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Abstract

Large language models (LLMs) have signifi-
cantly advanced various natural language pro-
cessing tasks, but deploying them remains com-
putationally expensive. Knowledge distillation
(KD) is a promising solution, enabling the trans-
fer of capabilities from larger teacher LLMs
to more compact student models. Particularly,
sequence-level KD, which distills rationale-
based reasoning processes instead of merely
final outcomes, shows great potential in en-
hancing students’ reasoning capabilities. How-
ever, current methods struggle with sequence-
level KD under long-tailed data distributions,
adversely affecting generalization on sparsely
represented domains. We introduce the Multi-
Stage Balanced Distillation (BalDistill) frame-
work, which iteratively balances training data
within a fixed computational budget. By dy-
namically selecting representative head domain
examples and synthesizing tail domain exam-
ples, BalDistill achieves state-of-the-art perfor-
mance across diverse long-tailed datasets, en-
hancing both the efficiency and efficacy of the
distilled models. 1

1 Introduction

Large language models (LLMs) like GPT-4 and
LLaMA have revolutionized tasks ranging from
text generation to language translation through their
deep understanding and generation of human-like
text (OpenAI, 2023; Touvron et al., 2023; Chiang
et al., 2023; Jiang et al., 2023). Despite their suc-
cess, the deployment of these models is hindered by
their substantial size and computational demands,
especially in environments with limited resources.
Knowledge distillation (KD) offers a viable so-
lution by transferring knowledge from expensive
teacher models to smaller, efficient student models.

1Our code and data are available at https://github.
com/Tonyzhou98/long_tail_kd

*Equal contribution.

Specifically, sequence-level KD focuses on distill-
ing rationale-based reasoning processes rather than
final outcomes. It leverages the teacher’s reasoning
processes, encapsulated in chain-of-thought (CoT)
rationales, to enhance the student models’ gener-
ative capabilities (Kim and Rush, 2016; Ho et al.,
2022; Shridhar et al., 2022; Hsieh et al., 2023).

However, there are a few challenges to fully
leverage the power of sequence-level KD, as fol-
lows. (C1) Sequence-level KD encounters signifi-
cant challenges when training with long-tailed data
distributions, which are prevalent in real-world sce-
narios — data often follows a power-law distribu-
tion with a few dominant classes (head) and many
rare classes (tail) (Liu et al., 2019). Such distri-
butions feature a few dominant classes and many
underrepresented ones, leading to models that gen-
eralize poorly on sparsely represented domains.
(C2) Traditional KD methods in the text area to
solve long-tail challenges, often reliant on direct
access to model weights or loss adjustment primar-
ily suited for straightforward classification tasks
(Zhou et al., 2023; Schick and Schütze, 2021; Dai
et al., 2023; Zhang et al., 2022; Tepper et al., 2020),
falter under the complexities of sequence-level KD,
especially when the teacher model is a black box
and the task is generative, which is our target. (C3)
Addressing this imbalance is critical, yet resource-
intensive, as it typically requires generating a large
volume of synthetic data to balance the dataset Tep-
per et al. (2020). Moreover, naively up-sampling
the long-tailed dataset may dramatically increase
the number of calls to the teacher models. Budget
constraints play a crucial role in KD for black-box
LLMs, as querying the teacher for rationales can
be costly and time-consuming (Chen et al., 2023;
Zhou and Ai, 2024).

Our proposed solution, the Multi-Stage Bal-
anced Distillation (BalDistill), tackles all the chal-
lenges above by strategically generating balanced
training sets within budget constraints and itera-
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Figure 1: Overview of the proposed iterative BalDistill framework. The framework is composed of multiple
stages. For each stage, we apply the balancing policy to decide the data distribution in the training batch. For head
domains with sufficient data, we actively extract the examples by IFD metrics using the student model. For the
tail domains, we call the teacher model to generate the synthetic examples and the corresponding rationales. The
teacher model finally annotates the balanced training batch and fine-tunes the student model.

tively fine-tuning the student model with actively
selected and synthetic data for multiple stages.
BalDistill progressively refines the training data
by selecting key examples from well-represented
domains and generating necessary synthetic data
for underrepresented ones, ensuring comprehen-
sive domain coverage and model robustness. By
dynamically selecting representative head domain
examples and synthesizing tail domain examples,
BalDistill achieves state-of-the-art (SoTA) perfor-
mance on various long-tailed datasets, enhancing
both the efficiency and efficacy of the method.

Our contributions are summarized as follows:

• Innovative Problem Framing: We address the
under-explored challenge of applying sequence-
level KD to long-tailed distributions, where the
teacher model is a black-box LLM.

• Strategic Framework: BalDistill innovatively
combines active example selection with synthetic
data generation for multiple stages to maintain
training balance within predefined budget limits.

• SoTA Performance: Our framework demonstra-
bly improves the student models’ effectiveness
and robustness across diverse domains, setting
new benchmarks in performance. We empiri-
cally demonstrate that our distilled student mod-
els achieve state-of-the-art performance across a
range of benchmark datasets.

2 Related Work

Knowledge Distillation uses the outputs of a larger
LLM (Teacher), such as ChatGPT (OpenAI, 2023),
to train a smaller model (Student), such as LLaMa-
7B (Touvron et al., 2023). For details of knowl-
edge distillation (KD) of large language models,
we refer to the survey for more details (Xu et al.,
2024b). In this work, we focus on KD with black-
box teacher models. There are two lines of work
with respect to knowledge distillation. The first
is to ask teacher models to generate the final an-
swers and to fine-tune on the final answers (Zhou
et al., 2023; Schick and Schütze, 2021). Another
line of work asks teacher models to generate ra-
tionales at the reasoning process and fine-tunes
student models on the rationales in the sequence
level to improve their reasoning ability (Ho et al.,
2022; Shridhar et al., 2022; Hsieh et al., 2023),
which proves to be more effective. In this work, we
mainly discuss using a teacher model to generate
rationales and improve the student’s reasoning abil-
ity on a long-tailed dataset. Despite the progress
of KD in the LLM era, existing works fail to estab-
lish a pipeline to gain knowledge from long-tailed
datasets with the sequence-level KD, as few ratio-
nale examples are provided for tail knowledge.

