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Abstract

Employing large language models (LLMs) to
enable embodied agents has become popular,
yet it presents several limitations in practice.
In this work, rather than using LLMs directly
as agents, we explore their use as tools for
embodied agent learning. Specifically, to train
separate agents via offline reinforcement learn-
ing (RL), an LLM is used to provide dense re-
ward feedback on individual actions in training
datasets. In doing so, we present a consistency-
guided reward ensemble framework (COREN),
designed for tackling difficulties in grounding
LLM-generated estimates to the target environ-
ment domain. The framework employs an adap-
tive ensemble of spatio-temporally consistent
rewards to derive domain-grounded rewards in
the training datasets, thus enabling effective
offline learning of embodied agents in differ-
ent environment domains. Experiments with
the VirtualHome benchmark demonstrate that
COREN significantly outperforms other offline
RL agents, and it also achieves comparable per-
formance to state-of-the-art LLM-based agents
with 8B parameters, despite COREN having
only 117M parameters for the agent policy net-
work and using LLMs only for training.

1 Introduction

Developing embodied agents capable of under-
standing user instructions and executing tasks in
physical environments represents a crucial mile-
stone in the pursuit of general AI. Recent ad-
vancements in large language models (LLMs) have
demonstrated their remarkable reasoning capa-
bilities, paving the way for their application in
embodied agents (Yang et al., 2023; Padmaku-
mar et al., 2023; Pantazopoulos et al., 2023; Yun
et al., 2023; Logeswaran et al., 2022; Ichter et al.,
2022). Yet, deploying an LLM directly as part of
an embodied agent presents several inefficiencies,

*Equally contributed to this work
†Corresponding author

such as the need for sophisticated environment-
specific prompt design, substantial computational
resource demands, and inherent model inference
latency (Hashemzadeh et al., 2024). These factors
can limit the practical application of LLMs, par-
ticularly in scenarios where embodied agents are
required to respond rapidly and efficiently.

In the literature of reinforcement learning (RL),
data-centric offline learning approaches have been
explored (Kumar et al., 2020a). These offline RL
approaches are designed to establish efficient agent
structures, necessitating datasets that include well-
annotated agent trajectories with reward informa-
tion. However, the characteristics of instruction-
following tasks assigned to embodied agents, par-
ticularly their long-horizon goal-reaching nature,
often conflict with such dense data requirements
of offline RL. Embodied agents normally can pro-
duce trajectories with sparse reward feedback, be-
cause their instruction-following tasks are evalu-
ated based on binary outcomes of success or failure,
which directly align with the specific goals of the in-
structions. In offline RL, this sparse reward setting
poses significant challenges in achieving effective
agent policies (Park et al., 2023; Ma et al., 2022).

In this work, we explore LLMs for offline RL.
By employing capable LLMs as a reward estimator
that provides immediate feedback on agent actions,
we augment the trajectory dataset with dense re-
ward information. This method, LLM-based re-
ward estimation is capable of significantly enhanc-
ing the effectiveness of offline RL for embodied
agents. To do so, we address the limitations inher-
ent in LLM-based reward estimation. A primary
challenge arises from the limited interaction with
the environment in an offline setting, which com-
plicates the LLMs’ ability to acquire essential en-
vironmental knowledge. The offline setting makes
it difficult to ensure that the generated rewards are
properly grounded in the specific domain of the
environment. For instance, without explicit knowl-
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Figure 1: COREN, a framework for LLM-based reward
estimation and offline learning. In (i), an LLM estimates
rewards based on spatio-temporal (i.e., contextual, struc-
tural, and temporal) consistencies; In (ii), these rewards
are integrated into a single domain-grounded reward
via an ensemble. Using the reward-augmented dataset,
offline RL can be conducted effectively to achieve em-
bodied agents with resource efficiency and low latency.

edge that a flowerpot is typically stored in a living
room in the target environment, an LLM might
struggle to accurately assign rewards for actions
like “go to living room” versus “go to balcony”
when tasked with watering plants. While both ac-
tions might seem reasonable from a commonsense
perspective, the optimal action depends on specific
conditions of the target environment that the LLM
may not have access to in the offline setting.

These challenges, unique to the offline con-
text, differentiate our work from previous works
on online LLM-based reward estimation, where
LLMs can be fine-tuned or prompts can be refined
through repeated interaction with environment or
human (Lee, 2024; Xie et al., 2024; Li et al., 2023;
Song et al., 2023c). Since these interactions are not
available in offline settings, improving the LLM’s
insufficient spatial reasoning for accurate reward
estimation requires a fundamentally different ap-
proach.

In response, we present COREN, a consistency-
guided reward ensemble framework, specifically
designed for robust LLM-based reward estimation
and effective agent offline learning. It adopts a two-
staged reward estimation process, as depicted in
Figure 1. (i) An LLM is first queried to estimate
several types of rewards for actions, each consider-
ing a distinct spatio-temporal consistency criterion
of the LLM to have coherent and domain-grounded

rewards. (ii) Then, these rewards are further or-
chestrated, being unified into domain-specifically
tuned rewards via an alignment process with the
sparse rewards of given trajectories. The result-
ing agent, trained on the unified dense rewards by
offline RL, is capable of performing instruction-
following tasks with high efficiency and minimal
latency at deployment. This offline RL scheme,
enhanced by LLM-based reward estimation, over-
comes the limitations faced by the agents that rely
on the online exploitation of LLMs.

The contributions of our work can be summa-
rized as follows: (i) addressing a practical yet chal-
lenging problem of embodied agent offline learning
using LLMs for the first time; (ii) proposing a two-
staged reward estimation algorithm guided by a
spatio-temporal consistency ensemble; and (iii) ex-
tensive evaluation on the VirtualHome benchmark,
demonstrating performance comparable to state-of-
the-art LLM-based online agents.

2 Preliminaries

2.1 Goal-POMDPs
For an embodied agent that follows user-specified
instructions, we model their environment as a
goal-conditioned partially observable Markov de-
cision process (Goal-POMDP). A Goal-POMDP
is represented by a tuple (S, A, P , R, γ, Ω, O,
G) (Song et al., 2023a; Singh et al., 2023) with
states s ∈ S, actions a ∈ A, a transition func-
tion P : S × A −→ ∆(S), a reward function
R : S×A×Gω1 7→ R, a discount factor γ ∈ [0, 1),
observations o ∈ Ω, an observation transition func-
tionO : S ×A −→ Ω, and goal conditions G ∈ G.
Given this Goal-POMDP representation, we con-
sider a user-specified instruction i as a series of
goal conditions G = (G1, · · · ) ⊆ G such that the
embodied agent is tasked with completing each of
the specified goal conditions for the instruction i.

2.2 Offline RL
For a Goal-POMDP, its optimal policy is formu-
lated by

π∗ = argmax
π

E
(s,a)∼π,
G∼G

[∑

t

γtR(s, a,G)

]
. (1)

To achieve the optimal policy, we explore offline
RL approaches where the policy is derived by op-
timizing the Bellman error objective, relying ex-

1Xω for a set X is all possible finite products of X .
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Figure 2: Two-staged reward estimation in COREN. In (i), spatio-temporally consistent rewards, constrained by
contextual, structural, and temporal consistencies, are calculated. (a) Contextual consistency is achieved through
majority voting across the responses from different prompts Pn, resulting in contextually consistent rewards rC . (b)
Structural consistency is achieved by presenting MDP-specific queries to the LLM. If the LLM incorrectly answers
these queries (indicated by a red ‘X’), the rewards estimated from these particular prompts are removed from
majority voting. The successfully verified rewards contribute to structurally consistent rewards rS . (c) Temporal
consistency involves collecting high-value actions Hn(τ) and subjecting them to backward verification through
LLM queries. Actions that fail this verification are excluded from the candidates for majority voting. Otherwise, they
contribute to temporally consistent rewards rT . In (ii), a trajectory (i, τ) with success flag fs(i, τ) is sampled from
the given offline dataset D. The spatio-temporally consistent rewards (rC , rS , rT ) in (i) are combined using weights
(wC , wS , wT ), which are generated by the reward orchestrator Ψθ. This combined result renders a unified stepwise,
more domain-grounded reward r̂. The orchestrator Ψθ is trained to align the trajectory’s return of accumulating
stepwise rewards r̂ with the sparse reward fs(i, τ) annotated on the trajectory.

clusively on an offline dataset D without any en-
vironment interaction. Offline RL is particularly
beneficial for embodied agents, as it reduces the
risks and costs associated with active exploration of
the environment with physical objects. We utilize
D = {(ij , τj) : j} where τj is a trajectory cor-
responding to instruction ij . Unlike conventional
offline RL, this dataset D incorporates sparse re-
wards. This sparsity is reflected in a subset of trajec-
tories that are marked by a success flag fs(ij , τj),
indicating whether τj has satisfied all the requisite
goal conditions for the instruction ij . This sparse
reward setup is inherent for embodied instruction-
following tasks, as each instruction is treated as a
series of goal conditions within Goal-POMDPs.

