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Abstract

Recently, few-shot Named Entity Recognition
(NER) has attracted significant attention due to
the high cost of obtaining high-quality labeled
data. Decomposition-based methods have
demonstrated remarkable performance on this
task, which initially train a type-independent
span detector and subsequently classify the
detected spans based on their types. How-
ever, this framework has an evident drawback
as a domain-agnostic detector cannot ensure
the identification of only those entity spans
that are specific to the target domain. To ad-
dress this issue, we propose Double-Checker,
which leverages collaboration between Large
Language Models (LLMs) and small models.
Specifically, we employ LLMs to verify can-
didate spans predicted by the small model
and eliminate any spans that fall outside the
scope of the target domain. Extensive experi-
ments validate the effectiveness of our method,
consistently yielding improvements over two
baseline approaches. Our code is available at
github.com/fanshu6hao/Double-Checker.

1 Introduction

In recent years, few-shot Named Entity Recogni-
tion (NER) has attracted significant attention due
to the high cost of obtaining high-quality labeled
data (Ma et al., 2022a; Agrawal et al., 2022). This
task mainly focuses on enabling the model to learn
from a resource-rich source domain dataset, and
further requires the model to predict unseen entity
types in a resource-scarce target domain based on
a small amount of data, i.e., the support data (Ma
et al., 2022a; Das et al., 2022).

To solve the above problem, a common approach
is to decompose the task into entity span detection
and entity type classification (Chen et al., 2023;
Li et al., 2023). Specifically, a type-independent
entity span detector is first trained, and then the
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type classification is performed according to the de-
tection spans. Since the span detector trained in the
first stage does not need to focus on specific entity
types, it can effectively reduce the distribution gap
between the source domain and the target domain,
and has excellent performance (Wang et al., 2022;
Ma et al., 2022b). However, this paradigm has
an obvious drawback: a domain-agnostic detector
cannot guarantee that the entity span identified is
specific to the target domain, and it will obviously
identify many non-target domain candidates 1.

Fortunately, Large Language Models (LLMs)
have shown remarkable performance on various
natural language processing tasks (Wang et al.,
2024), such as semantic understanding (Li et al.,
2024; Zhang et al., 2024a,b), knowledge reason-
ing (Lyu et al., 2024; Xu et al., 2024), and recom-
mender systems (Wu et al., 2024b; Zheng et al.,
2023, 2024). However, some recent studies point
out that LLMs are not ideal for NER directly (Han
et al., 2023; Xie et al., 2023), and often need to
decompose the task into multiple steps or continue
to fine-tune on large-scale data (Wei et al., 2023;
Xu et al., 2023; Zhou et al., 2024). These methods
will undoubtedly consume a lot of resources.

Therefore, in this paper, we propose to lever-
age the collaboration of Small Language Models
(SLMs) and LLMs to exploit their respective advan-
tages: low resource consumption of SLMs and the
extensive knowledge base of LLMs. We aim to ad-
dress the non-target domain entity span problem in-
herent in SLMs while mitigating the high resource
consumption of LLMs. Along these lines, we pro-
pose Double-Checker, a framework where the LLM
functions as a checker. Instead of re-identifying en-
tities, the LLM rechecks the candidates identified
by the small model, ensuring more accurate and
domain-specific entity recognition. Specifically,
we first obtain the candidates predicted by the SLM

1In Appendix A.1, we conduct a related experiment.
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Target Sentence: “The traditional view among chilean historians 
and historians of the inca empire is that maule river{Location-bodiesofwater} 
was the frontier. ”

Candidate  Possible Type  Probability
maule river  location-bodiesofwater 8.299
inca empire location-GPE 4.385
chilean  location-other 3.172

[maule river] Correct

STEP 1

[inca empire] Recheck [chilean] Recheck

First-stage Check
Given Type Definition, Sentence, Types, and Candidate, answer the Question.
Type Definition: xxx refers to ..., None refers an entity that does not belong to the above 
types, or not an entity.
Sentence: The traditional view among chilean historians ...
Types: xxx, None.
Candidate: ...
Question: Please select the most relevant type (from Types) for Candidate in the Sentence.