Long-Tail Learning focuses on long-tail dis-
tributed data and has been an emerging topic of
interest in the NLP community (Liu et al., 2019;
Wang et al., 2017; Godbole and Jia, 2022; Dai et al.,
2023; Zhang et al., 2022; Liu et al., 2024d; Mondal
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et al., 2024). Approaches to solving the long-tail
problem include rebalancing, information augmen-
tation, and module improvement (Zhang et al.,
2021; He et al., 2021; Zhu et al., 2023; Cui et al.,
2021; Xu et al., 2024a). Despite the importance of
long-tail learning, studies have shown that LLMs
struggle to learn long-tail knowledge (Kandpal
et al., 2023; Sun et al., 2023a). In this work, we
propose to improve LLMs’ ability to learn long-
tail knowledge via multi-stage distillation over bal-
anced datasets.

Active Learning aims to reduce labeling effort
by selecting only the most useful examples. Tra-
ditional active learning can be categorized into
uncertainty-based methods (Prabhu et al., 2019;
Margatina et al., 2021; Wang et al., 2023) and
diversity-based methods (Ru et al., 2020; Ash
et al., 2019). In the LLM era, active learning has
been used to reduce human annotation costs by
(1) strategically selecting the most informative ex-
amples for human feedback or annotation (Mar-
gatina et al., 2023; Osband et al., 2022; Wang et al.,
2020) and (2) integrating language models as anno-
tators within an active learning framework without
human supervision (Xiao et al., 2023; Rouzegar
and Makrehchi, 2024; Zhang et al., 2023; Li et al.,
2024c; Liu et al., 2024f). In this work, we propose
to solve the long-tail problem in the student LLM
by actively distilling knowledge from a black-box
teacher LLM to meet the budget requirement.

3 Methodology

3.1 Problem Statement
We define our research problem as follows: Given
the teacher LLM (Mt), the student LLM (Ms),
a long-tailed dataset D (with domain number
[d1, d2, . . . , dl] for l domains in total) and a fixed
budget B to query the teacher, we seek to propose
an efficient framework to fine-tune an effective and
robust student model, Ms, over D.

3.2 Overall Approach
To mitigate the performance bias in KD caused
by long-tailed datasets within budget constraints,
we employ a strategy that combines synthetic
data augmentation with active selection. This ap-
proach ensures effective fine-tuning across both
well-represented (‘head’) and underrepresented
(‘tail’) domains. As depicted in Figure 1, we pro-
pose a multi-stage framework to create the training
data iteratively.

Algorithm 1 Multi Stage Balanced Distillations
1: Input: Long tailed dataset D, Student model

Ms, Teacher model Mt, prompt for generating
data Pc, Stage number K, Balancing policy P ,
Training bucket T , Budget number B

2: Output: The fine-tuned student model MK
s

3: for each stage k = 0, . . . , k − 1 do
4: head, tail domains = P (D, k,B)
5: for each domain tail domain j do
6: Add remaining xj from D to T
7: x̂j = Mt(Pc, j)
8: Add synthetic x̂j to T

9: for each domain head domain h do
10: Collect all xh from D
11: xh = Mk−1

s (xh, h)
12: Add selected xh to T

13: Use Mt to annotate x in T w/o rationales
14: Mk

s = Fine-tune(Ms, T )

We operate in a pool-based setting where a large
dataset, denoted as D, is available but lacks anno-
tations from a teacher model.

At each stage of our BalDistill process, we first
implement a balancing policy, which we have de-
signed, to determine the appropriate data distribu-
tion for each domain within the training batch. This
policy is based on the principles of data equality
and training effectiveness across domains, aiming
to optimize learning outcomes despite data scarcity
in certain areas. The total number of stages is pre-
defined based on the consideration of efficiency
and the optimal performance.

For domains well-represented in our dataset D
(referred to as ‘head domains’), we employ active
selection techniques (Touvron et al., 2023; Yuan
et al., 2020) using the fine-tuned student model
Ms to identify and extract the most informative
examples from the pool. Conversely, for domains
lacking sufficient data (‘tail domains’), we utilize
the teacher model Mt to generate both synthetic
samples and corresponding annotations, enriching
the training material available.

After selecting and/or generating these samples,
we query the teacher model to provide detailed
rationales for examples in the training batch. These
annotated examples are then used to fine-tune the
student model Ms in preparation for the next stage.
Detailed descriptions of these components, along
with the algorithms outlining this procedure, are
presented in Algorithm 1.
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3.3 Balancing Policy

Considering K total stages in our framework, we
first evenly divide our budget B into K parts, which
means that for each stage, we create a small train-
ing batch with B

K examples extracted from D with
teacher-annotated rationales. Within a small train-
ing batch, we propose two strategies to allocate the
budget over different domains.

Naive Balancing Since our goal is to mitigate
the bias towards head domains, our first balanc-
ing policy is to use naive balancing, which selects
the same number of inputs for each domain in the
training batch. Formally, the number of samples
for each domain in the small training batch is B

Kl ,
where l is the number of domains in the dataset.

Adaptive Balancing One of our staged learn-
ing framework’s key features is utilizing the fine-
tuned student model to actively select representa-
tive inputs from well-represented domains, known
as head domains. However, employing a naive
balancing policy typically results in the dispropor-
tionate allocation of the training budget to data
from underrepresented domains, or tail domains.
This training batch may lead the fine-tuned student
model to struggle to select truly effective examples
from the head domains, particularly in the initial
stages. Such selections are crucial for the model to
learn effectively from these domains. To address
this, we implement an adaptive balancing policy.
This policy starts by constructing the training batch
with a distribution akin to random selection, thus
primarily focusing on head data in the early stages
to ‘warm up’ the model. As the process advances,
the policy gradually shifts towards a more balanced
distribution by the final stage, ensuring comprehen-
sive learning across both head and tail domains.

