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Abstract
Increasing the number of parameters in lan-
guage models is a common strategy to en-
hance their performance. However, smaller
language models remain valuable due to their
lower operational costs. Despite their advan-
tages, smaller models frequently underperform
compared to their larger counterparts, even
when provided with equivalent data and com-
putational resources. Specifically, their perfor-
mance tends to degrade in the late pretraining
phase. This is anecdotally attributed to their
reduced representational capacity. Yet, the ex-
act causes of this performance degradation re-
main unclear. We use the Pythia model suite to
analyse the training dynamics that underlie this
phenomenon. Across different model sizes, we
investigate the convergence of the Attention
and MLP activations to their final state and
examine how the effective rank of their parame-
ters influences this process. We find that nearly
all layers in larger models stabilise early in
training—within the first 20%—whereas lay-
ers in smaller models exhibit slower and less
stable convergence, especially when their pa-
rameters have lower effective rank. By linking
the convergence of layers’ activations to their
parameters’ effective rank, our analyses can
guide future work to address inefficiencies in
the learning dynamics of small models.

rdiehlmartinez/pretraining-playground

1 Introduction

Scaling the number of parameters in language mod-
els (LMs) has provided impressive performance
gains on a variety of tasks (Hendrycks et al., 2021)
and has become the de facto standard to make
progress in model design (e.g., Chowdhery et al.,
2023). Small LMs, however, remain essential as
they are more practical: lower training and infer-
ence costs result in a smaller environmental impact
(Schwartz et al., 2020). Small LMs empower in-
dividuals to train on proprietary data by requiring
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Figure 1: CKA similarity (current vs. last checkpoint)
of Attention and MLP activations for Pythia 160M
and 2.8B. Distribution across layers: 10, 25, 50, 75,
and 90-th percentiles per checkpoint.

fewer resources, enhancing data privacy (Huang
et al., 2022) and democratising access to language
modelling technology (Bender et al., 2021). How-
ever, for the same data and computational budget,
small LMs (unsurprisingly) underperform larger
ones (Biderman et al., 2023) and (importantly) their
performance tends to degrade in the late pretraining
phase, a phenomenon termed saturation by Godey
et al. (2024).1 Saturation is typically attributed
to the “limited representational capacity” of small
LMs; besides this anectodal justification, our un-
derstanding of its causes is still limited.

Recently, Godey et al. (2024) linked saturation to
the reduced variability of the output embeddings of
LMs caused by the mismatch between the hidden
model dimension and the vocabulary size (Yang
et al., 2018). Specifically, the last layer of LMs

1Subsequent references in this paper to saturation align
with the concept introduced by Godey et al. (2024).
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maps the hidden representation of random tokens
to output embeddings with high cosine similarity.2

In this paper, we use the Pythia model suite (Bi-
derman et al., 2023) to provide orthogonal analyses
that consider models’ training dynamics. First, we
study how the activations of the Attention and
MLP layers converge to their final state across
LMs of different sizes. Then, we relate the differ-
ence in convergence behaviour across sizes to the
effective rank of their parameters: layers whose
activations converge later in training span a smaller
fraction of their dimensions.

Specifically, we first use the Centered Kernel
Alignment (CKA; Kornblith et al., 2019) metric to
measure the similarity of layers’ activations across
checkpoints. We observe that larger LMs converge
faster and more smoothly to their final state. As
shown in Fig. 1, within the first 20% of training
nearly all layers in the larger LM (2.8B) resemble
their final state, while most layers in the smaller
LM (160M) remain different for most of training.

We then find a strong correlation between the
convergence pattern of a layer’s activations and the
rank of its parameters and gradients. We introduce
the concept of proportional effective rank (§3) to
consistently compare these effective ranks across
model sizes. Our analyses highlight training inef-
ficiencies in small-scale LMs, paving the way for
targeted improvements in future work.

2 Related Work

Prior work has studied various learning dynamics
of the Pythia suite, including memorisation (Bi-
derman et al., 2023; Lesci et al., 2024), training
data influence (Liu et al., 2024), and statistics of
learned embeddings (Belrose et al., 2024). Related
to our work, Godey et al. (2024) examine the dif-
ferences in the rank of the unembedding matrix
(mapping from hidden representations to tokens)
across model sizes, known as the softmax bottle-
neck (Yang et al., 2018). Unlike their findings, we
focus on the convergence dynamics of all layers.