Answer: The most relevant type of inca empire is None.   
Answer: The most relevant type of chilean is Location-other.  

Second-stage Check
Question: Consider the Possible Type xxx, whether the 
Candidate in the Sentence is an entity or not and explain why.

[chilean]

[chilean] Removed  [inca empire] Removed

[inca empire]

Small Language Model

Type-Adaptive Selector

STEP 2

Figure 1: The overall framework of Double-Checker.

on the target domain sentences. To balance perfor-
mance and resource consumption, we then utilize
a type-adaptive selector to identify which candi-
dates need to be rechecked. Finally, we use the
LLM to conduct a two-stage check of the selected
candidates, removing incorrectly identified spans
to obtain the final results. We conduct extensive
experiments on five few-shot NER datasets, achiev-
ing consistent performance improvements with the
LLM on two state-of-the-art (SOTA) SLMs.

2 Methodology

In this section, we introduce Double-Checker, an
efficient framework specifically designed for elimi-
nating non-target domain candidates by rechecking
the predictions made by small models. The frame-
work consists of two main steps: firstly, we obtain
the candidates predicted by the small model and
select the ones to be rechecked; subsequently, a
two-stage check utilizing LLM is conducted. An
overview of the framework is shown in Figure 1.

2.1 Step 1: Select the Candidates

For each sentence xi in the target domain, we first
leverage the small model to obtain the structural
output, denoted as yi = [si, ti, pi]. Here, si repre-
sents a candidate span, ti indicates the correspond-
ing type, and pi is the probability values.

Intuitively, outputs with higher predicted prob-
ability values are less likely to be incorrect. How-
ever, considering the high computational cost of
using LLM, it is crucial to balance performance and
cost by selecting an appropriate subset of data for
the LLM to process. We assume that the probability
distribution varies across different entity types and
that prediction values for different types have vary-

ing levels of importance. Therefore, we develop a
type-adaptive selector that prioritizes samples for
LLM check based on the type-specific probabil-
ity distributions, ensuring the most critical data is
checked within the same data proportion. Specifi-
cally, we first construct a collection of probability
values for each type:

Set(ti) =

{
Set(ti) ∪ pj , if tj = ti

Set(ti), otherwise
, (1)

where j ∈ {1, ..., n} (n is the number of candi-
dates), tj is the type of candidate j, and pj is the
predicted probability value. For each candidate, if
its predicted type is ti, we merge the probability
value into Set(ti). Next, we set a quantile point
α, which we assume to be 60%. If the probability
value of a candidate exceeds the 60th percentile of
the samples within its corresponding type set, it is
considered less likely to be incorrect. Otherwise, it
proceeds to the second step for further verification.
By implementing this process, we effectively select
the desired candidates.

2.2 Step 2: Two-stage Check

In this step, we utilize the rich external knowledge
of the LLM to perform a two-stage check of the
selected candidates.
Prompt Construction. Following Zhang et al.
(2023), we transform the task into a QA format
comprising five components: Type Definition, Sen-
tence, Types, Candidate, and Question. Detailed
specifications of this format are provided in Ap-
pendix A.2. It is important to highlight the intro-
duction of Type Definition and the selection scope
of Types, which we will cover later.
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Models
Intra Inter

1∼2 shot 5∼10 shot Avg. 1∼2 shot 5∼10 shot Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

