-
ing approaches mix up all attribute features and
let the model automatically extract useful ones
from rather complex scenarios. To solve this
problem, in this paper, we propose a dynamic
multi-attribute interest learning model to tackle
the influences from attributes to user interests.
Specifically, we design two interest profiling
modules: attribute-centered and attribute-aware
profiling. The former focuses on capturing the
user’s preferences on a single attribute, while
the latter focuses on addressing the interests
correlated with multiple attributes within the
search history. Besides, we devise a dynamic
contribution weights strategy that sends explicit
signals to the model to determine the impacts
of different attributes. Experimental results on
large-scale datasets illustrate that our model
significantly improves the results of existing
methods.

1 Introduction

With the rapid growth of e-commerce services, on-
line shopping has become increasingly popular. In
a common e-shopping scenario, the user formulates
her demands into a query and selects the items she
is interested in from the list retrieved by a product
search engine. However, the query could be am-
biguous and have multiple meanings, which makes
it difficult to capture accurate user needs. For in-
stance, the user could enter the query word “MAC”
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to purchase computers, but the search engine can-
not distinguish the needs of computers from those
of cosmetic brands. Furthermore, the query could
also be broad (such as “laptop”), without specify-
ing the brands and desired features of the products
the user wants to buy. Personalized product search
tasks address this challenge by learning interests
from the user history. Researchers have tried exca-
vating features from various views for accurate in-
terest learning. A group of studies aim at improving
the features capturing ability through practical al-
gorithms, including simple embedding-based meth-
ods (Ai et al., 2017), attention-based methods (Ai
et al., 2019), or transformer-based methods (Bi
et al., 2020). Some studies pay attention to extract-
ing features from multiple aspects. Modeling the
impacts of short- and long-term history (Guo et al.,
2019; Bennett et al., 2012; Shen et al., 2022) has
been a popular search topic. Leveraging the prod-
uct reviews (Bi et al., 2021) has also achieved sat-
isfactory results. Some studies also attempt to use
visual resources to model multi-modal preferences.
Other works (Ai et al., 2020; Liu et al., 2020, 2022)
explore relationships between user, items queries
by constructing knowledge graphs with the help of
product attributes (e.g., names, brands).

However, the studies mentioned above overlook
that the users’ interests in different product at-
tributes (such as brands, categories, features, etc.)
are sophisticated. Instead, they simply feed at-
tribute features into the model and let it automati-
cally learn interests from the mixed features. Such
a paradigm neither distinguishes the characteristics
of specific attributes nor explicitly models the influ-
ences among multiple attributes. Hence, we argue
that previous methods do not sufficiently explore
the potential within the attributes to reflect user
interests. As the user behavior sequence shown in
Table 1, the user reveals her special attention for the
product brands while showing less consideration
for the product names and categories. Intrinsically,
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Table 1: Example user histories. Attribute information,
such as brand and category, of purchased products p1,
p2, and p3, and the candidate products c1 and c2 are
listed.

Name Brand Category

Purchased Products

p1 2023 iMac Apple Computer
p2 iPhone 15 Apple Phone
p3 iPad 2018 Apple Tablets

Candidate Products

c1 AirPods Max Apple Headphone
c2 WH-CH720N Sony Headphone

Current query: headphone

the interest in this case should depend more on
the brand features. Whereas, existing studies send
all types of features into the model where other
features would bring more interference than contri-
bution. The obtained interest representation would
include much noise without properly enhancing
important attributes, leading to an underestimation
of the candidate product c1’s relevance. Aiming to
resolve this problem, we propose explicitly enhanc-
ing important attribute features by learning multi-
attribute interest for personalized product search.

To better build multi-attribute interest, we need
to answer the following two questions: 1) how to
represent the user’s interests on specific attributes,
and 2) how to effectively fuse the interests on mul-
tiple attributes. To resolve the first problem, we
attempt to build item/query representations cen-
tered on each attribute. As for the second prob-
lem, we intend to address the attributes’ contribu-
tions using two strategies. The first focuses on
separately learning the user’s attention for each
attribute. To achieve this, we would observe the
affinities of historical attribute-centered item repre-
sentations. Higher affinities indicate that the user’s
tastes on that attribute are stable, so it is impor-
tant to match her tastes again. The second strategy
focuses on simultaneously learning the user inter-
ests that switch between attributes. We compress
the attribute-centered representations from multi-
ple attributes into attribute-aware representations.
Then, we send a sequence of historical representa-
tions into one encoder and let the model draw the
attribute correlations within the history.