Formally, the number of examples for each do-
main is the weighted average between the num-
bers for random selection and the numbers for
naive balancing. For stage i, domain d, we se-
lect (nd

N · B
K ) · K−i

K + B
Kl · i

K examples for domain
d to build the training batch for adaptive balanc-
ing, where N and nd are the total number and the
domain size in the original data D.

Then, domains are naturally categorized based
on whether the number of required samples per
domain exceeds the available samples in the pool.
Domains requiring more samples than available are
designated as ‘head domains’ for that particular
stage, while those with fewer required examples

than available are categorized as ‘tail domains.’
For tail domains, where there are insufficient

samples in the dataset D, we rely on the teacher
model to generate both the samples and their cor-
responding rationales, detailed in Section 3.4. In
contrast, for head domains, which have a sufficient
number of samples available to meet the demands
of the training batch, we utilize the fine-tuned stu-
dent model to actively select the most representa-
tive samples, as discussed in Section 3.5.

It is important to note that the classification of
domains as head or tail can vary across different
stages of the training process, depending on the
evolving needs and data availability.

3.4 Teacher Data Augmentation

Motivated by the effectiveness of synthetic dataset
generated by black-box LLMs (OpenAI, 2023; Rad-
ford et al., 2019; Zhou et al., 2024b), we utilize the
teacher LLMs to generate synthetic samples and
corresponding annotations to upsample data for tail
domains. To save the annotation budget, we require
the teacher model to compose the sample and the
corresponding rationales at the same time.

Suppose that we need m synthetic examples for
domain a to satisfy the training batch requirement.
Given an instruction following prompt Pc, com-
posed of three demonstrations from domain a, and
teacher model Mt, we employ stochastic temper-
ature sampling with a fixed temperature and re-
peat the process m times with generated samples
x̂a1, · · · x̂am and rationales ŷa1, · · · ŷam:

x̂ai, ŷai = Mt(Pc, a) for i ∈ {1, · · · ,m}

Then we add the generated samples and ratio-
nales to the training batch and combine with the ex-
tracted samples from D. We present two examples
of synthetic inputs and rationales from the teacher
model in Table 10 in Appendix B. The case study
suggests the effectiveness of the teacher model in
generating tail examples.

3.5 Student Active Selection

For head domains, our strategy involves actively se-
lecting instances from the original dataset to meet
the numeric requirements of the balancing policy.
We aim to mitigate information loss from data
downsampling through this active data acquisition.
The objective is to identify the most challenging or
uncertain instances for the student model, thereby
optimizing its learning trajectory.
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To quantify instance uncertainty, we adapt the
Instruction Following Difficulty (IFD) metric orig-
inally proposed by Li et al. (2024a,b). The IFD
scores are used to measure a training instance’s
uncertainty level as perceived by the student model.
IFD is calculated as the ratio of the perplexity of
generating a response y with an input x to the per-
plexity of generating y without x: IFD(x, y) =
PPL(y|x)
PPL(y) , where PPL represents perplexity, a metric

widely used to evaluate language model perfor-
mance (Jelinek et al., 1977). Studies have shown
that IFD scores offer greater efficiency in data se-
lection compared to methods like K-means diver-
sity or sole reliance on perplexity (Li et al., 2024a;
Settles, 2009; Yuan et al., 2020).

A higher IFD score indicates an increased dif-
ficulty for the model in generating the response,
highlighting the instance’s value for training (Li
et al., 2024a).

Unlike the approach in Li et al. (2024a), which
utilizes ground-truth or advanced LLM-generated
responses y, our setting imposes budge constraints
that prevent such usage. Instead, we calculate IFD
using rationals ŷs generated by the previously fine-
tuned student model, allowing us to assess the
model’s self-uncertainty and conserve the anno-
tation budget from the teacher model.

At last, we rank the inputs by their IFD scores,
selecting those with the highest values to include
in the batch, as specified by the balancing policy.

3.6 Reasoning Generation and Fine-tuning

Building on methodologies from prior research that
focus on distilling reasoning abilities from black-
box LLMs (Ho et al., 2022; Hsieh et al., 2023),
we employ a zero-shot CoT approach, where the
teacher model is prompted to generate a reasoning
explanation ŷt for the samples in our constructed
training batch. This zero-shot setting is crucial for
demonstrating the model’s ability to reason based
on its pre-existing knowledge alone (Brown et al.,
2020). In our experimental setup, which utilizes
labeled datasets lacking rationale annotations, the
final ground truth answer is included in the prompt.
This inclusion ensures that the generated explana-
tions are aligned with the correct outcomes, en-
hancing the accuracy and relevance of the CoT
reasoning. It is important to note that for synthetic
samples generated from tail domains in 3.4, we do
not perform additional annotations in this part to
maintain adherence to budget constraints.

After gathering the required samples and their
associated rationales in the training batch, we in-
tegrate this batch with the annotated data accumu-
lated from previous stages. This approach ensures
that our student model is exposed to a diverse and
comprehensive dataset, which helps mitigate the
risk of overfitting — a common challenge in ma-
chine learning models as identified in prior studies
(Dor et al., 2020; Liu et al., 2023b). To facilitate
this, we reinitialize and fine-tune the student model
on the compiled rationale sequences from scratch
at each stage.

The fine-tuning is performed using autoregres-
sive language modeling with a cross-entropy loss,
aligning with the original pre-training objectives of
the student model (Touvron et al., 2023).