Full Test set

ProtoBERT∗ (Fritzler et al., 2019) 20.76±0.84 15.05±0.44 42.54±0.94 35.40±0.13 28.44 38.83±1.49 32.45±0.79 58.79±0.44 52.92±0.37 45.75
NNshot∗ (Yang and Katiyar, 2020) 25.78±0.91 18.27±0.41 36.18±0.79 27.38±0.53 26.90 47.24±1.00 38.87±0.21 55.64±0.63 49.57±2.73 47.83
StructShot∗ (Yang and Katiyar, 2020) 30.21±0.90 21.03±1.13 38.00±1.29 26.42±0.60 28.92 51.88±0.69 43.34±0.10 57.32±0.63 49.57±3.08 50.53
CONTaiNER∗ (Das et al., 2022) 41.51±0.07 36.62±0.04 57.83±0.01 51.04±0.24 46.75 50.92±0.29 47.02±0.24 63.35±0.07 60.14±0.16 55.36
DecomposedMeta∗ (Ma et al., 2022b) 49.48±0.85 42.84±0.46 62.92±0.57 57.31±0.25 53.14 64.75±0.35 58.65±0.43 71.49±0.47 68.11±0.05 65.75
HEProto∗ (Chen et al., 2023) 53.03±0.30 46.45±0.21 65.70±0.21 58.98±0.22 56.04 66.40±0.18 60.91±0.20 72.53±0.11 68.92±0.20 67.19
HEProto† 52.64 46.26 65.58 58.93 55.85 66.01 60.92 72.29 68.86 67.02
TadNER∗ (Li et al., 2023) 60.78±0.32 55.44±0.08 67.94±0.17 60.87±0.22 61.26 64.83±0.14 64.06±0.19 72.12±0.12 69.94±0.15 67.74
TadNER† 59.72 55.15 67.60 60.68 60.79 64.57 62.80 71.82 69.32 67.13

Sampled Test set

GPT-3.5-turbo 53.69 47.07 54.59 49.36 51.18 46.26 42.68 51.81 49.09 47.46
HEProto† 52.94 46.55 65.35 58.90 55.94 65.42 60.89 72.10 69.28 66.92
TadNER† 60.13 55.02 67.62 60.75 60.88 64.38 62.92 71.67 69.54 67.12
Double-Checker−HEProto 59.98 54.74 69.00 62.61 61.58 68.58 65.76 73.49 71.29 69.78
Double-Checker−TadNER 64.43 60.11 70.14 64.63 64.74 66.09 65.81 73.03 71.50 69.11
∆ Double-Checker vs. HEProto 7.04 ↑ 8.19 ↑ 3.65 ↑ 3.71 ↑ 5.64 ↑ 3.16 ↑ 4.87 ↑ 1.39 ↑ 2.01 ↑ 2.86 ↑
∆ Double-Checker vs. TadNER 4.13 ↑ 5.09 ↑ 2.52 ↑ 3.88 ↑ 3.86 ↑ 1.71 ↑ 2.89 ↑ 1.36 ↑ 1.96 ↑ 1.99 ↑

Table 1: Comparison of performance on Few-NERD with the Micro-F1 metric(%). † indicates that the results are
from our re-implementation with the same seed. ∗ denotes the results are obtained from Chen et al. (2023) and Li
et al. (2023). The best results are in bold.

One crucial reason for introducing the concept
of Type Definition is the variability in the range of
entity types across different datasets, which poses
a challenge for LLMs that are not inherently aware
of this variability. By incorporating a type-specific
description, we can enhance the LLM’s focus and
performance on a given dataset. To achieve this, we
input the entire set of types from the datasets into
the LLM simultaneously. This approach allows
the LLM to consider the complete spectrum of
entity types and generate tailored descriptions for
each specific domain type. In Appendix A.3, we
show the full description of the target domain types
obtained from GPT-3.5-turbo.