Concretely, we propose a Multi-Attribute

Interest learning model (MAI) for personalized
product search. It includes the following four parts:
(1) Attribute-centered interest profiling. For each
attribute, it obtains attribute-centered representa-
tions for queries and items by enhancing corre-
sponding attribute features and feeding them to
corresponding encoders to get the profiles. (2)
Attribute-aware interest profiling. It attends at-
tribute correlations within search history with com-
bined attribute-centered item representations. (3)
Multi-attribute interest fusion. We update attribute-
centered contribution weights by observing the at-
tention weights from the first part. According to
these weights, we calculate the similarity score
between the profiles and their corresponding can-
didate representations to obtain the final ranking
score.

To summarize, the main contributions of this
paper include:

(1) We propose a method of learning multi-
attribute interest for personalized product search in
a dynamic way.

(2) We design an attribute-centered interest pro-
filing module that builds separate profiles by en-
coding item/query representations centered on cor-
responding attributes. We subsequently utilize an
attribute-aware interest profiling module to learn
user interests based upon multiple attributes.

(3) We propose a method for dynamic multi-
attribute fusion that explicitly models the individual
contributions of each attribute.

2 Related Work

2.1 Personalized Product Search

Personalized product search problems aim to im-
prove the ranking quality retrieved from search en-
gines by building accurate user interests from the
purchase history. Many studies focus on exploit-
ing interests in semantic latent space by leveraging
deep learning technology. Guo et al. (2019) utilize
attention networks to learn and integrate long- and
short-term user preferences. Bi et al. (2019) study
short-term clicks to represent users’ hidden intents
with a context-aware embedding model. Ai et al.
(2019) devise a novel attention mechanism which
enables the attention model to attend no input by
introducing a zero vector. Such a zero attention
model successfully allocates different attention to
the users’ search logs according to their current
intent. Recently, since the transformer (Vaswani
et al., 2017) architectures have succeeded in var-
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ious fields, a group of studies attempt to employ
it in personalized product search. For instance,
Bi et al. (2021) design a review-level transformer-
based model that matches the reviews from the
user and item while allowing each review to have
a dynamic impact based on the sequential context.
Recently, Jagatap et al. (2024) explore query gen-
eration and interaction simulation to solve the cold
start problem faced by new categories.

2.2 Aspect-based Interest Learning

There exist some personalized product search stud-
ies that try to learn user interests from various
aspects (e.g., brands, categories, popularity, etc.).
Early methods, as (Lim et al., 2010), require the as-
pects to be structurally organized so the algorithms
can conduct accurate matching between the query
and item. Recent methods obviate such require-
ments thanks to the deep learning technology’s su-
periority in extracting semantic features from free-
form text. Wu et al. (2017) blend multiple models
into a stacking ensemble model where different sub-
models are used for statistic features, query-item
features and session features accordingly. Xiao et al.
(2019) devise a Dynamic Bayesian Metric Learn-
ing model to represent semantic representations of
different categories of users, products, and words
and capture the affinities between them. Subse-
quent studies (Ai et al., 2020; Liu et al., 2022;
Zhu et al., 2024) apply knowledge graphs to jointly
model sophisticated relationships from structured
and unstructured aspects of the user and item.

However, these works blindly send all attributes
into a model and let it automatically extract use-
ful features. This would inevitably bring noise to
the learning process. In contrast, we efficiently en-
hance important attributes with explicit weighting
for simultaneously and separately profiled attribute
interests.

3 Methodology

To start with, the problem could be formulated as
follows. Suppose that for each user, her search
history H includes N purchased items , H =
{h1, . . . , hN}, where hi represents i-th historical
purchased items. Given the current query q and
the candidate target item list C = {c1, c2, . . .} re-
turned by the search engine, our objective is to
model a ranking probability score for each candi-
date item c in C based on the current query q and
the purchased item sequence H .