3 Our Approach

LLM-based reward estimation. Offline RL facil-
itates agent learning without direct environment

interaction, but relying solely on sparse rewards to
learn long-horizon instruction-following tasks is of-
ten inefficient. To improve this, we augment agent
trajectories with stepwise intrinsic rewards through
LLM-based estimation. Similar to LLM-based task
planning (Singh et al., 2023; Ichter et al., 2022),
LLMs can be used to approximate the reward of
observation-action pairs in the dataset, providing
more immediate and actionable dense feedback to
enhance the effectiveness of offline learning.
Not-grounded reward estimation. Intrinsic re-
wards estimated by LLMs at intermediate steps
might not consistently align with the sparse rewards
provided at the conclusion of individual instruction-
following tasks. This discrepancy arises when the
intrinsic rewards are not sufficiently grounded in
the environment domain. This issue is exacerbated
in a partially observable setting, where LLMs are
forced to infer rewards based on incomplete snap-
shots of the environment.
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3.1 Overall Framework
To tackle the limitations of LLM-based reward esti-
mation, we propose a spatio-temporal consistency-
guided reward ensemble framework COREN with
a two-stage process. As described in Figure 2, the
first stage (i) incorporates contextual, structural,
and temporal consistencies to fully harness the
LLM’s reasoning ability and enhance the grounded-
ness of reward estimates within the specific domain
of the embodied environment. In the second stage
(ii), COREN orchestrates an ensemble of distinct
rewards generated during the first stage based on
the trajectories’ success. This allows for the deriva-
tion of domain-specifically tuned rewards, which
can be effectively utilized for the offline learning
of embodied agents.

3.2 Spatio-Temporally Consistent Rewards
For reward estimation, we employ N distinct
prompts P1, · · · ,PN with an LLM (ΦLLM), where
a prompt is distinguished by its unique explana-
tions, in-context demonstrations, as well as the
use of a chain-of-thought (CoT). Specifically, each
prompt Pn combined with observation o, action l,
and instruction i is used to generate rewards Rn

through ΦLLM inferences.

Rn(o, l|i) = ΦLLM(Pn, (o, l, i)) (2)

Spatial consistency is intended to ensure that
the domain-grounded LLM’s reward estimation re-
mains consistent across different prompt-induced
contexts as well as it is based on a comprehensive
understanding of the environmental structure. We
achieve this using the implementation of two con-
sistency mechanisms.
Contextual consistency. This mechanism aims to
mitigate biases stemming from specific prompt con-
texts used in LLM-based reward estimation. By
employing multiple N prompts, each with a differ-
ent contextual frame, we ensure that the rewards,
which remain consistent across these variations,
reflect a consensus in reasoning. For contextually
consistent rewards rC , we integrate the responses
RC

n (o, l|i) of prompts Pn by

rC(o, l|i) = argmax
r∈R̂

N∑

n=1

1(RC
n (o,l|i)=r) (3)

where RC
n (o, l|i) = ΦLLM(Pn, (o, l, i)).

Structural consistency. This is intended to ensure
that the reward estimation incorporates a compre-
hensive understanding of the environment physical

structure, such as objects, their relationships, and
their relevance to the given instruction. We inquire
ΦLLM with MDP-specific queries q(o) relevant to
observation o such as “Which objects in o are rele-
vant to the instruction i?”. Exploiting the response
ΦLLM(Pn, q(o)) to these queries, we integrate the
rewards RS

n(o, l|i) of prompts Pn:

rS(o, l|i) = argmax
r∈R̂

N∑

n=1

1(RS
n(o,l|i)=r). (4)

We rewrite Eq. (2) for query violation cases, ob-
taining RS

n(o, l|i)

=

{
∅ a(o) ̸= ΦLLM(Pn, q(o))
ΦLLM(Pn, (o, l, i)) otherwise.

(5)
Details of prompts Pn and the dataset construc-
tion for MDP-specific queries and answers DQA =
{(q(o), a(o)) : o ∈ τ ∈ D} are in Appendix.
Temporal consistency. This is designed to ensure
that the value assigned to an action remains coher-
ent throughout its whole decision-making process.
With temporal consistency, if forward reasoning by
the LLM assesses certain actions as having high val-
ues, backward verification must confirm that these
high-value actions can collectively accomplish the
given instruction.

To achieve this backward verification, we in-
quire ΦLLM with the query q(i, τ, n): “Is perform-
ing the high-value actions Hn(τ) from observa-
tion o reasonable to accomplish the instruction
i?”. The reward is then contingent on the response
ΦLLM(q(i, τ, n)) ∈ {True,False} to this query,
and Eq. (2) is rewritten as RT

n (o, l|i)

=

{
∅ l ∈ Hn(τ) ∧ ¬ΦLLM(q(i, τ, n))

ΦLLM(Pn, (o, l, i)) otherwise
(6)

for the cases of query violation, i.e., l ∈ Hn(τ) ∧
¬ΦLLM(q(i, τ, n)). Here, for all trajectory observa-
tions o ∈ τ , high-value actions are defined as

Hn(τ) = {argmax
l

ΦLLM(Pn, (o, l, i))}. (7)

Given N prompts, we then integrate the rewards
in Eq. (6) from each by employing the majority
voting to establish temporally consistent rewards.

rT (o, l|i) = argmax
r∈R̂

N∑

n=1

1(RT
n (o,l|i)=r) (8)
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3.3 A Domain-Grounded Reward Ensemble

From the spatio-temporally consistent rewards rC ,
rS , and rT calculated above, we derive domain-
grounded rewards through their ensemble based on
the alignment with given offline trajectories. We
model unified rewards r̂ as

r(o, l|i) = (rC(o, l|i), rS(o, l|i), rT (o, l|i))
w(o, l|i) = (wC(o, l|i), wS(o, l|i), wT (o, l|i))
r̂(o, l|i) = ⟨r(o, l|i),w(o, l|i)⟩

(9)
where ⟨·, ·⟩ is an inner product and wC , wS and wT

are learnable weights. These w are generated by
the reward orchestrator Ψθ. It takes observation o,
action l, and instruction i as input, producing a soft-
max distribution for w. The orchestrator Ψθ is used
to align the predicted return of a trajectory with the
labeled return, i.e., the sparse reward fs(i, τ):

w(ot, lt|i) = Ψθ(ot, lt, i)

L(Ψθ) = E
(i,ot,lt)∼
(i,τ)∈D

[
∥∑

t
γtr̂(ot, lt|i)− αfs(i, τ)∥2

]

(10)
where α is a hyperparameter.

Finally, using the augmented trajectory dataset
that contains unified rewards r̂ in Eq. (9), an agent
can be trained via offline RL algorithms such as
CQL (Kumar et al., 2020b). The two-staged reward
estimation in COREN is outlined in Algorithm 1.

4 Experiments

4.1 Experiment Settings

Environment and dataset. For evaluation, we use
VirtualHome (VH) (Puig et al., 2018), a widely
used realistic benchmark for household activities.
VH features a diverse array of interactive objects
(e.g., apples, couch) and basic behaviors (e.g.,
grasp, sit), enabling us to define 58 distinct actions
for embodied agents. We use 25 distinct tasks in-
cluding activities such as sitting on a couch with
several fruits, microwaving salmon, and organiz-
ing the bathroom counter. To construct a training
dataset D for offline RL, we begin with a single
expert trajectory for each of these 25 tasks. We
then augment each with random actions at interme-
diate steps that lead to failed trials. For each expert
trajectory, a sparse reward of 1 is annotated to indi-
cate success, while for sampled failed trajectories,
a sparse reward of 0 is annotated to denote failure.
This follows Goal-POMDP representations used in
long-horizon instruction-following tasks.

Algorithm 1: Two-staged COREN

1: Dataset D, MDP-QA dataset DQA
2: Prompts P1, · · · ,PN for LLM ΦLLM
3: Reward orchestrator Ψθ

4: Reward-augmented dataset D̄ = ∅
/* Spatio-Temp. Consistent Rewards */

5: for (i, (o, l, o′)) ∈ (i, τ) ∈ D do
6: Reward-augmented trajectory τ̄ = ∅
7: rC ←− rC(o, l|i) using Eq (3)
8: rS ←− rS(o, l|i) using DQA and

Eq (5), (4)
9: rT ←− rT (o, l|i) using Eq (6), (8)

10: τ̄ ←− τ̄ ∪ {o, l, o′, (rC , rS , rT )}
11: if len(τ ) = len(τ̂ ) then
12: D̄ ←− D̄ ∪ {(i, τ̄)}
13: end if
14: end for

/* Domain-Grounded Rewards in 3.3 */
15: repeat
16: Sample (i, τ̄) ∼ D̄
17: ∀t, compute r(ot, lt|i) using Eq (9)
18: ∀t, compute w(ot, lt|i) using Eq (10)
19: ∀t, r̂(ot, lt|i)←− ⟨r(ot, lt|i),w(ot, lt|i)⟩
20: L(Ψθ)←− ∥

∑
t
γtr̂(ot, lt|i)− fs(i, τ)∥2

21: Ψθ ←− Ψθ −∇θL(Ψθ)
22: until converge

Evaluation instruction. We employ two distinct
instruction types to assess the agent’s ability to han-
dle different goal representations. A Fine-grained
instruction type provides a detailed task descrip-
tion, often including specific actions performed
to achieve certain goal conditions pertinent to the
instruction-following task. An Abstract instruction
type provides a more abbreviated and generalized
task description, focusing on broader objectives
without detailing each action. Each of the 25 tasks
is assessed using 5 fine-grained and 5 abstract in-
structions, resulting in a total of 250 distinct in-
structions being tested. These instructions have not
been included within the offline training dataset.
Evaluation metrics. We use three metrics, con-
sistent with previous works (Singh et al., 2023;
Song et al., 2023b). SR measures the percentage
of tasks successfully completed, defining success
as the completion of all goal conditions for a task;
CGC measures the percentage of completed goal
conditions; Plan measures the percentage of the
action sequence that continuously matches with the
ground-truth sequence from the beginning.
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Baselines. We compare COREN with different cat-
egories of agents: RL agents, in which an LLM is
solely used for estimating rewards to train a sep-
arate RL agent, without directly using the LLM
for online interaction; LM agents, in which either
a small language model (sLM) or LLM is used
to directly interact with the environment as an on-
line agent. These are in contrast to the RL agents
that use LLMs solely for agent training. In this
LM agent category, to provide an evaluation under
the compatible computational efficiency conditions
with the RL agent category, we include sLM-based
agents as well as LLM-based agents.