4 Experiment

Through our extensive empirical analysis, we aim
to address the following research questions:

• RQ1: How effective is our KD framework com-
pared to previous KD baseline methods?

• RQ2: How important is each component (balanc-
ing policy and active learning) to the framework?

• RQ3: How well does our method perform with
different student models and budget restrictions?

Dataset To verify the effectiveness of our frame-
work on various reasoning tasks, we evaluate our
method on five long-tailed datasets, following pre-
vious work (Yu et al., 2023; Dai et al., 2023; Huang
et al., 2021). These include text classification:
R52 and Reuters (Hayes and Weinstein, 1990),
question answering: AbstractiveQA and Multiple-
choiceQA (Dai et al., 2023) and arithmetic: MATH
(Hendrycks et al., 2021). For text classification
datasets, we treat the label of inputs as the do-
main; for other datasets, the domain information
of inputs is annotated as metadata from the data
provider. The detailed construction process and do-
main information for these datasets can be found in
Appendix A. We also show two example distribu-
tions of the datasets in Figure 5 in Appendix A. For
each dataset, we prepare two budget settings for the
experiment. In Table 1, we present the budget num-
ber, the test number, the domain number, and the
evaluation metric of all five datasets. The budget
number in Table 1 represents the total number of
queries to the teacher models. For example, budget
setting 1 for the R52 dataset is 2,600, which means
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Dataset # Budget # Test # Domain Metric Task

R52 2,600/5,200 2,570 52 F1 TC
Reuters 4,500/9,000 3,745 90 F1 TC
Abstractive QA 5,000/10,000 10,000 5 F1 QA
Multi-choice QA 5,000/8,000 10,520 10 Accuracy QA
Math 2,100/3,500 5,000 7 Accuracy Arithmetic

Table 1: Dataset statistics. TC and QA represent the
text classification and question answering, respectively.

that for our BalDistill method, the sum of queries
to the teacher model for data augmentation and for
generating reasoning steps should also equal 2,600
without incurring additional costs. This budget
ensures that all operations, including data augmen-
tation and reasoning step generation, are performed
within the allocated query limit.

Evaluation metrics Since we are dealing with
long-tailed imbalanced data, for each dataset, we
choose to use both the micro- and macro-averages
to evaluate the method robustness (Henning et al.,
2022; Li et al., 2024d). For the classification
datasets (R52 and Reuters), we report micro-F1
and macro-F1, where micro-F1 is a global aver-
age F1 score and macro-F1 is computed by taking
the unweighted mean of all the per-class F1 scores
(Harbecke et al., 2022). For other datasets, we
also report the micro-/macro-F1 for AbstractiveQA
datasets and micro-/macro-accuracy for Math and
Multi-choiceQA datasets. Note that the F1 score
for the AbstractQA is the word-level F1 score be-
tween the token list of ground truth answer and
the generated answer, different from the F1 for the
classification task.

Model setup For the teacher model, we use GPT-
4 (OpenAI, 2023) to generate the CoT rationales for
each dataset. We choose between Llama2-7B and
Llama3-8B as our student models (Touvron et al.,
2023). We include the detailed configurations and
implementations of the model in Appendix B.

Baseline methods We experiment with two vari-
ants of our proposed method with different balanc-
ing policies, as discussed in Section 3: In our first
framework BalDistill (N), we use naive balanc-
ing policy, and for second framework BalDistill
(A), we leverage adaptive balancing. We compare
our framework with multiple baseline methods: (1)
Zero-shot CoT. We directly prompt the student
model to infer on the test data (Kojima et al., 2022).
(2) Random Finetune. We randomly collect sam-
ples from the training data until the budget con-
straint is met and finetune student models on the
final ground-truth labels (Radford et al., 2019). (3)

Random Finetune-CoT. We randomly collect and
use CoT rationales from the teacher model for stu-
dent fine-tuning (Ho et al., 2022; Yao et al., 2022;
He et al., 2023). (4) Duplicate Finetune-CoT. We
construct the training data with a naive balancing
policy. For the tail domains, we duplicate the in-
puts to satisfy the policy requirement and for head
domains, we randomly sample examples in over-
represented domains.

5 Results

5.1 Comparison with Baseline Methods

BalDistill framework outperforms Random
Finetune and Duplicate Finetune methods.
We use Llama3 as the student model, GPT-4 as
the teacher model, and choose the smaller budget
for each dataset in Table 1 as our experiment set-
tings for this subsection. We present the overall
macro- and micro-average results of the proposed
frameworks and the baseline methods in Table 2.
From Table 2, we first observe that on the long-
tailed dataset, the methods fine-tuned on teacher-
generated rationales (CoT) can significantly out-
perform the ground-truth fine-tuning method (Ran-
dom Finetune), which emphasizes the necessity of
teacher-generated reasoning steps in the KD.

Among all sequence-level KD methods, our pro-
posed BalDistill (N) and BalDistill (A) achieve the
best average performance across various datasets
on macro-averages, which obtain an average rel-
ative improvement of 2.24% and 6.81%, respec-
tively, compared to the Random Finetune CoT base-
line. The performance boost in BalDistill (N) im-
plies the effectiveness of replacing the naive bal-
ancing policy with adaptive balancing.

Moreover, we note that the Duplicate Finetune
CoT baseline fails to compete with the Random
Finetune CoT method in most cases, which indi-
cates that simply duplicating the input from the tail
domains to ensure balanced data cannot address
the underlying imbalanced data complexity.