The overview of our multi-attribute interest
learning model is shown in Figure 1. Later, we
will elaborate on the modeling details following
the three stages: (1) attribute-centered interest pro-
filing, (2) attributed-aware interest profiling and (3)
multi-attribute interest fusion.

3.1 Attribute-centered Interest Profiling

As stated in Section 1, previous approaches could
not efficiently detect interests centered on specific
attributes, for they deteriorate the interesting learn-
ing procedure by feeding the models misleading
signals from other attributes. This module focuses
on solving this problem by preserving attribute-
centered information through separate interest pro-
filing.

3.1.1 Query and Item Representation
Base Query Representation. Following previous
methods (Ai et al., 2019, 2017, 2020), we generate
our base query representation q using a non-linear
projection for the average word embeddings:

q = tanh(Wϕq

∑
wq∈q wq

|q| + bϕq), (1)

where q is the current query, d is the embedding
size, Wϕq ∈ Rd×d and bϕq ∈ Rd are trainable pa-
rameters, |q| is the length of q and wq ∈ Rd is the
embedding of word wq in q. These query represen-
tations would be used to extract features related to
current intents in the attribute-aware interest profil-
ing module.

Attribute-centered Query Representation. We
intend to use the current query to enhance current
intents during attribute-centered interest profiling.
However, these base query representations are in-
dependent of attribute features, so the correlations
between the query and attributes are complex to
capture. As a result, these representations are in-
efficient in enhancing current intents and might
even impede the interest learning from historical
attribute features. As the example shown in Table 1,
using the current query to emphasize the brand at-
tributes will lead to a cluttered profile where the
information of brands and the query are both con-
taminated.

Thus, we will reformulate the query according
to the attributes. Formally, the attribute-centered
query representations are obtained as follows. First,
for attribute ak, we obtain weighted word embed-
dings wak

q of the query q according to each word’s
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Figure 1: The overview of the proposed MAI. Given the user’s purchased items and a current query, we first encode
attribute information for each item and the current query into attributed-centered representations and then send them
to corresponding attribute-centered interest profiling encoders. Besides, we also compress all the attributed-centered
representations of each item to unified vectors and send them to an attribute-aware profiling encoder, where we
model the interactions among attributes simultaneously. After obtaining the interest profiles from each profiling
procedure, we match them with corresponding attribute representations of the candidate item. Finally, we weighted
the matching scores according to contributing weights calculated during profiling.

relationships with recent historical information on
attribute ak:

wak
q = W ak

q wq, (2)

where W ak
q ∈ R|q| is calculated through multi-head

attention. To measure the query-attribute relation-
ship, we take the recent attribute representations
as the query and the query word embeddings as
the key and value. In this way, we enhance query
features that are correlated with recent interests:

W ak
q = MLP([headw1 , . . . , head

w
H ]), (3)

where MLP(·) refers to the multilayer perceptron
(MLP) with softmax(·) function, headwh is the at-
tention weights of the hth head in total H heads
in the multi-head attention layer. The headwh is
obtained as follows:

headwh =Attnw(hak,sWQ
h , qwWK

h , qwW V
h ), (4)

hak,s =[hak
M, . . . ,hak

N ], (5)

where hak,s is the sequence of short-term attribute
representations centered on attribute ak from the
M -th to the N -th purchased item. hak

i refers to

i-th item representation in the purchasing history
centered on attribute ak. The process of getting it
will be explained later. qw is the word embedding
sequence of the query. The projection matrices
of each head WQ

h ∈ Rd×d/H , WK
h ∈ Rd×d/H

and W V
h ∈ Rd×d/H are learned during training.

Attn(·)w is the attention weights from each head:

Attnw(Q,K, V ) = softmax(
QKT

√
d/H

). (6)

At last, we send the weighted embeddings to the
same representing procedure as the base query in
Equation (1) to get the attribute-centered query
representation qak . Such reformulated query rep-
resentations emphasize the query words related to
the corresponding attribute.

Attribute-centered Item Representation. We av-
erage the term vectors of the item’s corresponding
attributes and apply the same non-linear function
in query representing to get the attribute-centered
representation hak

i based on the kth attribute ak.
The process is the same as Equation (1). Wϕh

and
bϕh

are two different parameters used for item rep-
resenting. For the candidate item c, we also encode
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its attribute-centered representation caK for the fi-
nal comparison.