Similarity metrics like CKA and Singular Vec-
tor Canonical Correlation Analysis (SVCCA) are
widely used to analyse language model properties.
Nguyen et al. (2021) find that architectural deci-
sions, such as model width and depth, affect hidden
representation similarity. Wu et al. (2020) show
that models within the same architectural family
share similar hidden structures, a similarity that per-

2This issue is termed anisotropy (Ethayarajh, 2019).

sists even in fine-tuned models (Phang et al., 2021).
Additionally, SVCCA has been used to study token
representation distribution in multilingual models
(Singh et al., 2019) and syntactic element learning
in monolingual models (Saphra and Lopez, 2019).
Most similar to our work, Brown et al. (2023) use
representation similarity metrics, including CKA,
to study Pythia generalisation capabilities. How-
ever, our study is the first to use the CKA metric
to examine the convergence dynamics of layers’
activations across model sizes.

3 Methodology

We first describe the residual stream view of
transformer-based models and define layers’ ac-
tivations. Then, we introduce the CKA and propor-
tional effective rank metrics.

The Residual Stream view. The residual stream
view of the transformer architecture (Vaswani et al.,
2017) is an analytical framework to study how in-
formation flows through its layers (Elhage et al.,
2021). This conceptualisation focuses on the resid-
ual connections as they provide a direct reference to
the inputs. Specifically, the set of residual connec-
tions across layers is termed the residual stream.
Each layer can be seen as providing modifications
to the residual stream via addition operations. Lay-
ers have two main components, Attention and
MLP, that sequentially update the residual stream.
Formally, a sequence of T tokens t = ⟨t1, ..., tT ⟩
is first converted into a matrix x0 ∈RT×D by the
embedding layer: each column is a token repre-
sentation of size D. Then, each layer l∈{1, ..., L}
updates these representations as follows:

x′ = xl−1 +Attention(xl−1) (1)

xl = x′ +MLP(x′) (2)

Finally, the T -th column of xL is used to predict
the (T +1)-th token. More details in App. A.

Activations and Parameters. The updates to the
residual stream—underlined in eq. (1)—are the
layer’s activations and have the same dimensions
as the residual stream, i.e., RT×D. Both Attention
and MLP first project, or “read”, the residual
stream into lower-dimensional intermediate repre-
sentations; then project these representations back,
or “write”, into the residual stream. Here, we study
the behaviour of the parameters that write to the
residual stream. We use aATT and aMLP to denote
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the activations and θATT and θMLP to denote the
parameters of, respectively, Attention and MLP.

Activations’ Similarity. Given a set of activa-
tions, either aATT or aMLP, of a layer l at a particular
checkpoint c, al,c, we measure how similar they
are to those at the last checkpoint C, al,C , using
the linear variant of the Centred Kernel Alignment
metric (CKA; Kornblith et al., 2019):

CKA(ac,aC) =

∥∥ac
⊤ aC

∥∥2
F

∥ac
⊤ ac∥F ∥aC

⊤ aC∥F
(3)

where a denotes the centred activations, and ∥·∥F
is the Frobenius norm; we omit the layer subscript
l for clarity. We compute eq. (3) for both aATT and
aMLP across all layers and checkpoints throughout
training, allowing us to examine the convergence
dynamics of each layer’s activations.

Parameters’ Proportional Effective Rank. Let
H be the dimension of the intermediate representa-
tion of either Attention or MLP. For a layer l, let
θl ∈ RD×H be the subset of parameters of either
θATT or θMLP that comprise the matrix that projects
from the hidden space into the residual stream. We
measure the effective number of dimensions onto
which θl projects the intermediate representations
using the definition of effective rank introduced in
Roy and Vetterli (2007). The effective rank is com-
puted as the entropy over the normalised singular
values of the parameter matrix θl, that is:

ER(θl) = exp

(
−

K∑

k=1

σk
∥σ∥1

log
σk

∥σ∥1

)
(4)

where σ = ⟨σ1, ..., σK⟩ is the vector of singular
values and ∥·∥1 is the ℓ1 norm. In this paper, we
introduce the notion of a proportional effective
rank (PER) computed as the effective rank nor-
malised by the number of hidden dimensions:

PER(θl) = ER(θl) /H (5)

The PER allows us to compare the effective rank
of layers with different sizes consistently. We com-
pute the PER of both θATT and θMLP, as well as the
gradients of these parameters, across all layers and
checkpoints throughout training.