The RL agent category baselines include i)
Lafite-RL (Chu et al., 2023), which evaluates ac-
tions as good (1), neutral (0), or bad (-1) using an
LLM, and integrates the evaluations with environ-
mental rewards; ii) RDLM (Kwon et al., 2023),
which uses an LLM to evaluate trajectory returns
using dynamically sampled in-context demonstra-
tions; iii) Self-Consistency (Wang et al., 2023),
which generates multiple reward candidates via
a single CoT prompt, taking a majority vote on
them; and iv) GCRL, which relies on given sparse
rewards related to goal conditions.

The LM agent category baselines include v)
SayCan (Ichter et al., 2022), which employs
an offline dataset to learn the affordance scores
combined with an LM’s prediction; vi) LLM-
Planner (Song et al., 2023b), which uses an expert
dataset for retrieval-augmented task planning; vii)
ProgPrompt (Singh et al., 2023), which uses engi-
neered programmatic assertion syntax to verify the
pre-conditions of action execution.

Each LM agent baseline is configured with both
sLMs (GPT2-774M and 4-bit quantized LLaMA3-
8B) and LLMs (Gemini 1.0 Pro and LLaMA3-8B).
The implementation of LM agent baselines with
a larger LLaMA3-70B model can be found in Ap-
pendix D.1.

For our COREN and the RL agent category, we
use Gemini 1.0 Pro for the reward estimator ΦLLM
and adapt the GPT2-based model architecture hav-
ing 117M parameters to implement the agent poli-
cies that learn from their respective rewards. We
also employ the CQL (Kumar et al., 2020b) offline
RL algorithm in conjunction with the DDQN (van
Hasselt et al., 2016) to handle the discrete action
space in our environment. Details of the experi-
ments are in Appendix.

4.2 Main Results

Instruction-following task performance. Table 1
presents a performance comparison of our COREN

and the baselines from different categories, includ-
ing RL agents, LLM-based agents, sLM-based
agents across metrics such as SR, CGC, and Plan.

• COREN outperforms all the RL agent baselines
by a significant margin, achieving average gains
of 20.0%, 15.2%, and 5.6% over the most com-
petitive RL agent baseline Self-Consistency in
SR, CGC, and Plan, respectively.

• Furthermore, the performance of COREN is on
par with the LLM-based agents, with only a
slight performance drop compared to SayCan-
Gemini and ProgPrompt-Gemini, while it sur-
passes the other LLM-based agents (i.e., all
with LLaMA3 and LLM-Planner-Gemini). These
results are especially noteworthy, considering
the significantly different model sizes between
COREN (GPT2-based-117M) and other LLM-
based agents (i.e., Gemini, LLaMA-8B). These
demonstrate COREN’s ability to learn long-
horizon instruction-following tasks within spe-
cific domains using minimal domain-specific
knowledge, such as partially annotated rewards.

• We observe that the sLM-based agents using 4-
bit quantized LLaMA3 (LLaMA3Q) and GPT2
exhibit lower performance than the others, in-
cluding our COREN, due to their dependency on
the limited reasoning capabilities of sLMs.

• Additionally, COREN demonstrates relatively
robust performance across different instruction
types compared to LLM-based agents. This can
be attributed to COREN’s ability to learn from a
broad range of semantically similar instructions,
which are generated by the LLM and included in
the offline dataset. This enables the framework
to better generalize to abstract instructions.

Cross-domain performance. Here, we extend our
evaluation scenarios to include domain shifts in
the environment; i.e., the locations of key objects
related to the given instructions differ from those in
the training dataset. Specifically, we sample a sub-
set of trajectories from the training dataset D and
relabel their sparse rewards fs(i, τ) to reflect the
altered object locations. While keeping the spatio-
temporally consistent rewards unchanged, we then
retrain the reward orchestrator in Eq. (10) using
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Fine-grained Abstract
RL agent SR CGC Plan SR CGC Plan

COREN 66.4 74.5 69.5 57.6 68.3 64.8
Lafite-RL 30.4 50.9 35.1 17.6 37.8 23.1
RDLM 20.0 42.0 31.7 4.0 23.3 23.9
Self-Consistency 43.2 56.9 61.4 40.8 55.6 61.7
GCRL 5.6 26.0 22.3 8.0 28.4 17.1

LLM-based agent

SayCan-Gemini 72.0 78.2 73.8 6.9 25.2 23.2
SayCan-LLaMA3 4.8 22.4 63.8 3.2 14.6 20.0
ProgPrompt-Gemini 72.8 80.4 80.2 32.0 49.2 24.3
ProgPrompt-LLaMA3 68.0 74.5 50.5 16.5 29.5 8.2
LLM-Planner-Gemini 55.2 63.8 59.7 2.1 18.1 0.0
LLM-Planner-LLaMA3 15.1 34.0 30.6 2.0 15.4 0.6

sLM-based agent

SayCan-LLaMA3Q 4.8 21.6 62.6 0.0 15.4 0.4
SayCan-GPT2 0.0 14.7 0.0 0.0 14.7 0.0
ProgPrompt-LLaMA3Q 43.2 68.2 68.8 15.2 34.5 31.1
ProgPrompt-GPT2 0.6 16.7 6.0 0.0 8.8 0.4
LLM-Planner-LLaMA3Q 12.4 31.1 8.9 0.6 13.9 0.2
LLM-Planner-GPT2 0.0 12.6 0.0 0.0 12.6 0.0

Table 1: Instruction-following task performance in SR,
CGC, and Plan metrics. Agent policy model sizes:
RL agents (117M), LLM-based agents (Gemini and
LLaMA3-8B), sLM-based agents (GPT2-774M and
4bit-quantized LLaMA3-8B).

these newly labeled sparse rewards. This approach
facilitates the generation of domain-specific uni-
fied rewards for RL without the need to recalculate
the consistency-based rewards themselves through
LLM inferences. We also incorporate this newly
labeled dataset for the LM agent category. For in-
stance, LLM-Planner adapts to this new environ-
ment domain by using the trajectories, which are
relabeled as success, as demonstrations for task
planning. Since other RL agent baselines, except
GCRL, lack the ability to utilize domain informa-
tion represented as sparse rewards, they are evalu-
ated with the same policy as in the single-domain
experiments.

• For this cross-domain assessment, as shown in
Table 2, COREN outperforms all the RL agent
baselines, showing a minimal drop compared to
the results in the single-domain experiments (in
Table 1). Upon domain shifts, COREN’s two-
staged process adjusts the reward estimates to
align with the target domain by the second stage
conducting the adaptive ensemble in Eq. (10).
In contrast, the RL agent baselines, which rely
solely on the rewards derived from the LLM’s
commonsense reasoning, exhibit a diminished
ability to adapt to specific domains, showing
large drops compared to the results in the single-
domain experiments.

Fine-grained Abstract
RL agent SR CGC Plan SR CGC Plan

COREN 60.0 66.3 69.4 45.0 55.0 42.5
Lafite-RL 2.5 12.5 10.6 0.0 12.5 25.2
RDLM 15.0 23.8 22.5 3.8 18.8 23.6
Self-Consistency 35.4 47.9 54.7 31.3 45.8 51.6
GCRL 0.0 6.3 8.5 0.0 6.3 10.9

LLM-based agent

SayCan-Gemini 12.5 18.8 26.6 0.0 8.3 0.0
SayCan-LLaMA3 5.0 21.3 1.9 0.0 10.0 1.3
ProgPrompt-Gemini 25.0 31.3 23.4 14.6 32.3 1.6
ProgPrompt-LLaMA3 25.0 32.3 22.6 8.3 24.0 3.1
LLM-Planner-Gemini 45.8 55.2 67.7 0.0 13.7 0.0
LLM-Planner-LLaMA3 6.3 20.2 16.8 0.0 40.6 0.0

sLM-based agent

SayCan-LLaMA3-Q 8.3 21.9 1.5 0.0 12.5 1.9
SayCan-GPT2 0.0 6.3 0.0 0.0 6.3 0.0
ProgPrompt-LLaMA3-Q 7.5 15.5 18.3 0.0 31.3 0.0
ProgPrompt-GPT2 0.0 8.3 0.3 0.0 6.3 0.0
LLM-Planner-LLaMA3-Q 2.1 15.2 9.9 0.0 13.5 0.0
LLM-Planner-GPT2 0.0 6.3 0.0 0.0 6.3 0.0

Table 2: Cross-domain performance

• We also observe that the LLM-based agent base-
lines experience large degradation in this cross-
domain assessment; e.g., LLM-Planner relies
on the LLM’s knowledge, which is difficult to
ground in a specific environment using only a few
examples, leading to suboptimal performance.