We then define the scope of Types. Unlike re-
ranking methods (Ma et al., 2023; Zhang et al.,
2024c) that focus on calibrating false entity types,
our approach aims to exclude non-target domain
spans or non-entities. Consequently, in most scenar-
ios, it suffices to include only the highest predicted
type and “None” (indicating a non-target domain
entity or non-entity) within type scope. In certain
cases, we also incorporate the second most likely
type predicted by the small model to enhance over-
all performance. In Section 3.4.2, we delve into the
impact of varying the types scope on performance.
Two-stage Check Workflow. The right part of
Figure 1 illustrates the workflow. For each selected
candidate, we obtain the corresponding Type Defi-
nition based on its predicted type and input it into
the LLM along with other necessary information
from the prompt to obtain recheck results. If a

candidate is determined as “None”, it is removed
and the process ends; otherwise, we proceed to the
second stage of checking. The check in the second
stage serves solely to determine whether the candi-
date is an entity. Based on the context in previous
stage, we directly input the new Question. If the
candidate is deemed as an entity, it will be included
in the final result; otherwise, it will be excluded.
Through the above process, we remove the false
entity span and combine the unselected candidates
to constitute the final result.

3 Experiments

3.1 Datasets and Experimental Setup

Few-NERD (Ding et al., 2021) is a standard few-
shot NER dataset, which consists of 8 coarse-
grained entity types and 66 fine-grained entity
types. It is divided into Intra and Inter settings,
and the entity types of the train set, dev set and test
set are non-overlapping under each setting. In this
case, the Intra setting is divided according to coarse-
grained types, while the Inter is divided according
to fine-grained types. Referring to Das et al. (2022),
we additionally conduct the Domain Transfer ex-
periment utilizing data from diverse domains. The
training set was sourced from OntoNotes (Gen-
eral) (Ralph et al., 2013), while the test set com-
prised I2B2 (Medical) (Stubbs and Uzuner, 2015),
CoNLL03 (News) (Sang and De Meulder, 2003),
WNUT17 (Social Media) (Derczynski et al., 2017),
and GUM (Zeldes, 2017) datasets.
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Models 1 shot 5 shot

I2B2 CoNLL WNUT GUM Avg. I2B2 CoNLL WNUT GUM Avg.

Full Test set

ProtoBERT∗ (Fritzler et al., 2019) 13.4±3.0 49.9±8.6 17.4±4.9 17.8±3.5 24.6 17.9±1.8 61.3±9.1 22.8±4.5 19.5±3.4 30.4
NNshot∗ (Yang and Katiyar, 2020) 15.3±1.6 61.2±10.4 22.7±7.4 10.5±2.9 27.4 22.0±1.5 74.1±2.3 27.3±5.4 15.9±1.8 34.8
StructShot∗ (Yang and Katiyar, 2020) 21.4±3.8 62.4±10.5 24.2±8.0 7.8±2.1 29.0 30.3±2.1 74.8±2.4 30.4±6.5 13.3±1.3 37.2
CONTaiNER∗ (Das et al., 2022) 21.5±1.7 61.2±10.7 27.5±1.9 18.5±4.9 32.2 36.7±2.1 75.8±2.7 32.5±3.8 25.2±2.7 42.6
DecomposedMeta∗ (Ma et al., 2022b) 15.5±3.0 61.2±9.2 27.7±5.3 20.3±4.2 31.2 19.8±2.6 75.2±5.8 29.8±3.9 33.5±2.4 39.6
TadNER∗ (Li et al., 2023) 39.3±3.8 70.4±10.6 32.8±4.8 24.2±4.1 41.7 45.2±2.3 80.5±3.6 34.5±4.6 35.1±2.2 48.8
TadNER† 38.51±4.89 69.21±9.37 33.94±5.25 23.23±3.96 41.22 44.79±2.53 79.93±3.57 34.46±3.98 35.85±1.76 48.75

Sampled Test set

TadNER† 38.68±6.53 71.33±9.02 35.01±5.13 23.23±3.67 42.06 46.07±3.14 80.44±2.86 35.60±3.15 35.86±1.77 49.49
Double-Checker−TadNER 40.50±7.94 72.35±7.58 39.85±3.97 25.36±4.33 44.52 48.91±3.13 80.76±2.43 40.39±2.71 38.03±1.59 52.02
∆ Double-Checker vs. TadNER 1.82 ↑ 1.02 ↑ 4.84 ↑ 2.13 ↑ 2.46 ↑ 2.84 ↑ 0.32 ↑ 4.79 ↑ 2.17 ↑ 2.53 ↑

Table 2: Comparison of performance on Domain Transfer with the Micro-F1 metric(%). † indicates that the results
are from our re-implementation. ∗ denotes the results are obtained from Li et al. (2023). The best results are in bold.