To perform a detailed analysis of our framework,
we visualize the F1 or accuracy score for each do-
main of the BalDistill (N) method and two base-
line methods (Random Finetune CoT and Dupli-
cate Finetune CoT) in Figure 2, with the x-axis
representing the proportion of each domain in the
dataset in descending order. From Figure 2, our
proposed method can achieve comparable results
in the head domains (left side of the figure) but sub-
stantially outperform the baseline methods in the
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Method
R52 Reuters AbstractiveQA Multi-choiceQA Math

macro-f1 micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-acc micro-acc macro-acc micro-acc

Zero-shot CoT 0.89 2.30 0.74 1.61 7.60 7.59 24.67 24.95 7.57 8.68
Random Finetune 45.95 91.44 28.01 74.68 37.62 37.21 61.23 55.96 10.12 9.48
Random Finetune CoT 59.70 89.46 27.35 70.53 52.57 52.88 76.09 74.12 16.62 15.20
Duplicate Finetune CoT 46.56 71.79 26.76 62.84 51.32 51.37 75.92 73.99 16.98 15.05

BalDistill (N) 59.62 82.49 28.09 62.40 52.70 52.92 76.60 73.43 17.90 16.34
BalDistill (A) 58.93 87.47 32.95 69.77 53.20 52.90 77.17 74.73 18.66 17.42

Table 2: Performance of proposed BalDistill framework and other baselines across five long-tailed datasets.
The best performance is marked in bold. The performance of fine-tuned student models with our framework can
outperform other baselines in macro-averages on multiple long-tailed datasets.
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Figure 2: Performance of proposed method and base-
lines on different domains. X-axis represents the pro-
portion of each domain, ranked from head to tail do-
mains. Our proposed BalDistill method can achieve
comparable results on head domains and outperform the
baseline method on the tail domains.

tail domains (right side of the figure). This obser-
vation verifies our expectation in Section 3, where
the balancing policy increases performance in the
tail domain, and the active learning part improves
the data efficiency to compensate for data loss in
the head domain. Note that for Math dataset, BalD-
istill can only achieve comparable results with the
baseline methods on the last two tail domains (pre-
calculus and probability), and we conjecture that
the high difficulty in these two domains prevents
the teacher from composing high-quality synthetic
data. We also include 2 additional SoTA methods
for multitask learning or resolving class imbalance
challenges and compare their results with the per-
formance of BalDistill. Our approach outperforms
the baselines in most tasks. Details are shown in
Appendix C.

Method R52 Reuters AbsQA MCQA Math

Budget Setting 1

Random FT CoT 59.70 27.35 52.57 76.09 15.20
Balance FT CoT 51.47 27.12 52.22 75.98 16.29
Active FT CoT 59.49 29.75 53.14 76.64 15.61

BalDistill (N) 59.62 28.09 52.70 76.60 16.34
BalDistill (A) 58.93 32.95 53.20 77.17 17.42

Budget Setting 2

Random FT CoT 64.88 33.42 53.71 72.92 15.19
Balance FT CoT 60.55 32.79 50.29 76.29 15.73
Active FT CoT 64.54 31.33 53.05 76.26 15.91

BalDistill (N) 59.35 32.76 53.86 76.17 17.59
BalDistill (A) 65.84 32.77 53.49 77.11 17.59

Table 3: Effects of active learning and adaptive bal-
ancing in BalDistill framework. Results of fine-tuned
student models on five datasets outperform methods
with only balancing (Balance FT CoT), with only active
learning (Active FT CoT).

5.2 Ablation Study

After showing the superiority of our overall frame-
work, our next step is to verify the effectiveness
of each component in the proposed method. We
compare our framework with the ablated methods:
(1) Balance Finetune CoT. We adopt a naive bal-
ancing policy to construct the training set and query
the teacher model to compose inputs in the tail do-
mains. We randomly sample examples from head
domains to make sure they are not over-represented.
(2) Active Finetune CoT. We only keep the active
learning component but remove the data augmen-
tation part. In details, we calculate the IFD scores
for all examples in our original dataset and select
the highest IFD scores to satisfy the budget number.
Note that this ablation method is equivalent to the
SoTA active learning method: Superfiltering (Li
et al., 2024a). The experiment setting is similar to
the setup in Section 5.1, and we present the perfor-
mance of each method with two budget settings in
Table 3.
Both active selection and adaptive balancing
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Figure 3: Performance of proposed method BalDis-
till and ablated methods on head and tail domains.
BalDistill (A) can achieve better results on head do-
mains and outperform the Active FT CoT method on
tail domains, which demonstrates the effectiveness of
each component in our BalDistill (A) framework.

bring salient performance boost From Table 3,
we find that our BalDistill (A) method obtains the
best performance in 7/10 comparison cases, which
demonstrates the effectiveness of each framework
component. We notice that by simply adding the
active learning strategy (Random Finetune CoT vs.
Active Finetune CoT), the fine-tuned student model
can achieve a performance boost in most cases,
with an average relative improvement of 1.43%.
This observation is consistent with the findings in
previous work for Bert models (Devlin et al., 2019)
on the long-tailed data (Dor et al., 2020).

However, when we add data augmentation from
the teacher with the naive balancing policy (Bal-
ance Finetune CoT vs. Random Finetune CoT,
BalDistill (N) vs. Active Finetune CoT), this oper-
ation does not substantially improve performance.
This finding suggests the superiority of our adap-
tive balancing policy.

To probe the detailed reasons for the result pat-
terns above, we visualize the macro-average perfor-
mance of these methods on inputs from head and
tail domains in Figure 3. The splitting criteria for
each dataset can be found in Appendix A. We find
that for methods with naive balancing policy (Bal-
ance Finetune CoT and BalDistill (N)), there exists
a significant performance drop on head domains
due to filtering a large proportion of data, and our
method with adaptive balancing can achieve com-
parable performance on head domains. The obser-
vation suggests the effectiveness of active selection

for head domains and the importance of adaptive
balancing for the fine-tuned student to select the
uncertain ones precisely.

For performance in tail domains, our proposed
method with adaptive balancing and teacher aug-
mentation could achieve the best average results,
even better than the naive balancing method. We
conjecture that since we do not verify the correct-
ness of teacher-generated samples and rationales
in tail domains. While teacher-generated samples
induce more knowledge, more synthetic data can
lead to more inevitable noise. Adaptive balancing
achieves the best trade-off between inducing more
knowledge and less noise in the tail domains.