3.1.2 Attribute-centered Interest Learning
We join the attribute-centered item representations
with the attribute-centered query representation to
learn the attribute interests. Transformer encoders
are used to capture the complex interactions within
the history and query. This process can be formu-
lated as follows:

Iak = Trmlast([hak
i + hak,p

i ,qak + qak,p]), (7)

where Iak is the interest profile centered on at-
tribute ak, Trmlast notes the last outputs of the
transformer encoder, which are the query outputs
in this case. We leverage position information by
adding the position embedding hak,p

i and qak,p for
the items and query.

3.1.3 Attribute-centered Interest Weighting
In this part, we model the contributing level of
each independent attribute-centered interest pro-
file learned from previous parts. We inspect the
attention weights of the short-term purchased items
assigned by their previous items during the trans-
former encoding shown in Equation (7). The contri-
bution weights W ak of attribute ak in independent
profiling are computed from the attention weights
of short-term items:

W ak = MLP([Trmw
M , . . . ,Trmw

N ]), (8)

where Trmw
i denotes the last transformed encoder

layer’s attention weights assigned for the ith histor-
ical item from its previous P items. As explained
in Section 1 Higher attention weights suggest the
interests on that attributes are more important. To
make the model focus on recent interests, we only
inspect weights from short-term items.

3.2 Attribute-aware Interest Profiling

As we discussed, user preferences may change be-
tween attributes within the history. Separately pro-
filing attribute-centered interests would fail to cap-
ture such variations. To overcome this obstacle,
in this module we model the information of all
attributes simultaneously. As illustrated in Sec-
tion 1, mixing up all attributes like existing meth-
ods will omit useful features. So, we concatenate
and project the attribute-centered item representa-
tions to preserve multiple attribute features. The
process of obtaining the ith attribute-aware item

representation hi ∈ Rd from K attributes is sym-
bolized as follows:

hi = MLP([ha1
i , . . . ,haK

i ]). (9)

Then, we join the item representations with the base
query representation q to build the attribute-aware
interest profile I:

I = Trmlast([hi + hp
i ,q+ qp]). (10)

Similarly, hp
i and qp are the positional embeddings

associated with the item and query based on their
positions in the search sequence. Note that we di-
rectly use the base query representations because
we want to protect all clues of current intents. Be-
sides, using base query representations to influence
the profiling for attribute-aware interests would not
face the same problem stated in 3.1.1 since item
information is completely preserved.

3.3 Interest Fusion
So far, we have obtained K attribute-centered inter-
est profiles and one attribute-aware interest profile.
With the guidance of contribution weights, we inte-
grate the ranking scores as follows:

score (q,H, c) = MLP([W a1s(Ia1 , ca1), . . . ,

W aks(Iak , cak), s(I, c]).
(11)

s(·) refers to the dot product similarity function.
cai is the attribute-centered candidate item repre-
sentations. c the attribute-aware candidate item
representations generated as Equation (9).

3.4 Model Optimization
Following previous methods (Ai et al., 2017, 2019;
Bi et al., 2021), we optimize our model by maximiz-
ing the log-likelihood of the observed (candidate
item, query, history) triples. The loss function can
be formulated as:

L =
∑

(q,H,c)

L(q,H, c)

=
∑

(q,H,c)

(logP (c|q,H) + logP (q, H))

≈
∑

(q,H,c)

log
exp(score (q,H, c))∑

c′∈C exp(score (q,H, c′))
,

(12)
where logP (q, H) can be ignored for it is prede-
fined as a uniform distribution. Similar to most
methods (Ai et al., 2019, 2017, 2020), we adopt
the negative sampling strategy (Le and Mikolov,
2014; Mikolov et al., 2013) to approximate the
probability on large-scale data.
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4 Experiment Setup

4.1 Datasets

We conduct extensive experiments on JDsearch
dataset1 (Liu et al., 2023)and Amazon dataset2 to
verify and analyze the functionalities of the pro-
posed model. Three types of attributes, product
name, product brand and product category, are cho-
sen for experiments.