4 Experimental Setup

We use the Pythia model suite (Biderman et al.,
2023), composed of 8 transformers of different
sizes trained for 143k steps on the deduplicated3

3There exists a non-deduplicated (or standard) version of
the Pile dataset used to train a first version of the Pythia suite.

version of the Pile dataset (Gao et al., 2020; Bi-
derman et al., 2022). Intermediate checkpoints are
available every 1k steps and at log-spaced inter-
vals early in training. To comply with our com-
putational budget, we consider models up to 2.8B
parameters—i.e., 70M, 160M, 410M, 1.4B, and
2.8B—evaluated at the following steps: 0, all log-
spaced steps {1, 2, 4, ..., 512}, 1k, 3k, and then ev-
ery 10k steps up to 143k. We evaluate each check-
point on the last batch of the training set and collect
its activations. More details in App. B.

5 Results

Our analyses reveal quantitative differences in the
learning dynamics of layers across model sizes.

Result 1. Activations of larger models converge
faster and more monotonically to their final
state than those of smaller models. As observed
in Fig. 2 (first column), larger models show, on av-
erage, earlier convergence of Attention and MLP
activations. For example, by 20% of training, the
CKA score in 2.8B is 0.8 for MLP and 0.7 for
Attention, where in 70M and 160M it is around
0.5. This fast convergence pattern holds across
layers, as shown by the distributions in Fig. 1.

Result 2. Activations of earlier layers con-
verge faster, regardless of the model size. Across
model sizes, earlier layers’ activations converge
faster to their final state than those of later lay-
ers. As shown in Fig. 3 (App. C), the faster aver-
age convergence in larger models is due to more
of their later layers converging earlier, whereas
smaller models’ layers only reach their final state
towards the end of training.

Based on recent work that identifies parameter
rank differences across model sizes (Godey et al.,
2024), in the next paragraphs, we study whether the
different convergence behaviours are related to the
effective rank of layers’ parameters and gradients.

Result 3. Parameters of layers in larger models
proportionally span more dimensions. Parame-
ters in layers of larger models span a slightly larger
fraction of their available dimensions compared to
smaller models, as shown in Fig. 2 (second col-
umn). Moreover, the PER of larger models sta-
bilises early, while it keeps decreasing throughout
training for smaller ones. This finding is further
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Figure 2: CKA similarity (current vs. last checkpoint) of layers’ activations (first column), PER of layers’
parameters (second column) and gradients (third column) for Attention (top row) and MLP (bottom row) in Pythia
70M, 160M, 410M, 1.4B, and 2.8B averaged (mean) across layers per each checkpoint.

underscored when visualising the PER for each
layer, as shown in Fig. 4 (App. D); we observe that
in smaller models the PER of later layers tends to
decrease over the course of training, while in larger
models the PER of all layers stabilises early in
training. This difference is even more pronounced
in the PER of these layers’ gradients, as shown in
Fig. 2 (third column).

Result 4. Parameters of layers in larger models
receive gradient updates along proportionally
more dimensions. The PER of gradients reflects
the proportion of the learning signal transmitted
by the gradients relative to the available parame-
ter dimensions. In Fig. 2 (third column), we ob-
serve that throughout training gradients in larger
models consistently span a larger fraction of the
available dimensions, with this fraction gradually
decreasing over time. In contrast, smaller models
display more variability. At first glance, the aver-
aged PER of gradients in the Attention layer of
the 2.8B model might appear to contradict the ob-
served trend. However, this discrepancy is clarified
when examining the PER of gradients across indi-
vidual layers, as shown in Fig. 5 (App. E). Once
again, we observe that the PER of gradients in later
layers of smaller models are less stable compared to
larger models. The reason the average PER of gra-

dients in the Attention layer of the 2.8B model is
smaller than in smaller models is that, early in train-
ing, all layers of the larger model stabilise at their
final values. At this stage, the stabilised layers of
the larger model have lower gradient PER values
compared to those of smaller models, which have
not yet converged. Overall, our findings suggest
that layers in larger models converge both more
quickly and tend to receive proportionally larger
rank updates during training.