Methods
Intra Inter

1∼2 shot 5∼10 shot Avg. 1∼2 shot 5∼10 shot Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

Double-Checker−TadNER 64.43 60.11 70.14 64.63 64.74 66.09 65.81 73.03 71.50 69.11
w/o Second-stage Check 63.67 59.41 69.60 63.97 64.16 65.01 65.05 72.07 70.91 68.26
w/o Type Definition 62.92 58.76 68.66 62.86 63.30 65.60 65.57 72.60 70.53 68.58
w/o Recheck 60.13 55.02 67.62 60.75 60.88 64.38 62.92 71.67 69.54 67.12

Table 3: Ablation study on Few-NERD with the Micro-F1 metric(%).

We choose the two SOTA methods (HEProto2

(Chen et al., 2023) and TadNER (Li et al., 2023)) as
our SLMs, and use GPT-3.5-turbo as the LLM for
all experiments. Follow previous works (Ma et al.,
2022b; Chen et al., 2023), we use the entity-level
micro f1 score for evaluation, which requires both
the predicted entity span and type to be correct.

3.2 Main Results
Considering the high cost of LLM, we sample the
10,000 sentences in each sub-setting on the full test
set, and reproduce a portion of baselines with the
same seed for a fair comparison. Table 1 and 2
show the main results of the comparison between
our proposed Double-Checker and baselines. It is
evident that Double-Checker achieves consistent
improvements over both SLMs. Specifically from
Table 1, there is a minimum increase of 1.39%
and a maximum increase of 8.19% on HEProto,
while it ranges from 1.36% to 5.09% on TadNER
respectively. Furthermore, based on the average
performance comparison, we observe that the im-
provement is more pronounced in the Intra setting
due to a wider distribution gap between source
and target domains where external knowledge pro-

2Due to the requirement for HEProto to leverage both
coarse and fine granularity of labels, we opted not to utilize
this model for our Domain Transfer experiments.

vided by LLM effectively is better to bridges this.
It is worth noting that GPT-3.5-turbo alone does
not yield satisfactory results and even exhibits sig-
nificant disparities compared to SOTA methods
in most cases; however, when combined as part
of Double-Checker, it not only consumes fewer
resources but also achieves superior performance
compared to both individual models.

3.3 Ablation Study
We choose TadNER as SLM to conduct ablation
experiments and introduce the following variants:
1) w/o Second-stage Check means that only the
First-stage Check is retained. 2) w/o Type Defini-
tion removes the type definition in the prompt. 3)
w/o Recheck denotes the origin results from SLM.

As shown in Table 3, we can observe that: 1)
The removal of second-stage checks resulted in
a decline in model performance, which validates
the effectiveness of secondary reprocessing results.
2)When type definition are absent, Double-Checker
drops more in Intra, indicating that enabling LLM
to comprehend label ranges for more challenging
tasks can better activate their internal knowledge.

3.4 Comparative Analysis
In this section, we conduct additional experiments
to explore the following practical questions:
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Setting

(a) (b)

Figure 2: (a) Results of different selecting strategy. (b)
Results of different types scope in prompt.

Q1: Why do we need type-adaptive selector?
Q2: How to adjust types scope in prompt?

3.4.1 Impact of Selector
We compare the performance of ours type-adaptive
selector and normal selector (that is, selecting can-
didates based on all types) on Intra 10-way 1-shot.
The Figure 2 (a) clearly demonstrates that our adap-
tive selector consistently outperforms in most cases,
particularly when the proportion of selected data is
low, thereby highlighting this phenomenon more
prominently. Moreover, our method excels at se-
lecting a greater number of non-target domain can-
didates with an equivalent data proportion. Addi-
tionally, it is worth noting that model performance
does not always exhibit a linear relationship with
the proportion of data; instead, it reaches a plateau
and even declines. Consequently, considering both
performance and resource consumption factors, the
selector we have designed proves to be more suit-
able for realistic scenarios while achieving superior
performance within limited resources.