JDsearch Dataset The JDsearch dataset is a
large-scale dataset collected for personalized prod-
uct search from JD.com, a popular Chinese online
shopping platform. Following Liu et al. (2023),
we take the last behaviors issued on 2022-10-17
as the testing set and the ones before them as the
training set.

Amazon Dataset We apply the Amazon dataset
to the personalized product search task following
existing works (Ai et al., 2019, 2020). We use the
dense sub-datasets of the corpus where each user
and each item has at least five associated reviews
to collect sufficient information for user profiling.
Since the Amazon datasets are categorized by the
product’s categories, we choose two sub-datasets
that have multiple sub-categories, CDs & Vinyl,
Electronics, to ensure our interest learning on the
category attribute are fed with diverse preferences.
We take the last search of the user history as the test-
ing set, the former 20% as the validation set, and
the rest as the training set. Queries are constructed
from categories following existing works (Ai et al.,
2017; Gysel et al., 2016). The top 100 items ranked
by BM25 (Robertson and Zaragoza, 2009) accord-
ing to all attribute text are taken as candidate items.

4.2 Model Settings and Evaluation metrics

The final parameters of the proposed model are
set as follows: The embedding dimension is 128.
The attribute-centered transformer encoder and the
attribute-aware transformer encoder are 4 heads
with 2 layers. The multi-head attention used for
attribute-centered query representing is 2 heads.
For the JDsearch dataset, the history length is 30,
the short-term history length is 15, and the weight-
ing window size noted as P in Section 3.1.3 is 4.
For the Amazon dataset, the history length is 10,
the short-term history length is 5, and the weighting
window size is 2. We compute MRR@200, Preci-
sion@1, and NDCG@10 for evaluation metrics to
evaluate the models.

1JDsearch: https://github.com/rucliujn/JDsearch
2Amazon: http://jmcauley.ucsd.edu/data/amazon/

4.3 Baselines
We compare our model with ad-hoc models and
personalized models listed as follows:
• BM25 (Robertson and Zaragoza, 2009): It is a

classical ad-hoc retrieval algorithm.
• QEM (Ai et al., 2019): It is an ad-hoc query

embedding model, which gets ranking scores by
matching items with the query.
• HEM (Ai et al., 2017): It learns the seman-

tic representations for items and queries in latent
space.
• DREM (Ai et al., 2020): It creates a dynamic

knowledge graph based on search context and prod-
uct metadata.
• AEM, ZAM (Ai et al., 2019): AEM is

an attention-based embedding model representing
users according to current queries. ZAM is an im-
provement of AEM, which introduces a zero vector
in the attention process to conduct differentiated
personalization.
• TEM (Bi et al., 2020): It dynamically controls

the effects of personalization by encoding the user
history and the query with transformers.
• HGN (Ai and Ramasamy, 2021): It builds

knowledge graphs to explicitly construct user rep-
resentations based on the user’s purchase history.

We follow (Liu et al., 2023) to implement all
models. For a fair comparison, we fed aspect-based
baselines (DREM, HGN) with the same attribute
information used in our model. For other baselines,
we feed them with concatenated attribute words.

5 Results and Analysis

5.1 Overall Performance
The overall results on the three datasets are reported
in Table 2. we find that:

(1) Our model significantly outperforms all
baseline models with paired t-test at p<0.05 level
on every dataset. Specifically, compared to the
state-of-the-art model TEM, our model MAI im-
proves the ranking results on the JDseach dataset
by 4.31% in terms of MRR and 1.84% in terms
of NDCG. These results verify that building multi-
attribute interests is more effective in achieving
personalized product search.

(2) Compared to other aspect-based models (i.e.,
DREM, HGN), our model achieves apparent im-
provements. Generally, personalized models show
superiority over ad-hoc models, proving the neces-
sity of learning interests from history. The poor
results from some KG-based models on JDsearch

2989

https://github.com/rucliujn/JDsearch
http://jmcauley.ucsd.edu/data/amazon/


Table 2: Overall performance. The best results are shown in bold. ‘†’ indicates the model significantly outperforms
all baseline models with paired t-tests at p<0.05 level.