4.3 Ablation Studies

Spatio-temporally consistent rewards. To verify
that the contextual, structural, and temporal con-
sistencies (in Section 3.2) effectively complement
each other in LLM-based reward estimation, we
test different combinations of these consistencies
in the ensemble of rewards. Table 3 demonstrates
that COREN, which utilizes all three, consistently
outperforms the others. This specifies that the com-
bination of w and rewards derived from partial
consistencies alone is limited in generating unified
rewards that significantly benefit RL, while the en-
semble weights w can be adjusted via Eq. (10).
Different LLMs for reward estimation. To im-
plement COREN, which uses an LLM for offline
reward estimation, we test a variety of LLMs rang-
ing from open-source LLaMA3-8B to proprietary
models GPT4 turbo, Gemini 1.0 Pro, and PaLM. In
Table 4, we observe that LLaMA3-8B, which has
significantly fewer parameters, does not achieve
performance comparable to the proprietary models.
Among the proprietary models, the more recent
and advanced capable LLMs, such as GPT4 turbo
and Gemini 1.0 Pro, demonstrate a strong ability
in reward estimation that positively impacts agent
offline learning.

3012



Fine-grained Abstract
SR CGC Plan SR CGC Plan

COREN 66.4 74.5 69.5 57.6 68.3 64.8
CS 64.8 67.9 69.7 52.0 62.3 56.3
ST 57.6 70.1 65.4 50.4 60.8 61.7
CT 53.6 66.1 67.8 51.2 59.1 68.9
C 47.2 58.6 59.7 47.1 57.1 58.3
S 52.0 67.1 57.9 45.6 60.0 58.9
T 45.6 57.8 55.7 41.6 51.2 50.8

Table 3: Ablation on spatio-temporally consistent re-
wards. For example, CS denotes the use of contextual
and structural consistencies, and T denotes the use of
temporal consistency only, while COREN employs all
three consistencies in the ensemble.

Fine-grained Abstract
SR CGC Plan SR CGC Plan

LLaMA3 12.0 28.7 39.4 9.6 27.9 40.1
PaLM 16.8 32.9 35.8 10.4 27.7 25.4
GPT4 turbo 65.6 71.8 70.6 40.8 50.5 52.5
Gemini 1.0 Pro 66.4 74.5 69.5 57.6 68.3 64.8

Table 4: Different LLMs for reward estimation

Reward ensemble scheme. We evaluate several
approaches as alternatives to the reward ensemble
scheme in Eq. (9). First, we consider taking the
average of rewards rC , rS , and rT to obtain a uni-
fied reward. Second, we employ a majority voting
mechanism over the three rewards. As shown in
Table 5, both Avg and Majority Voting result in de-
graded performance compared to COREN. While
the majority voting of spatio-temporally consistent
rewards can provide a considerable degree of do-
main groundedness, COREN takes it a step further
by employing the reward ensemble process using
sparse rewards as guidance.

Fine-grained Abstract
SR CGC Plan SR CGC Plan

COREN 66.4 74.5 69.5 57.6 68.3 64.8
Avg 53.6 63.7 55.6 43.2 55.2 57.7
Maj.Voting 60.8 70.2 68.9 55.2 62.7 63.7

Table 5: Ablation on reward ensemble scheme

5 Related Works

LLMs for embodied environments. Leveraging
LLMs as an instruction-following agent in embod-
ied environments becomes a bedrock, capitalizing
on LLM’s reasoning capabilities (Hu et al., 2023;

Singh et al., 2023; Yang et al., 2023; Pantazopou-
los et al., 2023; Yun et al., 2023). To overcome
the limitation of LLMs’ insufficient knowledge
about specific domain conditions of the environ-
ment, prior works incorporate domain-related in-
formation. (Ichter et al., 2022) utilizes an offline
dataset to learn the value of actions, which is later
combined with the LLM’s token generation prob-
ability to calibrate the LLM’s decision for dif-
ferent domains. (Song et al., 2023a) employs an
expert dataset as a knowledge base for retrieval-
augmented task planning. Unlike those directly
employing LLMs as agent policies and requiring
online LLM inferences, our study focuses on lever-
aging LLMs for reward estimation in offline RL,
thus allowing for efficient agent structures.
LLMs for reward design. In RL, reward engi-
neering is a long-standing challenge, traditionally
tackled through manual trial-and-error or by lever-
aging domain knowledge from human experts. In-
verse RL, on the other hand, aims to infer the
underlying reward function from reward-free ex-
pert demonstrations (Hadfield-Menell et al., 2016;
Klein et al., 2012). With the advent of capable foun-
dation models, recent works have exploited them
to produce reward functions (Wang et al., 2024; Du
et al., 2023; Rocamonde et al., 2023; Baumli et al.,
2023). (Kwon et al., 2023) harnesses the in-context
learning of LLMs to evaluate the episodes of high-
level tasks. (Ma et al., 2023) leverages the code
generation ability of LLMs, given environmental
programming code, producing multiple code-based
reward functions to train RL agents online and en-
hance them via feedback from agent training statis-
tics. Our COREN framework also leverages LLMs
for reward design; however, the framework distin-
guishes itself by focusing on generating domain-
grounded rewards without direct interaction with
the environment, particularly in scenarios where
the available information about the embodied envi-
ronment is limited to sparse rewards.

6 Conclusion

We presented the reward ensemble framework
COREN to achieve robust LLM-based reward es-
timation for offline RL, specifically tailored for
embodied instruction-following tasks. The frame-
work utilizes a spatio-temporal consistency-guided
ensemble method for reward estimation. It gener-
ates multiple stepwise rewards on offline trajecto-
ries, with each reward focusing on a specific con-
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sistency related to contextual, structural, or tem-
poral aspects, and then it integrates the multiple
rewards into more domain-grounded ones via the
sparse reward-aligned ensemble. As this work is
the first to adopt LLMs for offline learning of em-
bodied agents, we hope it can provide valuable
insights into the development of LLM-driven train-
ing acceleration techniques. This is particularly
significant for embodied agents involved in long-
horizon instruction-following tasks, which are typi-
cally constrained by sparse reward signals.

7 Limitations

Despite the robust performance achieved by
COREN, we identify that its success heavily de-
pends on the capabilities of LLMs engaging in
reward estimation, as shown by the ablation study
in Table 4. Our LLM-based reward estimation is
conducted in an offline manner, i.e., without di-
rect interaction with the environment. However,
the dependency on the capabilities of an LLM can
be problematic, especially when the target envi-
ronment domain significantly differs from the pre-
trained knowledge of the LLM and the domain
changes continuously over time after agent de-
ployment. In these cases involving dynamic Goal-
POMDP environments, the agent policy learned
offline by the dense rewards on the training dataset
can degrade in terms of its task performance. The
benefits of our ensemble method with the notion of
spatio-temporal consistency are attributed to the ef-
fective alignment with the training dataset, and they
can be limited in such non-stationary environment
conditions. We leave the exploration of methods
to address this limitation as a direction for future
work.
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A Experiment Settings

A.1 Environment

We utilize VirtualHome (Puig et al., 2018), an en-
vironment and benchmark designed for simulating
embodied household tasks. In this environment,
actions related to household task activities are es-
tablished by combining available manipulation be-
haviors and objects. These actions are executed
sequentially to perform complex household tasks.
COREN employs a configuration consisting of a
house with 4 rooms, utilizing a total of 58 different
actions. The actions are derived from the combi-
nations of 8 distinct manipulation behaviors (find,
grab, open, close, sit, put, put in, switch on) with
various objects present within the environment.
Single domain evaluation. For single domain ex-
periments in Table 1, we evaluate each of 25 dis-
tinct tasks using a total of 10 instructions per task.
These instructions are divided into two categories:
5 fine-grained instructions, which provide detailed
descriptions of the task, and 5 abstract instructions,
which offer a more general overview. Detailed ex-
amples of tasks used are presented in Table 16.
Cross domain evaluation. In the cross-domain
setting, we assess tasks within an environment with
altered object locations (e.g., relocating an apple
from a desk to inside a refrigerator), as described
in Table 18. We evaluate a total of 8 tasks from 25
tasks in the single domain evaluation, each with
5 instructions. This is due to the fact that several
objects are unable to be relocated in a new layout.
Similar to the single domain, each task is assessed
with both fine-grained and abstract instructions,
totaling 6 instructions per task. Detailed examples
of tasks used in the cross-domain evaluation are
presented in Table 17.