5.3 Generalization Analysis

The ablation study demonstrates the effectiveness
of the active learning and adaptive balancing. Then,
we ask whether our proposed method is robust
enough to experiment with different hyperparame-
ters, student models, or budget settings.

5.3.1 Generalizations on Student models

Method R52 Reuters AbsQA MCQA Math

Llama3 Budget Setting 1

Random FT CoT 59.70 27.35 52.57 76.09 15.20
Active FT CoT 59.49 29.75 53.14 76.64 15.61
BalDistill (A) 58.93 32.95 53.20 77.17 17.42

Llama2 Budget Setting 1

Random FT CoT 49.83 23.97 46.26 58.69 3.43
Active FT CoT 46.88 24.06 47.07 58.68 3.82
BalDistill (A) 58.33 25.51 47.55 59.14 4.21

Llama3 Budget Setting 2

Random FT CoT 64.88 33.42 53.71 72.92 15.19
Active FT CoT 64.54 31.33 53.05 76.26 15.91
BalDistill (A) 65.84 32.77 53.49 77.11 17.59

Llama2 Budget Setting 2

Random FT CoT 56.45 23.75 48.95 58.91 3.84
Active FT CoT 53.16 27.12 48.27 59.20 3.52
BalDistill (A) 58.17 27.07 49.45 58.64 4.54

Table 4: Effects of student model scales and budget
numbers. Macro-averages the proposed and baseline
method results when considering Llama2 and Llama3
as student models with varying two budget settings.

We first evaluate whether our method could be
generalized to student models with different rea-
soning abilities or with different budget numbers.
In this part, we additionally evaluate our BalDistill
(A) on Llama2-7B models, which have a smaller
model size and fewer tokens, in two budget set-
tings (the details of each dataset are in Table 1).
We present the fine-tuning results of our proposed

3322



4 6 8
Stage number

0.48

0.50

0.52

0.54

0.56

0.58
F1

BalDistill (A)
Random

(a) AbstractiveQA

4 6 8
Stage number

0.25

0.28

0.30

0.33

0.35

0.38

F1

BalDistill (A)
Random

(b) Reuters

4 6 8
Stage number

0.72

0.74

0.76

0.78

0.80

0.82

Ac
c

BalDistill (A)
Random

(c) MultiChoiceQA

4 6 8
Stage number

0.12
0.14
0.16
0.18
0.20
0.22
0.24

Ac
c

BalDistill (A)
Random

(d) Math

Figure 4: Influence of stage number choices on BalD-
istill across datasets. Our proposed method consis-
tently obtains better results than the random fine-tune
baseline method with varying stage numbers.

framework and baseline methods on the Llama2
and Llama3 student models in Table 4.
BalDistill exhibits robust improvement with var-
ious budget settings or student models. From
Table 4, we observe that fine-tuning with the
Llama3-8B student model leads to much better per-
formance than the Llama2-7B model, especially on
tasks with complex reasoning (Math, Multi-choice
QA), indicating that the student with a larger model
size or a better reasoning ability will yield better
fine-tuning results. This observation is consistent
with previous findings in Ho et al. (2022); Hsieh
et al. (2023). Our BalDistill (A) consistently outper-
forms other baseline methods on both Llama2-7B
and Llama3-8B as student models in most cases
under two budget settings, which also verifies the
generalizability of our BalDistill (A) on different
student models or different budget numbers.

5.3.2 Sensitivity Analysis

We next investigate how the choice of stage number:
K will influence the performance of our frame-
work. We experiment with the same setup as in
Section 5.1 but with varying stage numbers among
{3, 5, 8}. We visualize the results (macro-averages)
of BalDistill (A) and the baseline method Random
Finetune CoT in Figure 4

Figure 4 shows that the fine-tuning results of
BalDistill (A) could be affected by the stage num-
ber to some extent, but our proposed method can
consistently outperform the baseline method with

different stage numbers, demonstrating the effec-
tiveness and robustness of BalDistill (A).

6 Conclusions

In this paper, we propose a novel framework BalD-
istill to enhance performance on long-tail datasets
in the current teacher-student knowledge distil-
lation process. Our framework is a multi-stage
pipeline, and at each stage, we call the student mod-
els to actively select the representative examples
from head domains while prompting the teacher to
generate synthetic examples for tail domains. With
a fixed budget restriction for calling the teacher,
our extensive empirical evaluations show that our
framework can significantly increase fine-tuning re-
sults across multiple datasets. Furthermore, we
demonstrate the effectiveness of all framework
components through ablation studies.
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Limitations

In our work, we use the IFD score as the metric for
active selection for the student model. In addition
to IFD scores, we can try other metrics, such as
maximum entropy (Settles, 2009) or K-means di-
versity (Yuan et al., 2020). However, previous work
has shown that the IFD score is more effective in
selecting data for sequence-level fine-tuning than
other metrics (Li et al., 2024a,b).

We have verified the effectiveness of our frame-
work on multiple student models and various long-
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tailed datasets. Other sequence-level KD methods
still use more complex loss functions (Hsieh et al.,
2023) or augment the generated rationales (Shrid-
har et al., 2023). Our data manipulation framework
complements these KD methods, aiming to achieve
more robust results on long-tailed datasets with a
fixed budget. Moreover, our method focuses on
sequence-level KD for black-box LLMs, so we
do not incorporate the KD method for white-box
LLMs as a baseline method (Gu et al., 2023; Dai
et al., 2023). We will leave the exploration of com-
bining our framework with more advanced KD
methods for the future.

Furthermore, our experiments only focus on the
decoder-only student models: Llama3 and Llama2.
Incorporating more encoder-decoder models such
as FLAN-T5 (Chung et al., 2022) would benefit
future studies.