Dataset JDsearch CDs & Vinyl Electronics

Model MRR Prec NDCG MRR Prec NDCG MRR Prec NDCG
Ad-hoc BM25 0.1114 0.0402 0.0940 0.01 0.0001 0.0001 0.0194 0.0096 0.0096

QEM 0.1774 0.0728 0.1705 0.1953 0.1327 0.211 0.2409 0.1421 0.2659
Person- HEM 0.1955 0.0847 0.1905 0.2896 0.2236 0.41 0.2000 0.1248 0.3448
alized DREM 0.1647 0.0632 0.1578 0.2482 0.1549 0.3823 0.1807 0.0916 0.3316

HGN 0.1662 0.0634 0.1591 0.2583 0.1734 0.3873 0.2096 0.1152 0.3373
AEM 0.1971 0.0851 0.1920 0.2977 0.2227 0.3207 0.2571 0.1635 0.2890
ZAM 0.1969 0.0849 0.1920 0.2828 0.2056 0.3022 0.2600 0.1716 0.2838
TEM 0.2229 0.1049 0.2192 0.3558 0.2853 0.3734 0.2234 0.1302 0.2487

Ours MAI 0.2672† 0.1233† 0.2778† 0.3845† 0.2864† 0.4207† 0.2871† 0.1497† 0.3483†

Table 3: Ablation experiments on the JDsearch dataset.

Model MRR Prec NDCG

MAI 0.2672 0.1233 0.2778
w/o. AC 0.1737 0.0680 0.1694
w/o. AA 0.2110 0.0969 0.2026
w/o. QR 0.2602 0.1177 0.2026
w/o. CW 0.2560 0.1135 0.2654

might be due to the dataset’s characteristics, where
the relationships between entities are too sparse
to extract useful features. Thanks to parallel in-
terest profiling and explicit weighting, our MAI
overcomes this obstacle by successfully preserving
and modeling attribute features.

(3) Compared to other transformer-based and
attention-based models (i.e., TEM, AEM, ZAM),
our model boosts the ranking results on each
dataset. It is illustrated that these models yield
the best results owing to these structures’ excellent
ability to capture latent features. Instead of simply
applying the structures to represent items or encod-
ing history sequences, we leverage the attention
weights to reflect relevance.

5.2 Ablation Analysis

We test the functionalities of the four major com-
ponents with several ablations models:

MAI w/o. AC. We abandon the attribute-
centered profiling (AC) described in Section 3.1.

MAI w/o. AA. We delete the attribute-aware
profiling (AA) part described in Section 3.2.

MAI w/o. QR. We substitute the attribute-
centered query representations (QR) in Sec-
tion 3.1.1 with base query representations.

MAI w/o. CW. We strip off the contribution

weighting (CW) in Section 3.1.3.
As the results reported in Table 3, all the abla-

tion models are inferior to the MAI model. Particu-
larly, we can find that:

(1) The most significant performance drop is ob-
served when removing the AC module. Without
AC, the model simply aggregates all attribute in-
formation, similar to other aspect-based models.
Similarly, it faces performance drops due to the
same reason: the lack of relationships among prod-
ucts and attributes. With AC, the attribute features
are clearly distinguished through separate profiling
and explicit weighting.

(2) The “MAI w/o. AA” model also damages
the results by 5.62% on MRR. This verifies the
necessity of attending the correlations of attribute-
aware features simultaneously. Without AA, the
model blocks the information flow among different
attributes within history, which happens for most
users, leading to poor results of the “MAI w/o.
AA”.

(3) The “MAI w/o. QR” model causes the per-
formance decline by 0.70% on MRR. This reveals
that reformulating queries according to attributes
helps enhance current intents in attribute-centered
profiles.

(4) The apparent drops caused by “MAI w/o.
CW” model proves our contribution weighting
module helps the model determine the importance
of attributes.