A.2 Offline Dataset

To construct a training dataset D for offline RL,
we use a single expert trajectory for each of the 25
distinct tasks. Each expert trajectory is augmented
with random actions at intermediate steps that lead
to failed trials. This process yields a total of approx-
imately 8,000 trajectories for the offline dataset D.
For each expert trajectory, a sparse reward of 1 is
annotated to indicate its success, while for each
sampled failed trajectory, a sparse reward of 0 is
annotated to denote its failure. Overall, we utilize
one successful and one failed trajectory to establish
the sparse rewards.

B Implementation

In this section, we present the implementation de-
tails of our COREN and baselines.

B.1 COREN Implementation

We implement our framework using Python v3.9.19
and the automatic gradient framework Jax v0.4.7.
The models are trained on a system with an
NVIDIA RTX A6000 GPU. The implementation
details of COREN include these parts: (i) LLM-
based reward estimation, (ii) spatio-temporal con-
sistency consideration for estimated rewards, (iii)
domain-grounded reward ensemble, and (iv) offline
RL.

B.1.1 LLM-based reward estimation
The LLM ΦLLM takes the user instruction l, ob-
servation o, and action a as inputs, along with
a prompt P so as to estimate the rewards for a
based on how they contribute to accomplishing
l. We employ multiple N prompts P1, · · · ,PN ,
which differ in their description methods for the
reward estimation task, incorporation of in-context
demonstrations, or use of chain-of-thought (CoT)
prompts. Specifically, we use 5 different types of
prompts to create effective rewards: A naive prompt
that includes the explanation of reward estimation
tasks and required format, three in-context Learn-
ing (ICL) prompts that include distinct demonstra-
tions, and a CoT prompt that includes the human-
written reasoning path of reward estimation. Each
prompt contains the rubric for the reward estima-
tion, including which actions should receive which
rewards. For example, a reward of 2 is given for
an action that should follow, given the previously
completed actions, and a reward of -1 is given for
an action that involves searching for objects not re-
lated to the task. The prompt examples are provided
in Table 19, 20, 21, and 22.

In conjunction with the aforementioned prompts,
we employ several LLMs: LLama-8B, Gemini 1.0
Pro, PaLM, and GPT4 Turbo. For GPT4 Turbo, the
temperature of 0.5 is used, while the other mod-
els are set to the temperature of 0.7. The tempera-
ture setting is based on the characteristics of each
model and aims to balance the trade-off between
exploration and exploitation during the reward gen-
eration process. Table 6 specifies the LLMs used,
their respective model sizes, and the temperature
hyperparameters used to conduct the ablation study
in Table 4.
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LLM Model Size Temperature

LLaMA3 8B 0.7
PaLM - 0.7
GPT4 turbo - 0.5
Gemini 1.0 Pro - 0.7

Table 6: LLMs, their model sizes, and the temperature
hyperparameters used in Table 4

B.1.2 Spatio-Temporal Consistency
Here, we provide the detailed description and mech-
anism of the spatio-temporal consistency including
contextual, structural, and temporal ones, explained
in Section 3.2.

Contextual Consistency Contextual consistency
involves estimating rewards using the previously
introduced prompts and then applying the majority
voting to the results.

Structural Consistency Structural consistency
incorporates a process where the reward estima-
tor ΦLLM self-checks its ability to reflect partial
information about the environment through MDP-
specific queries. To facilitate this, we generate an
MDP-specific QA dataset DQA = {q(o), a(o) :
o ∈ τ ∈ D}. The QA dataset consists of queries
q(o) that are easier to answer than the reasoning
task of estimating rewards for actions, requiring
only observation and instruction. By evaluating the
correctness of the responses to these queries, we
determine whether the reward estimation has been
carried out while properly considering the internal
structure of the environment.

To create the answers for the MDP-specific
dataset DQA, we employ GPT4 and use the queries
that focus on identifying the objects that play a cru-
cial role in achieving the given instruction. Through
this process, we generate a total of 139 QA-pairs.
Table 7 shows the examples of QA-pairs.

Given observation o, ΦLLM takes a query q(o′)
along with a prompt Pn as input and generates
a response ΦLLM(Pn, q(o′)). Here, q(o′) is cho-
sen based on the sentence embedding similarity
between o and o′ using the sentence transformer
model (Reimers and Gurevych, 2019). We inte-
grate the query q(o) into the prompt Pn by directly
appending it at the end of the prompt. Table 19
shows the examples. To determine how well the
response aligns with the actual answer, we uti-
lize a similarity-based evaluator E. Specifically,
if the sentence embedding similarity between the

response and the ground truth answer a(o′) is be-
low a threshold of 0.5, the response is considered
incorrect.

Temporal consistency Temporal consistency in-
volves calculating the sequence of high-value ac-
tions Hn(τ) for each prompt Pn:

Hn(τ) = {argmax
l

ΦLLM(Pn, (o, l, i))}, (11)

where o is an observation, l is an action, and i
is an instruction. Note that there are multiple se-
quences of high-value actions. For each sequence
of high-value actions in Hn(τ), we present a
query q(i, τ, n) to ΦLLM to determine whether the
sequence can accomplish the instruction i. Ta-
ble 8 provides an example of an actual query.
If the query is violated, i.e., ΦLLM(q(i, τ, n)) re-
turns False, the reward for the action l ∈ Hn(τ)
is disregarded. Otherwise, if l /∈ Hn(τ) or
ΦLLM(q(i, τ, n)) returns True, the estimated re-
ward ΦLLM(Pn, (o, l, i)) is included in the majority
voting process to construct the temporally consis-
tent reward.

An example illustrating how reward estimation
changes according to contextual, structural, and
temporal consistency can be found in Table 23, 24,
and 25.

B.1.3 Domain-grounded Reward Ensemble
To learn the ensemble method for the spatio-
temporally consistent rewards rC , rS , and rT , we
train a reward orchestrator Ψθ.

The orchestrator is responsible for aligning the
trajectory’s return, which is the accumulation of
stepwise rewards r̂, with the sparse reward fs(i, τ)
annotated on the trajectory, as explained in Eq.(10).
The trajectory’s return is defined as the summa-
tion of rewards r̂. However, the scale of the re-
turn varies depending on the length of the trajec-
tory H . To align the return with the sparse re-
ward fs(i, τ) ∈ −1, 1, proper normalization is
needed. Assuming that the LLM reward estima-
tion ΦLLM(Pn, (o, l, i)) can take values within the
range [−K,K], we normalize the return by divid-
ing it by HK. This normalization ensures that the
return falls between -1 and 1, making it compat-
ible with the sparse reward. The orchestrator is
implemented using a Bert-based architecture (De-
vlin et al., 2019) adapted for a 3-class classification
task. The hyperparameter settings for Ψθ are sum-
marized in Table 9.
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Question-Answer Pairs in the MDP-specific dataset

Query 1:
Instruction: <instruction>
Visible objects: paper, wallshelf, cereal, mouse, mug, creamybuns, crackers
Among the currently visible objects, which objects are relevant to the task?
Answer 1:
wallshelf, cereal

Query 2:
Instruction: <instruction>
Visible objects: paper, cpuscreen, desk, keyboard, mouse, mug
Among the currently visible objects, which objects are relevant to the task?
Answer 2:
desk, cat

Table 7: MDP-specific dataset DQA

Backward-Verification Prompt

Prompt 1:
Action List: [action list]
From the list of actions provided above, I selected a few actions to form an action sequence like <action sequence>. If this
sequence of actions is executed in order, is it possible to achieve <instruction>?
Answer with only "possible" or "impossible."

Prompt 2:
You have created a sequence of actions from the list above as <action sequence> to achieve <instruction>.
However, this sequence is incorrect because a subsequent action cannot be performed without the prior action being executed.
State the number of steps that are in the wrong order. Only output the number. If there are multiple numbers, separate them
with a comma.

Table 8: Prompt for backward-verification of temporal consistency

Hyperparameters Values

Network architecture Bert for 3 classification
batch size 16
Activation function ReLU, Softmax
learning rate 1e-4
Gradient clipping 3

Table 9: Hyperparameters for reward orchestrator Ψθ

B.1.4 Offline Reinforcement Learning
Regarding the model structure of agent policy π,
we adapt the GPT2 architecture with 58 heads to
represent the action value. To optimize π, we use
the Double DQN (DDQN) algorithm (van Hasselt
et al., 2016) to handle the discrete action space in
our environment, and also adopt Conservative Q-
Learning (CQL) (Kumar et al., 2020b) to address
the q-value overestimation problem inherent in of-
fline RL. The hyperparameter settings for π are
summarized in Table 10.