3.4.2 Impact of Types Scope
The Figure 2 (b) illustrates a comparison of the
impact of different types of scopes in prompt for 5-
way 1-shot setting. It is evident that employing the
full-type prompt yields the poorest results in both
settings, whereas the other two options exhibit no
significant differences. This can be attributed to a
higher occurrence of errors in predicting non-target
domain spans rather than type errors within the few-
shot NER scenario. When providing a larger selec-
tion of types as input prompts to the large model, it
inevitably introduces disturbances and shifts its ob-
jective from removing non-target domain spans to
reclassifying spans, resulting in performance degra-
dation. Therefore, for practical applications, it is
advisable to limit the range of types provided as
input prompts to minimize inference costs while
potentially improving performance.

4 Conclusion

In this paper, we presented Double-Checker, a
framework that effectively combines LLM and
SLM for few-shot NER task. Specifically, we ini-
tially employed a type-adaptive selector to choose
candidates predicted by the small model. Subse-
quently, the LLM is utilized to conduct a two-stage
check process on these selected candidates, remov-
ing entity spans and non-entities that are not rele-
vant to the target domain. Extensive experiments
conducted using two different small models con-
sistently demonstrated significant improvements,
thereby showcasing the efficacy of our approach.

5 Limitations

Our approach aims to combine the complementary
strengths of LLM and small models to enhance
overall performance. Due to resource constraints,
we are unable to run the LLM experiments on the
entire test dataset (e.g., the Intra 10 way 5 shot set-
ting includes over 300,000 sentences). Therefore,
we sample 10,000 sentences for each setting. An-
other limitation is our lack of experimentation with
additional LLMs, such as GPT-4 (Achiam et al.,
2023) and LLaMA (Hugo et al., 2023). Explor-
ing a broader range of LLMs could enable us to
observe diverse experimental phenomena and facil-
itate more insightful analyses. We plan to address
these limitations in a follow-up study.
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A Appendix

A.1 Interference from the Source Domain
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Figure 3: Results of different domain “entity attacks”
on SOTA methods and GPT-3.5 on Few-NERD dataset.
“Other Domain” denotes the dev set, and “Source Do-
main” refers to the train set.

The domain-agnostic detector is affected by the
source domain. In order to demonstrate this phe-
nomenon, we re-constructed the target domain (test
set) of Few-NERD (Ding et al., 2021) by “entity
attacks”. Specifically, we first collect entity sets
from the source domain (train set) and other do-
main (dev set). Then, we randomly select a non-
entity position in the target domain sentence and
insert entities from the two domains separately,
thus constructing two interference datasets for en-
tity attacks from different domains. As shown in
the Figure 3, we can observe that all the models
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have a huge drop in performance on two interfer-
ence datasets. Notice that the BERT-based models
have proportionally more performance degradation
compared to the GPT-3.5 (OpenAI, 2023) and are
subject to more interference from source domain
attacks. We attribute this to the fact that the BERT-
based model needs to absorb the knowledge of
the source domain during the training process, and
the span detector fine-tuned on the target domain
cannot completely get rid of the influence of the
source domain knowledge, leading to easier detec-
tion of entity spans in the non-target domain. Large
Language Models, on the other hand, possess rich
internal knowledge and are naturally more resis-
tant to interference (Achiam et al., 2023; Qi et al.,
2023; Chang et al., 2024; Zhao et al., 2024; Wu
et al., 2024a).

A.2 Prompt Example
We select a candidate from target sentence and
construct the corresponding prompt, the details of
which are shown in the Table 4.