5.3 Case Study

In this section, we illustrate the functionalities of
contribution weights with an example. As the
JDsearch dataset only has anonymized term IDs,
we use the category Electronics from the Ama-
zon dataset. The attribute “category” weights are
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User A

hewlett hp 
bt500 - 
network 
adapter, 

netgear neotv 
streaming 
player , 

amazonbasics 
hdmi

 hp, 
netgear, 

hp,
 netgear,

 none

name A brand A

User B

rokinon 
cv85m-c 

85mm t/1.5 
aspherical 
lens , new 

kamerar ff-3

 sony, 
none, 

kenko, 
none, 
kenko

name B brand B

User C

 eagle aspen 
easdtv2buhf 

directv 
approved 2-
bay, 65w ac 

power adapter 
charger 

  lg, 
none, 
eagle 
aspen, 

unknown, 
komingo

name C brand C

0.25

0.24

0.23

0.22

0.21

Figure 2: The contribution weights on attribute “name” and “brand” of users A, B, and C. A lighter area indicates a
larger weight. Corresponding text of short-term items is shown in the frames. For the attribute “name”, we list some
terms from the long text. For “brand”, we present all content. “,” separates the text of different items, while “none”
means the item does not have the corresponding attribute.

2 4 6 8
Weighting Window Size

0.260

0.265

0.270

0.275

0.280

0.285

M
RR

Figure 3: Results of different weighting window sizes.

much higher than other attributes since the user’s
purchased items are initially highly-related on cat-
egory. So, we only present the weights of “name”
and “brand” to show apparent changes.

As illustrated in Figure 2, we present the con-
tribution weights from three users. It is observed
that the weights of each attribute are limited in
a particular range, which is caused by the MLP
from Equation (8) that is learned from the whole
training set. Despite the ranges based on a global
view, the contribution weights could still adjust the
attributes’ importance from a personalized view.
Take the “brand” attribute for example, its weights
of user A and B are obviously higher than user C.
This is because in user A and B, the short-term
item shares more similarities with their neighbor-
ing items than in user C. This verifies that these
weights successfully help the model determine the
attributes’ contributions according to the user’s per-
sonal tastes.

5.4 Effects of Attribute-centered Interest
Profiling

Now, we will explore the attribute-centered inter-
est profiling by studying the impacts of weighting
window size and short-term history lengths. The
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Figure 4: Results of different short-term history lengths.

former is used for reflecting the attribute correla-
tions, while the latter is used for extracting recent
interests.

As shown in Figure 3, the results generally grow
as the window size increases. It indicates our
model’s ability to leverage the attention weights
from more items. From Figure 4, we can see that
higher results are obtained at small and medium
lengths. Perhaps it is because when increasing the
length, the extracting becomes more challenging
because the recent interests correlate with long-
term interests. At a certain length, 15 in this case,
the extracting may be efficient because of the suc-
cessful distinguishing of the recent, long-term in-
terests. But at a larger length, the extracting soon
fails again with too much noise.

6 Conclusion

This work proposes a product search model that dy-
namically captures multi-attribute interests. In this
model, we explore the potential of attribute features
by modeling the user’s preference on parallel pro-
filing parts, where attribute interests are modeled
independently and simultaneously. For each profil-
ing part, we feed it with item/query representations
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that are enhanced by specific attributes accordingly.
At the interest fusion stage, we use contribution
weights obtained from profiling parts to help the
model determine the importance of each attribute.
Experiments demonstrate our model significantly
outperforms existing models.

Limitations

This work has several limitations. First, the per-
formance drops obviously with a single attribute-
centered profiling or attribute-aware profiling part.
Although it is comprehensible as we explained
in 5.2, it still indicates that both parts could be fur-
ther improved. Take the attribute-aware profiling
for example, mindlessly compressing all attribute
information for all items neglects the fact that the
user interests do not keep switching on all attributes
at any time. A more efficient strategy could be
designed to enhance or eliminate certain attribute
features dynamically. We will leave this to our fu-
ture work. Second, the contribution weights could
not directly reflect the importance of correspond-
ing attributes in the user’s completed interests. It
overlooks that the matching quality should influ-
ence the user’s purchasing choices. For instance,
if the user shows stable preferences on “brand”,
while in the current search, the product “name” per-
fectly matches her interests, using the contributing
weights to reduce the impacts of “name” is prob-
lematic. Our work uses an MLP layer at the interest
fusion stage to alleviate this problem. More efforts
could be made to address this, and a more inter-
pretable contribution weighting strategy could be
designed.
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