B.2 Baseline Implementation
B.2.1 RL Agents
Lafite-RL. In Lafite-RL (Chu et al., 2023), an LLM
is utilized to estimate the reward of each action in

Hyperparameters Values

Network architecture GPT2
Number of positions 1536
Number of layers 2
Number of heads 4
Activation function ReLU
Residual dropout 0.1
Embedding dropout 0.1
Attention dropout 0.1
Layer norm epsilon 0
Embedding dimension 768
Learning rate 1e-4
Target update interval 250
Discount factor γ 0.99
τ for soft target update 0.005

Table 10: Hyperparameters for policy π

a given offline dataset based on observation and in-
struction. The estimated reward is one of three val-
ues: good (1), neutral (0), or bad (-1). This intrinsic
stepwise reward for each action is combined with
the sparse reward within the given offline dataset to
establish a reward augmented dataset for RL. We
use the prompt in Table 19 for LLM inferences.
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The agent policy structure and its training hyperpa-
rameters are the same as those used in COREN.
RDLM. In RDLM (Kwon et al., 2023), an LLM is
utilized to estimate the trajectory returns based on a
description of the task and user-specified in-context
demonstrations. While the prompts are continually
constructed based on the agent’s successful roll-
out in the original RDLM work, due to the differ-
ences in our offline learning setting, we implement
the prompts through retrieval-augmented genera-
tion (RAG) for reward estimation. In doing so, we
manually establish a dataset of reward estimations
based on a rubric, i.e., a scoring guideline for the
estimation, which can be found in Table 19. We
then dynamically retrieve three in-context demon-
strations, considering the cosine similarity between
the instruction, action execution history, and obser-
vation. The retrieved demonstrations are combined
with the prompt in Table 22, which is then used for
the retrieval-augmented LLM inference. The agent
policy structure and its training hyperparameters
are the same as those used in COREN.
Self-Consistency. In this baseline (Wang et al.,
2023), an LLM is queried to estimate rewards with
a CoT prompt. The LLM samples multiple K re-
ward estimates, each based on different reasoning
paths, and selects the most consistent answer. In
our implementation, we set K = 3. The agent pol-
icy structure and its training hyperparameters are
the same as those used in COREN.

B.2.2 LM Agents
Saycan. SayCan (Ichter et al., 2022) utilizes a com-
bination of an LLM planner and an affordance
value function to generate feasible action plans
based on given instructions. The LLM planner iden-
tifies suitable actions, while the affordance score
for each action is computed using a pre-trained
affordance function. This affordance score is inte-
grated into the LLM’s token generation probability
to select the feasible action to accomplish the task.

In our implementation, we follow the approach
used by the authors of LLM-Planner, which in-
volves retrieval-augmented task planning based
on expert trajectories. Also, given the challenges
of training low-level policies in VirtualHome, we
employ the LLM-Planner’s strategy of providing
SayCan with object data to define the value func-
tion. This approach grants SayCan to narrow down
the list of potential actions the LLM needs to con-
sider. This streamlines the decision-making process
for the planner, enhancing its ability to select exe-

cutable actions and effectively complete tasks.
ProgPrompt. ProgPrompt (Singh et al., 2023) uses
a programming assertion syntax to verify the pre-
conditions for executing actions and addresses fail-
ures by initiating predefined recovery actions.

We employ the same plan templates as Prog-
Prompt, which feature a Pythonic style where the
task name is designated as a function, available
actions are included through headers, accessible
objects are specified in variables, and each action
is delineated as a line of code within the function.
We use dynamically sampled in-context demonstra-
tions for the LLM Planner and provide ProgPrompt
with oracle pre-conditions for each action.
LLM-Planner. The LLM-Planner (Song et al.,
2023b) employs templatized actions, k-nearest
neighbors (kNN) retrievers, and an LLM plan-
ner. The action candidates for planning are estab-
lished based on templates, which are combined
with the objects visible in the environment. The
LLM-Planner retrieves in-context examples from
the expert trajectories within our offline dataset, uti-
lizing kNN retrievers, which are then prompted to
the LLM planner. Subsequently, the planner merges
these action templates with currently visible objects
to determine the action that is both achievable and
capable of completing the task.

C Modality for reward estimation.

We also investigate the use of large multi-modal
models (LMMs) for reward estimation. Unlike
COREN, which uses detected object names within
the scene to represent the observation, LMMs can
directly utilize image observations. Table 11 shows
that the agent trained with LMM-estimated rewards
exhibit lower performance compared to their LLM
counterparts. In this test, we use different ensemble
approaches, as described previously in Table 5. We
speculate that while the image itself can implicitly
convey detailed environmental information, LMMs’
limited representation capabilities in embodied en-
vironments may not be well-suited for high-level
reasoning tasks such as reward estimation.

LLM LMM
SR CGC Plan SR CGC Plan

COREN 62.0 71.4 67.2 26.0 42.1 31.1
Averaged 48.4 59.5 56.7 22.4 43.2 44.9
Maj. Voting 58.0 66.45 66.3 23.2 41.1 41.6

Table 11: Modality for reward estimation
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D Additional Experiments

D.1 LLaMA3-70B for LM Agents

Here, we implement LM agents (i.e., SayCan, Prog-
Prompt, and LLM-Planner) with LLaMA3-70B, a
highly capable LLM. Table 12 shows the single-
domain performance with fine-grained instruction
on VirtualHome, achieved by our CoREN and
LLaMA3-70B-based LLM-agent baselines. We
observe that leveraging LLaMA3-70B results in
performance improvements for both ProgPrompt
and SayCan, with ProgPrompt exhibiting partic-
ularly substantial gains. Specifically, ProgPrompt
achieved an average increase of 8.8% in success
rate (SR) when using LLaMA3-70B as an online
agent compared to using LLaMA3-8B or Gemini.
We hypothesize that this improvement is not only
due to the larger model size enhancing ICL per-
formance but also due to LLaMA3’s significantly
superior code analysis capabilities compared to
Gemini (Anil et al., 2023) . This advantage partic-
ularly benefits ProgPrompt’s performance with its
programmatic prompts. For LLM-Planner, Gem-
ini was found to be more suitable than LLaMA3.
More importantly, our framework which uses LLM
(Gemini 1.0 Pro) only during training, still demon-
strates competitive performance compared to LLM-
based agent baselines which use LLaMA3-70B as
an embodied agent.

Fine-grained
RL agent SR CGC Plan

CoREN 66.4 74.5 69.5

LLM-based agent

SayCan-Gemini 72.0 78.2 73.8
SayCan-LLaMA3-70B 73.6 77.2 70.2
SayCan-LLaMA3-8B 4.8 22.4 63.8
ProgPrompt-Gemini 72.8 80.4 80.2
ProgPrompt-LLaMA3-70B 79.2 83.9 74.4
ProgPrompt-LLaMA3-8B 68.0 74.5 50.5
LLM-Planner-Gemini 55.2 63.8 59.7
LLM-Planner-LLaMA3-70B 39.2 53.2 51.4
LLM-Planner-LLaMA3-8B 15.1 34.0 30.6

Table 12: Single-domain performance with fine-grained
instruction on VirtualHome using LLaMA3-70B

D.2 Experiments on ALFRED Environment

To verify the generalization capability of our frame-
work, we conduct additional experiments in the
ALFRED environment (Shridhar et al., 2020).

Fine-grained Abstract
RL agent SR CGC Plan SR CGC Plan

COREN 72.00 84.2 79.4 56.8 71.73 70.5
Lafite-RL 8.0 17.6 38.4 39.2 55.8 72.1
RDLM 46.4 61.7 72.4 14.4 23.8 40.7
Self-Consistency 32.8 40.6 52.7 30.4 37.4 53.1
GCRL 5.6 12.6 15.2 5.2 12.8 16.7

LLM-based agent

SayCan-Gemini 81.6 85.0 73.8 52.4 52.4 58.8
SayCan-LLaMA3 70.4 75.7 70.3 39.2 40.0 48.5
ProgPrompt-Gemini 68.8 78.0 40.6 48.0 57.4 27.9
ProgPrompt-LLaMA3 70.4 78.2 76.0 32.0 47.2 22.6
LLM-Planner-Gemini 44.4 51.8 58.7 15.7 24.6 0.0
LLM-Planner-LLaMA3 16.0 27.5 46.3 6.4 13.3 34.1

sLM-based agent

SayCan-LLaMA3Q 74.4 79.1 75.5 36.8 37.6 45.0
SayCan-GPT2 0.0 8.0 0.8 0.0 8.0 1.2
ProgPrompt-LLaMA3Q 69.6 78.5 40.3 30.4 46.9 23.6
ProgPrompt-GPT2 12.0 25.3 22.4 14.4 30.9 18.6
LLM-Planner-LLaMA3Q 8.8 17.2 40.3 2.4 10.9 32.4
LLM-Planner-GPT2 1.6 9.0 32.4 1.4 8.4 32.2

Table 13: Instruction-following task performance in SR,
CGC, and Plan metrics in ALFRED

While both ALFRED and VirtualHome simulate
household activities, they exhibit distinct charac-
teristics. In VirtualHome, agents have access to
broader environmental information, allowing im-
mediate execution of actions like "find refrigerator"
due to pre-encoded location data. Conversely, in
ALFRED, executing such actions requires prelimi-
nary low-level actions like "go to kitchen," as the
agent must navigate based on its understanding of
the environment’s spatial layout.

These differences introduce additional chal-
lenges when using LLMs as reward estimators in
ALFRED, making it more difficult to generate re-
wards well-grounded in the environment’s domain.
This increased complexity provides a more rigor-
ous test of our framework’s ability to generate accu-
rate rewards. Furthermore, the ALFRED environ-
ment offers a pre-existing offline dataset, making it
suitable to verify our work’s targeted contribution
of LLM-based offline reward estimation based on
a given dataset.