Another future direction for our paper is to
explore the application of knowledge distillation
in Large Vision-Language Models (LVLMs) (Liu
et al., 2024c,b; Bai et al., 2023; Sun et al., 2023b;
Zhou et al., 2024a; Wang et al., 2024a; Lin et al.,
2024; Zhu et al., 2024; Liu et al., 2024e). In this
paper, we have focused on experiments related to
knowledge distillation in Large Language Models
(LLMs). In future work, we aim to use knowledge
distillation to further address the issue of hallucina-
tion (Liu et al., 2023a; Cui et al., 2023; Wang et al.,
2024b) in small LVLMs such as LLaVA-7b (Liu
et al., 2024c) and VILA-7b (Lin et al., 2024).
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A Dataset Construction

R52 & Reuters We use the original R52 and
Reuters dataset. In Figure 3, we treat domains
(labels) with more than 50 instances in the training
dataset as the head domains and the others as tail
domains.
Multi-choice QA For Multi-choice QA, we merge
10 multichoice QA datasets together, including
Race, OBQA, MCTest, ARC-easy, ARC-hard,
CQA, QASC, PIQA, SIQA, Winogrande (Dai
et al., 2023). For training samples, we downsample
the 10 datasets following a Zipf distribution with
power value α = 2.0 (Dai et al., 2023). Since Race
has 5× more training samples than other datasets,
we downsample its training and testing set to 1/3 of
the samples using random sampling. The detailed
statistics of each multichoice qa dataset is shown
in Table 5.We select Race, Winogrande, SIQA and
CQA as the head domains and others as tail do-
mains for experiments in Figure 3.
Abstractive QA For Abstractive QA, we merge 5
abstractive QA datasets together, including NarQA,
NQOpen, Drop, QAConv, TweetQA (Dai et al.,
2023). Since the total train set and test set are very
large, for efficiency concerns, we randomly sample
10000 samples from them for both train and test
sets. The detailed statistics of each multichoice
qa dataset is shown in Table 5. We select NarQA,
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(a) Reuters

(b) Math

Figure 5: Example Dataset Distribution: The datasets
we use exhibit long-tail distributions.

NQOpen, and Drop as the head domains and others
as tail domains for experiments in Figure 3.
Math We use the Math dataset from (Hendrycks
et al., 2021), which consists of 7 categories: Alge-
bra, Intermediate Algebra, Prealgebra, Geometry,
Number Theory, Counting & Probability and Pre-
calculus. In order to investigate GPT4’s reasoning
ability on MATH problems and how much can its
reasoning be taughts to the student model, we re-
moved the reasoning procedures in Math dataset
and only keep its final answer as the label. Since the
original dataset distribution is as follows does not
follow long tail distribution, we down-sample the
training sets of all categories following a Zipf dis-
tribution with power value α = 1.1, similar to (Dai
et al., 2023). The final distribution of the datsaet is
shown in Table 5. We select Algebra, Intermediate
Algebra, and Prealgebra as the head domains and
others as the tail domains for experiments in Figure
3.

B Implementation Details

We use greedy search in decoding for all teacher an-
notations, as in the previous work (Ho et al., 2022)
and use stochastic temperature sampling with the
same temperature value of 0.9 in synthetic data
generation in Section 3.4.

We use the zero-shot prompts for the teacher to

Table 5: Detailed statistics of each dataset per category.

Dataset Category Train set size Test set size

Multi-choice QA

Race 4735 1629
OBQA 580 500

MCTest 342 320
ARC-easy 395 570
ARC-hard 317 299

CQA 1034 1221
QASC 653 926
SIQA 2077 1954
PIQA 494 1838

Winogrande 2634 1267

Abstractive QA

NarQA 1999 2244
NQOpen 4441 3434

Drop 2525 2891
QAConv 751 1079

TweetQA 284 352

Math

Algebra 1744 1187
Intermediate Algebra 763 903

Prealgebra 561 871
Geometry 349 479

Number Theory 290 540
Counting & Probability 231 474

Precalculus 187 546

give the rationales and the few-shot ICL to generate
the synthetic tail samples. The prompts are shown
in Tables 7, 8 and 9. We call the gpt-4 function
from OpenAI to obtain teacher responses.

For the fine-tuning of the student model, we base
our implementation on the Pytorch1, Huggingface
transformer2, and the Lora fine-tuning codebase 3.
We use AdamW as our optimizer with a learning
rate of 2e−4 and a weight decay of 0.03 with lin-
ear scheduler, batch size of 16, and trained for 8
epochs. For other hyper-parameters, we set rank
and dropout in Lora fine-tuning to 8 and 0.1, re-
spectively.

C Additional Baseline Results

Besides the baselines mentioned in Section 5.1, we
also include two additional state-of-the-art methods
for multitask learning and addressing class imbal-
ance challenges. The first method is Glee (Zhang
et al., 2022), which leverages prompt tuning on
masked tokens to handle long-tailed classification
tasks. We adapted the classification head of Glee to
make it applicable for generation tasks. However,
since the final answers for AbstractiveQA consist
of multiple words with variable lengths, Glee can-
not be leveraged for AbstractiveQA. The second
method is MFTCoder (Liu et al., 2024a), which
proposes various loss functions to address chal-
lenges in multitask learning. For our experiment,

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/georgian-io/

LLM-Finetuning-Toolkit/tree/main
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we treat each domain as a separate task within their
framework. Note that we employ instruction tun-
ing for both MFTCoder and BalDistill, while using
prompt tuning for Glee.

Below we present the macro metrics of the base-
lines and BalDistill on each dataset. Llama2 is used
as backbones for all of the methods.

Dataset R52 Reuters AbsQA MCQA Math
MFTCoder 10.49 6.63 33.76 58.62 3.22
Glee 46.87 23.96 N/A 57.88 4.37
BalDistill (A) 58.33 25.51 47.55 59.14 4.21

Table 6: Performance of BalDistill and two additional
baselines across 5 datasets.