Result 5. The dynamics of the parameters’ ef-
fective rank and the activations’ convergence
patterns are correlated. We investigate the cor-
relation between a layer’s activations convergence
rate and the rank of its parameters and gradients.
Broadly, we find that layers with higher effective
rank in both weights and gradients converge faster.
To measure this correlation, we first create two bi-
nary variables for each layer indicating whether (i)
it converges early in training and (ii) maintains a
stable PER throughout training. Then, we calcu-
late the Matthew’s Correlation Coefficient between
these two statistics across layers and report them
in Table 1. Specifically, for each layer of a given
model, we determine whether that layer exhibits
early activations’ convergence and large and stable
parameters’ and gradients’ PERs (relative to other
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Size θATT ∇θATT θMLP ∇θMLP

70M 1.00 1.00 0.63 1.00
160M 1.00 0.85 0.36 0.71
410M 0.84 0.92 0.19 0.78
1.4B 0.78 0.85 0.21 0.64
2.8B 0.73 0.52 0.11 0.18

Table 1: Matthew’s Correlation Coefficient between
binary variables indicating whether a given layer con-
verges early in training and whether it maintains a stable
PER of the parameters (θ) and gradients (∇θ) through-
out training for both Attention and MLP.

model layers) using the following heuristics:

• Early activations’ convergence. Activations’
CKA≥ 0.45 by the first 10% of training (ap-
plies to both the Attention and MLP layers).

• Large parameters’ PER. Parameters’
PER≥ 0.95 by the end of training (applies
to both the Attention and MLP layers).

• Large gradients’ PER. We note that gradi-
ents’ PER slightly decreases throughout train-
ing for each model size. Rather than choosing
a fixed value to determine large and stable gra-
dients’ PERs, we dynamically set the thresh-
old at 90% of the largest PER attained by any
layer at the end of training.

We observe a strong correlation for the Attention
layers across model sizes. For the MLP layers,
the correlation with the gradients’ PER is strong
for models up to 1.4B, while the correlation with
the parameters’ PER is strong only for the 70M
model. We hypothesise that this discrepancy can be
explained by the fact that MLP layers have a large
PER throughout training across all model sizes,
apart from those of the 70M model.

While these results are correlational, they pro-
vide a foundation for future work to test whether
methods that specifically increase the PER of lay-
ers’ parameters and gradients induce faster conver-
gence of the layers’ activations in small models.

6 Conclusion

Our study highlights disparities in the learning dy-
namics of small and large LMs. Using the Pythia
model suite, we demonstrate that layers’ activa-
tions in larger models converge faster and more
monotonically to their final state. We correlate this
phenomenon with the larger PER in the parameters

and gradients of larger models. Our analyses ex-
pand our understanding of training inefficiencies in
small models and provide insights for future work
to address them, e.g., by developing methods that
increase the PER of layers’ parameters.

Ethical Impact

Our work is part of a greater effort in Green AI
(Schwartz et al., 2020) to lower the environmental
footprint of training and using language models.
We acknowledge, however, that small language
models are prone to the same types of biases as
large language models that are encoded through the
data the models are trained on; the Pile is known to
contain gender and racial biases (Gao et al., 2020).

Limitations

We experiment only with the Pythia model suite
and the Pile dataset. It is unclear to what extent our
findings translate to other models and datasets (in-
cluding datasets in languages other than English).
Moreover, because of our restricted computational
budget, we are limited in our ability to thoroughly
study larger language models. The largest models
we experiment with are still relatively small given
the scale of currently available open-source large
language models (in the hundreds of billions). Fi-
nally, the relationship we find between the CKA
similarity scores and the proportional effective rank
is purely correlational: in future work, we aim to
use our results to guide targeted interventions to
assess whether the relationship we found is causal,
i.e. whether increasing the effective rank of a layer
can increase its convergence speed.
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A The Residual Stream View

The residual stream is a mathematical formalization through which to study how transformer models
process inputs (Elhage et al., 2021). Under this framework, each of the L layers of a transformer
model processes a series of input tokens t = ⟨t1, ..., tT ⟩ consecutively and communicate the result
of their computation for each token to subsequent layers via a residual stream of dimension D. The
reading, processing, and writing of the residual stream occur independently in each Attention head via
combinations of the query, key, value and output matrices, WQ, WK , WV , WO: The query-key circuit,
W⊤

QWK , of the Attention mechanism controls how the residual stream should be recomposed, and the
output circuit, WOWV , writes to the residual stream an update that is mediated by the query-key circuit.
The write operation of each Attention head is of low rank relative to D. After each Attention head has
written to the residual stream, a bottleneck MLP projection performs a full-rank transformation on the
residual stream. Due to their pivotal role in updating the state of the residual stream, our work analyses
the learning dynamics of the two operations that write to the residual stream: the output circuit of each
head of the Attention layer—that we refer to as Attention—and the MLP projection layer—that we
denote MLP for conciseness.