Table 13 compares the single-domain perfor-
mance of COREN and baselines, while Table Ta-
ble 14 shows their cross-domain performance. The
results demonstrate that our CoREN maintains
state-of-the-art performance compared to other
RL agent category baselines and shows compa-
rable performance to LM agent category baselines.
Specifically, CoREN outperforms RL agent base-
lines by a significant margin, achieving average
gains of 14.4% in Success Rate (SR) over the most
competitive RL baseline, RDLM.
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Fine-grained Abstract
RL agent SR CGC Plan SR CGC Plan

COREN 66.7 72.2 67.0 62.2 71.7 72.2
Lafite-RL 11.1 25.6 29.6 15.6 35.8 33.1
RDLM 48.0 58.0 51.3 15.6 22.2 22.4
Self-Consistency 0.0 11.1 7.4 0.0 11.1 7.4
GCRL 2.2 7.8 3.0 0.0 5.6 4.6

LLM-based agent

SayCan-Gemini 44.4 50.0 51.2 0.0 15.5 25.9
SayCan-LLaMA3 40.0 45.5 46.1 11.1 22.2 29.2
ProgPrompt-Gemini 33.3 44.4 42.5 0.0 11.1 0.0
ProgPrompt-LLaMA3 31.1 42.2 39.0 4.4 13.3 0.0
LLM-Planner-Gemini 44.4 50.0 51.2 11.1 24.4 20.7
LLM-Planner-LLaMA3 26.6 34.4 44.4 0.0 14.4 25.9

sLM-based agent

SayCan-LLaMA3Q 44.4 50.0 50.3 2.2 17.7 27.9
SayCan-GPT2 0.04 11.14 0.74 0.04 11.14 0.7
ProgPrompt-LLaMA3Q 26.6 37.7 33.8 0.0 10.0 0.0
ProgPrompt-GPT2 0.0 11.1 1.8 0.0 11.1 0.0
LLM-Planner-LLaMA3Q 20.0 28.8 46.6 0.0 15.5 29.4
LLM-Planner-GPT2 4.4 13.3 16.6 0.0 14.4 32.6

Table 14: Cross-domain performance in ALFRED

For the evaluation in ALFRED, we utilize ex-
pert trajectories from the ALFRED benchmark. We
then augment these long-horizon trajectories by
appending specific actions at intermediate steps
of the trajectories. This process resulted in 25 dis-
tinct tasks, each defined by a distinct sequence of
actions. Using these 25 expert trajectories, we fol-
lowed the same offline dataset construction process
as outlined in Section 4.1 and A.2. Also, each of
the 25 tasks is evaluated using 5 fine-grained and 5
abstract instructions, resulting in a total of 250 test
instructions. We use the same prompts for LLM-
based reward estimation as those used in Virtual-
Home.

D.3 The Number of Prompts

To investigate the impact of the number of prompts
used in calculating spatio-temporally consistent
rewards, we vary the number of prompts used to
compute contextually, structurally, and temporally
consistent rewards in Equations (3), (4), and (8).

As explained in Section B.1.1, we use 5 dif-
ferent types of prompts in a main manuscript: a
naive prompt explaining the reward estimation
task and required format, three in-context learn-
ing (ICL) prompts with distinct demonstrations,
and a Chain-of-Thought (CoT) prompt including
a human-written reasoning path for reward estima-
tion.

Here, we explored 1, 3, 5, and 7 prompts for
LM-based reward estimation:

• 1 prompt: CoT prompt only

• 3 prompts: 2 ICL prompts and 1 CoT prompt

• 5 prompts: As in the main manuscript

• 7 prompts: Added 2 distinct ICL prompts with
new demonstrations

As shown in Table 15, we observe a positive cor-
relation between the number of prompts and agent
performance. This demonstrates that increasing the
diversity of prompts enhances the robustness of our
reward estimation process. The improved perfor-
mance with more prompts suggests that our frame-
work effectively leverages multiple perspectives to
generate more accurate and consistent rewards.

Num. Prompt
Fine-grained

SR CGC Plan

1 36.8 49.5 56.7
3 50.4 61.5 65.2
5 66.4 74.5 69.5
7 69.6 74.0 76.9

Table 15: Performance Based on the Number of Prompts
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ID Visual Observation Goal Instruction Information
Fine-grained Abstract

1
Apple on the kitchen table

Bread slice on the kitchen table
Apple on a bread slice

Retrieve the apple from the coffee table,
walk to the toaster,
grab a bread slice,

go to the kitchen table,
set the bread slice on the kitchen table,

put the apple on the bread slice.

Experience the natural crispness of
apples in a tasty sandwich.

2 Apple on the sink
Bananas on the sink

Locate the coffee table, take the apple,
pick up the bananas, find the sink,

put the apple in the sink,
put the bananas in the sink.

Prepare fruits
to serve to your guests.

3
Apple held in hand

Bananas held in hand
Sit on sofa

Retrieve the apple from the coffee table,
grab the bananas,

move to the sofa, sit down.

Enjoy a fruit while
sitting on the couch.

4 Cereal in fridge
Closed fridge

Locate the cereal on the wall shelf,
grab it, head to the fridge,

open it, place it inside, and shut the door.

Once breakfast is complete,
stow the leftovers.

5 Salmon in the fridge
Closed fridge

Find the salmon in the microwave,
take it to the fridge,

open the fridge,
place the salmon inside,

close the fridge.

Store your salmon in the refrigerator
to maintain its quality.

6
Salmon in the microwave

Closed microwave
Switch on the microwave

Find the microwave, pick up the
salmon, open it, place the salmon in,

close the microwave, turn it on.

Warm up with a freshly
cooked salmon dish

7 Book held in hand
Sit on the sofa

Get the book from the bookshelf,
find the sofa,
sit on the sofa

Take your book to the sofa
and start reading.

8 Apple in the fridge
Closed fridge

find the coffee table,
pick up the apple,
locate the fridge,
open the fridge,

place the apple inside,
close the fridge.

Store your apple in the fridge
for maximum freshness.

9 Bananas in the fridge
Closed fridge

Find the coffee table,
grab the bananas,
locate the fridge,
open the fridge,

place the bananas inside,
close the fridge.

Keep your bananas cool
to maintain their texture.

10 Toothpaste in the bathroom cabinet
Closed bathroom cabinet

Pick up the toothpaste
from the bathroom counter,

place it inside,
close the bathroom cabinet

Organize your bathroom items neatly.

Table 16: VirtualHome single-domain task examples
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ID Visual Observation Goal Instruction Information
Fine-grained Abstract

1 Cereal in the fridge
Closed fridge

Find the cereal on table
take it to the fridge,

open the door,
put it inside,

and close the refrigerator.

Once breakfast is complete,
stow the leftovers in the fridge.

2 Cereal on kitchen table

Pick up the cereal
from the coffee table,

move to the
kitchen table,

set it on the table.

Place your breakfast
ready on the table.

3 Creamy buns on kitchen table

Find the coffee table,
take the creamy buns,

locate the kitchen table,
place the creamy buns
on the kitchen table.

Organize a quick, delicious
and creamy snack on the table.

4 Cat on the desk

Find the bed,
grab the cat,

locate the desk,
place the cat on the desk.

Make your cat a part of
your workday routine.

5 Cat on the bathtub
Take the cat from the bed,

head to the bathtub,
place the cat in the bathtub.

Time for a perfect
clean-up for your cat.

6 Book held in hand
Sit on the sofa

Grab the book from the desk,
head to the sofa,

sit down on the sofa.

Take your book to the sofa
and start reading.

7 Book held in hand
Sit on bed

Find the desk,
pick up the book,

locate the bed,
sit down on the bed.

Unwind before bedtime
with a soothing reading session.

8 Creamy buns held in hand
Sit on sofa

Find the coffee table,
grab the creamy buns,

locate the sofa,
sit on the sofa.

Indulge in a creamy bun
for a delightful sofa snack.

Table 17: VirtualHome cross-domain task examples

Cereal Creamy Buns Cat Book

Single-domain

Cross-domain

Table 18: Different object locations in cross-domain evaluation
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Naive Prompt

Robot: Hello, I’m a robot working in a house. You can ask me to do various tasks, and I’ll tell you how much each action
will help you accomplish the task. I can also help you find objects relevant to the task.

These are my scoring guidelines:
2 points: Actions that should follow the given previous completed actions.
1 point: Actions that can indirectly perform or support the action that would receive 2 points.
0 points: Actions involving visible objects that do not affect the task.
-1 point: Actions that involve searching for objects not related to the task.
-2 points: Actions that involve picking up or placing invisible objects, i.e., actions that cannot be performed in their current
state.

Actions such as grab, put, open, sit, switch on, and close cannot be performed on invisible objects. In addition, the Close
action cannot be performed if there has been no Open action in previously completed actions.

Task Description: State what you’re trying to accomplish.
Action List: Provide a list of the actions available in your house.
Previously Completed Actions: List the actions that have been used previously.
Visible objects: The objects that are currently visible to the eyes.
Grabbed: The objects currently held in the hand.

Now you can ask for scores for actions related to the task and identify objects relevant to the task among those currently
visible. I will respond in the format of the score/relevant object. Do not include any other answers, just output scores and
relevant objects.