A.3 Type Definition Example
We use GPT-3.5-turbo to generate the full type
definitions in the test set, with some examples pre-
sented in the Table 5 and 6.
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<First-stage Check Prompt>
Given the Type Definition, Sentence, Types, and Candidate, answer the Question.
Type Definition: location-GPE includes names of countries, cities, states, provinces, and other regions
that have a political or geographical significance. None refers an entity that does not belong to the
above types, or is not an entity.
Sentence: he was born into a christian family in the predominantly muslim north.
Types: location-GPE, None
Candidate: muslim north
Question: Please refer to Type Definition and select the most relevant type (from Types) for Candidate
in the Sentence. Answer in the format of json like: {“answer”: “ ”}

<Second-stage Check Prompt>
Question: Consider the Possible Type {first-stage answer}, whether the Candidate in the Sentence is
an entity or not. Answer in the format of json like: {“answer”: “ ”}

Table 4: An example of the prompt of our two-stage check.

Type Defnition

location-GPE includes names of countries, cities, states, provinces, and other regions that have a
political or geographical significance.
location-other is a catch-all category within the location entity type that includes geographical locations
which do not fit into the more specific subcategories listed.
location-mountain refers to geographical entities that are elevated landforms characterized by steep
slopes, rocky terrain, and often having peaks or summits.
location-bodiesofwater refers to geographical entities that are large bodies of water, such as oceans,
seas, rivers, lakes, and other water reservoirs.
location-island refers to geographical entities that are landmasses surrounded by water on all sides.
location-park refers to designated areas of land that are preserved or managed for recreational,
conservation, or aesthetic purposes.
location-road/railway/highway/transit refers to infrastructure designed for transportation, including
roads, railways, highways, and transit systems.
organization-education refers to institutions or entities primarily focused on providing education and
academic instruction.
organization-government/governmentagency refers to entities that are part of or associated with
governmental bodies and agencies.
organization-company refers to entities that are businesses or commercial enterprises. This category
includes names of companies, corporations, firms, and other types of business organizations.
organization-politicalparty refers to entities that are organized groups of people with similar political
aims and opinions.
organization-other is a category within the organization entity type that includes organized groups or
entities which do not fit into the more specific subcategories listed.
organization-media/newspaper refers to entities involved in the production and dissemination of
news and information to the public through various media channels.
organization-religion refers to entities associated with religious beliefs, practices, and institutions.
organization-showorganization refers to entities involved in the production, promotion, or organiza-
tion of entertainment events and performances.
organization-sportsleague refers to entities that are structured groups or associations governing a
particular sport or a group of sports.
organization-sportsteam refers to entities that are teams participating in competitive sports, usually
within the structure of a sports league or association.

Table 5: Definition of types on the target domain of Few-NERD Intra.
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Type Defnition

other-medical refers to entities, concepts, or items related to the field of medicine that do not fit into
more specific categories.
person-athlete refers to individuals who engage in physical sports or other forms of competitive
physical activities.
event-sportsevent refers to organized competitive events or activities in which athletes or teams
participate in sports.
art-music refers to entities and works associated with the creation, performance, and recording of
music.
other-livingthing refers to entities that are living organisms but do not fit into more specific categories
like humans, specific animals, or plants.
building-hospital refers to structures specifically designed and equipped for the delivery of healthcare
services.
building-theater refers to structures specifically designed for the performance of live entertainment,
such as plays, musicals, dance performances, concerts, and other stage productions.
other-educationaldegree refers to academic qualifications or titles that do not belong to more specific
categories within the educational domain.
person-actor refers to individuals who professionally perform roles in plays, films, television shows,
or other forms of entertainment media.
product-car refers to automobiles or vehicles designed for transportation purposes.
product-weapon refers to devices or instruments designed or used for inflicting harm, damage, or
destruction.
art-writtenart refers to artistic works that are expressed through the written word.
event-election refers to the process of selecting individuals for specific roles or positions through a
structured voting system.
None refers an entity that does not belong to the above types, or is not an entity.

Table 6: Definition of types on the target domain of Few-NERD Inter, some of which are described in Table 5.
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