B Implementation Details

We implement all experiments using the PyTorch framework (Paszke et al., 2019). We access the Pythia
models through the transformers library (Wolf et al., 2020).

B.1 Hardware Details

We use a server with one NVIDIA A100 80GB PCIe, 32 CPUs, and 32 GB of RAM for all experiments.
Collecting model activations for all analyses required in total about 24 GPU hours. Below, we report a
subset of the output of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

B.2 The Pythia Suite

We use the publicly available Pythia model suite (Biderman et al., 2023), which was trained on the Pile
(Gao et al., 2020; Biderman et al., 2022). Both the preprocessed training data and intermediate checkpoints
are publicly available.4

Data. The Pile is a 300B-token curated open-source collection of English documents, spanning a wide
range of domains (e.g. books, academic publications, Wikipedia).5 The deduplicated version of the
dataset is obtained by applying a near-deduplication method based on MinHashLSH and has 207B tokens.
Thus, models trained on this version of the dataset are trained for circa 1.5 epochs to keep an equal token

4github.com/EleutherAI/pythia (Apache License 2.0).
5github.com/EleutherAI/the-pile (MIT License).
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Size L D # Heads Head Dim. Batch Size Learning Rate Checkpoints

70M 6 512 8 64 2M 1× 10−3 Standard, Deduped
160M 12 768 12 64 2M 6× 10−4 Standard, Deduped
410M 24 1,024 16 64 2M 3× 10−4 Standard, Deduped
1.4B 24 2,048 16 128 2M 2× 10−4 Standard, Deduped
2.8B 32 2,560 32 80 2M 1.6× 10−4 Standard, Deduped

Table 2: Details on the architecture and training hyper-parameters for models in the Pythia suite used in this paper.

count relative to the non-deduplicated versions. The dataset is shuffled, tokenised, and “packed” into
sequences of 2,049 tokens with no end-of-document token.6 Noticeably, the packing process implies that
the second half-epoch of deduplicated data contains the same documents but not necessarily the same
sequences. By design, each sequence can pack multiple documents and tokens can attend across document
boundaries.

Models. The Pythia model suite is composed of 16 models: transformers of 8 different sizes trained on
the Pile as-is and deduplicated. All model sizes were trained using a cosine learning rate schedule with
warm-up, the same data order, and a batch size of 1,024 sequences, resulting in exactly 143k optimization
steps. Checkpoints are available at initialization (step 0), and after every 1k iterations (steps 1k-143k)
resulting in 144 checkpoints evenly spaced throughout training. Additionally, log-spaced checkpoints are
available early in training (steps {2i}9i=0). In Table 2 we report more details about the architecture and
training hyper-parameters of the models in the suite.

6github.com/EleutherAI/pythia/issues/123.
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C Layer-wise CKA Convergence Dynamics

In Fig. 3, we visualise the activations’ CKA convergence dynamics of layers in different models as a
colour-coded line plot.
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Figure 3: CKA similarity (current vs last checkpoint) of the activations of Attention and MLP in each layer of
Pythia 70M, 160M, 410M, 1.4B and 2.8B throughout training.
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D Layer-wise PER Weight Dynamics

In Fig. 4, we visualise the learning dynamics of the PER of weight matrices of layers in different models
as a colour-coded line plot.
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Figure 4: PER of the weight matrices of Attention and MLP in each layer of Pythia 70M, 160M, 410M, 1.4B
and 2.8B throughout training.
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E Layer-wise PER Gradient Dynamics

In Fig. 5, we visualise the learning dynamics of the PER of gradients of layers in different models as a
colour-coded line plot.
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Figure 5: PER of the gradients of the weight matrices of Attention and MLP in each layer of Pythia 70M, 160M,
410M, 1.4B and 2.8B throughout training.
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