Answer format:
Score: 2
relevant objects: apple, bananas

Human:
Task description: [Instruction].
Action List: [Actions]
Previously Completed Actions: [Completed Actions].
Visible Objects: [Items]
Grabbed: [Grabbed items]
How many points is [Action]?
And which of the currently visible objects is relevant to the task?

Robot:

Table 19: Naive prompt for LLM reward estimator ΦLLM
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CoT Prompt

Robot: Hi there, I’m a robot operating in a house. You can ask me to do various tasks and I’ll tell you how much each action
helps in accomplishing the task. I can also help you find objects relevant to the task.

These are my scoring guidelines:
2 points: Actions that should follow the given previous completed actions.
1 point: Actions that can indirectly perform or support the action that would receive 2 points.
0 points: Actions involving visible objects that do not affect the task.
-1 point: Actions that involve searching for objects not related to the task.
-2 points: Actions that involve picking up or placing invisible objects, i.e., actions that cannot be performed in their current
state.

Actions such as grab, put, open, sit, switch on, and close cannot be performed on invisible objects. In addition, the Close
action cannot be performed if there has been no Open action in previously completed actions.

Task Description: State what you’re trying to accomplish.
Action List: Provide a list of the actions available in your house.
Previously Completed Actions: List the actions that have been used previously.
Visible objects: The objects that are currently visible to the eyes.
Grabbed: The objects currently held in the hand.

Now you can ask for scores for actions related to the task and identify objects relevant to the task among those currently
visible.

[Sample 1]
Human:
Task Description: find wall shelf then grab cereal then find fridge then open fridge then put cereal in fridge then close fridge
Previously Completed Actions: 1. find wall shelf
Visible objects: paper, cereal, wall shelf, mouse, mug, creamy buns, crackers
Grabbed: nothing
Robot:
A. Actions related to the task: [grab cereal, find fridge, open fridge, put cereal in fridge, close fridge]
B. Actions that have no effect on the task (grasping a visible object): [grab creamy buns]
C. Actions not related to the task: [remaining find actions]
D. Interfering actions (when an item needs to be inserted but is closed or a switch is activated without closing): [none]
E. Actions that cannot be performed because they are not in the visible object or are not grabbed in the completed action:
[remaining actions]
2 points: Among A, the action that is not in the completed action but follows it and aims to achieve the task is [grab cereal].
1 point: Actions that bring results similar to those that received 2 points are [none].
0 point: The actions that satisfy B are [grab creamy buns].
-1 point: The actions that satisfy C are [find bookshelf, find bathtub, find sofa, find bathroom counter, find bed, find desk, find
fridge, find closet drawer, find sink, find toaster, find microwave, find kitchen table, find wall shelf, find coffee table].
-2 points: Actions in D, E and remaining actions.
Relevant objects: wall shelf, cereal, fridge

[Other samples]

Human:
Task description: [Instruction].
Action List: [Actions]
Previously Completed Actions: [Completed Actions].
Visible Objects: [Items]
Grabbed: [Grabbed items]
How many points is [Action]?

Robot:

Table 20: CoT prompt for LLM reward estimator ΦLLM
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In-Context Prompt

Robot: Hi there, I’m a robot operating in a house. You can ask me to do various tasks and I’ll tell you how much each action
helps in accomplishing the task. I can also help you find objects relevant to the task.

These are my scoring guidelines:
2 points: Actions that should follow the given previous completed actions.
1 point: Actions that can indirectly perform or support the action that would receive 2 points.
0 points: Actions involving visible objects that do not affect the task.
-1 point: Actions that involve searching for objects not related to the task.
-2 points: Actions that involve picking up or placing invisible objects, i.e., actions that cannot be performed in their current
state.

Actions such as grab, put, open, sit, switch on, and close cannot be performed on invisible objects. In addition, the Close
action cannot be performed if there has been no Open action in previously completed actions.

Task Description: State what you’re trying to accomplish.
Action List: Provide a list of the actions available in your house.
Previously Completed Actions: List the actions that have been used previously.
Visible objects: The objects that are currently visible to the eyes.
Grabbed: The objects currently held in the hand.

Now you can ask for scores for actions related to the task and identify objects relevant to the task among those currently
visible.

[Sample 1]
Human:
Task Description: find wall shelf then grab cereal then find fridge then open fridge then put cereal in fridge then close fridge
Previously Completed Actions: 1. find wall shelf
Visible objects: paper, cereal, wall shelf, mouse, mug, creamy buns, crackers
Grabbed: nothing
Robot:
grab cereal: 2

[Other samples]

Human:
Task Description: <Instruction>
Action List: <Actions>
Previously Completed Actions: <Completed actions>
Visible Objects: <Visible Objects>
Grabbed: <Grabbed Objects>
How many points is <Action>?

Robot:

Table 21: ICL prompt for LLM reward estimator ΦLLM
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In-Context Prompt (2)

Objective: To successfully achieve your goal, execute a sequence of actions listed below. The order of execution should be
logical and based on the situation provided. Only use actions from the specified action set for decision-making and scoring.
Any actions not listed are not to be considered for this task.

Scoring Guidelines:
2 Points (Highly Beneficial Action): Awarded to a single action that is crucial for directly achieving the goal, delivering
immediate and substantial benefits, and can be executed in its current state.
1 Point (Beneficial Action): Allocated to actions that are significant steps or preparatory actions toward the goal, facilitating
notable progression or preparation, and are executable in their current state.
0 Points (Neutral Action): Given to actions that are either indirectly related to the goal or have minimal contribution towards
its achievement, essentially actions that are tangential to the current objective, but still executable in their current state.
-1 Point (Potentially Detrimental Action): Assigned to actions that, without directly blocking the goal, can indirectly
impede its achievement, squander time on activities unrelated to the objective, or cannot be executed in their current state.
-2 Points (Directly Detrimental Action): Awarded to actions that directly interfere with goal achievement or have an effect
opposite to the intended goal.

Task Description: Specify the goal you’re trying to achieve.
Action List: Action list
Previously Completed Actions: List the actions that have been used previously.
Visible objects: The objects currently visible to the eyes. Find the objects relevant to the task description among these
objects.
Grabbed: The objects currently being held in the hand.

[Sample 1]
Task Description: find wall shelf then grab cereal then find fridge then open fridge then put cereal in fridge then close fridge
Previously Completed Actions: 1. find wall shelf
Visible objects: paper, cereal, wall shelf, mouse, mug, creamy buns, crackers
Grabbed: nothing
Response: grab cereal: 2

[Other samples]

Human:
Task Description: <Instruction>
Action List: <Actions>
Previously Completed Actions: <Completed actions>
Visible Objects: <Visible Objects>
Grabbed: <Grabbed Objects>
Response:

Table 22: ICL prompt (2) for LLM reward estimator ΦLLM
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Instruction Enjoy a fruit snack while sitting on the couch.
Observation picture frame

Action grab apple
Execution History None

Rewards rC = −2 rS = 2 rT = −2
Prompt P1 2 ✓ 2 ✗ 2 ✓
Prompt P2 1 ✓ 1 ✗ 1 ✗

Prompt P3 -2 ✓ -2 ✗ -2 ✓
Prompt P4 -2 ✓ -2 ✓ -2 ✓
Prompt P5 2 ✓ 2 ✗ 2 ✓

Table 23: An example of how reward estimation differs according to contextual, structural, and temporal consistency.
In each consistency-based reward (rC , rS , and rT ), a check mark indicates that the predicted reward contributes to
the majority voting for its respective consistency. An ’X’ mark signifies that the reward is disregarded due to either
failing the backward-verification process (in temporal consistency) or incorrectly responding to the MDP-specific
query (in structural consistency).

Instruction Enjoy the crisp, refreshing taste of a wholesome apple sandwich.
Observation dish washing liquid, bread slice, coffee pot, stove, bell pepper, sink, fridge

Action put apple on bread slice
Execution History 1. find coffee table 2. grab apple, 3. find toaster, 4. grab bread slice

Rewards rC = −2 rS = −2 rT = 2

Prompt P1 2 ✓ 2 ✗ 2 ✓
Prompt P2 -2 ✓ -2 ✓ -2 ✓
Prompt P3 2 ✓ 2 ✓ 2 ✗

Prompt P4 -2 ✓ -2 ✓ -2 ✓
Prompt P5 1 ✓ 1 ✓ 1 ✓

Table 24: An example of how reward estimation differs according to contextual, structural, and temporal consistency.

Instruction Prepare for bath time with your cat.
Observation cat, bathtub, tower

Action find bathtub
Execution History 1. find kitchen table 2. grab cat, 3. find bathtub, 4. put cat in bathtub

Rewards rC = −1 rS = 2 rT = −1
Prompt P1 -1 ✓ -1 ✓ -1 ✓
Prompt P2 2 ✓ 2 ✓ 2 ✓
Prompt P3 -1 ✓ -1 ✓ -1 ✓
Prompt P4 2 ✓ 2 ✓ 2 ✓
Prompt P5 2 ✓ 2 ✗ 2 ✓

Table 25: An example of how reward estimation differs according to contextual, structural, and temporal consistency.
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