From the results in Table 6, it is evident that our
approach outperforms the MFTcoder and Glee on
most tasks. MFTCoder’s underperformance can
be attributed to its use of validation loss gradients
(as described in Equation 4 of their paper) to ad-
just training loss, which leads to unstable learn-
ing. In our experimental setup, particularly for tail
labels in the R52 and Reuters datasets, we often
had only one or two examples in the validation set.
This scarcity can cause large gradients in the val-
idation data, potentially leading to loss explosion
during fine-tuning on these datasets. Glee’s limi-
tations results in its failure to utilize information
from teacher rationales. In contrast, our method
leverages data augmentation from teachers to elicit
more knowledge and enhance fine-tuning for tail
domains. This approach allows us to better capture
and utilize the expertise embedded in the teacher
models, resulting in improved performance across
various tasks.
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You are provided with a dataset named R52, which is specifically designed for text classification
tasks. The objective is to accurately predict the topic of news stories from a predefined list of topics.
The topic of this dataset includes: copper, livestock, gold, money-fx, tea, ipi, trade, cocoa, iron-steel,
reserves, zinc, nickel, ship, cotton, platinum, alum, strategic-metal, instal-debt, lead, housing, gnp,
sugar, rubber, dlr, tin, interest, income, crude, coffee, jobs, meal-feed, lei, lumber, gas, nat-gas, veg-oil,
orange, heat, wpi, cpi, earn, jet, potato, bop, money-supply, carcass, acq, pet-chem, grain, fuel, retail,
cpu. Please write a short news story with the topic {domain} and give the step-by-step rationale. This
should be a self-contained story, mirroring the style and content of real-world news articles. Here are
some examples with the topic {domain}:
{demonstrations}
Please compose a news story with the topic {domain} with a similar format as the example. Paraphrase
your title before outputting it. Your news story should be brief and contained within one paragraph:

(a) R52

You are provided with a dataset named reuters, which is specifically designed for text classification
tasks. The objective is to accurately predict the topic of news stories from a predefined list of topics.
The topic of this dataset includes: acq, rubber, lead, money-supply, income, l-cattle, crude, cpu,
palmkernel, jobs, money-fx, instal-debt, rand, castor-oil, coffee, strategic-metal, nat-gas, oat, tea,
corn, yen, soy-oil, grain, groundnut-oil, gas, cpi, cocoa, nzdlr, soybean, rapeseed, retail, sun-meal,
coconut, jet, copper, sorghum, carcass, heat, hog, ipi, potato, lin-oil, oilseed, alum, gnp, meal-feed,
fuel, barley, ship, rape-oil, cotton-oil, sunseed, palm-oil, soy-meal, naphtha, nkr, trade, palladium,
lei, wheat, bop, interest, earn, reserves, housing, veg-oil, groundnut, tin, dlr, gold, copra-cake, wpi,
livestock, zinc, sugar, rye, pet-chem, dmk, dfl, orange, iron-steel, nickel, sun-oil, lumber, rice, propane,
platinum, silver, cotton, coconut-oil. Please write a short news story with the topic {domain} and give
the step-by-step rationale. This should be a self-contained story, mirroring the style and content of
real-world news articles. Here are some examples with the topic {domain}:
{demonstrations}
Please compose a news story with the topic {domain} with a similar format as the example and your
news story should be brief and contained within one paragraph:

(b) Reuters

Table 7: Prompts of generating synthetic data for tail domains from the teacher for R52 and reuters datasets.
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You are provided with a multiple-choice question and answering dataset composed by various QA
datasets. The objective is to accurately select one from the given choices according to the question
content. Please compose a question as well as the corresponding choices and answers as the examples
from a QA dataset: {domain}. This should be a question, mirroring the style and content of examples
with the true real-world knowledge. Here are some examples from the QA dataset: {domain}:
{demonstrations}
Please compose a question for the dataset: {domain} with a similar format as the example. It means if
the example contains the in-context "passage", you should also write an in-context "passage" with the
question information. Your question and choices should be brief and contained within one paragraph:

(a) Multi-choice QA

You are provided with an abstractive question answering dataset composed by various QA datasets.
The objective is to accurately generate an answer according to the question content. Please compose a
question and the corresponding answer as the examples from a QA dataset: {domain}. This should be
a question and answer, mirroring the style and content of examples with the true real-world knowledge.
Here are some examples from the QA dataset: {domain}:
{demonstrations}
Please compose a question and the corresponding answer for the dataset: {domain} with a similar
format as the example. It means if the example contains the in-context "passage", you should also
write an in-context "passage" with the question information. Please note that the answer should only
contain a few words. Your question and answer should be brief and contained within one paragraph:

(b) Abstractive QA

You are provided with a math problem dataset with questions from various math domains. The
objective is to accurately generate an answer according to the question content. Please compose a
question and the corresponding answer as the examples from a math domain: {domain}. This should
be a math question and answer, mirroring the style and content of examples with the true real-world
knowledge. Here are some examples from the math domain: {domain}:
{demonstrations}
Please compose a math question and the corresponding answer for the domain: {domain}, with a
similar format as the example. Please output your final digital answer (no unit) for the question with
the format: "the answer is: <answer>". Your question and answer should be brief and contained
within one paragraph:

(c) Math

Table 8: Prompts of generating synthetic data for tail domains from the teacher for Multi-choice QA, Abstractive
QA and Math datasets.
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Below is a news story from the R52 dataset. Please assign a topic to this news story. You must
select the topic from this set: copper, livestock, gold, money-fx, tea, ipi, trade, cocoa, iron-steel,
reserves, zinc, nickel, ship, cotton, platinum, alum, strategic-metal, instal-debt, lead, housing, gnp,
sugar, rubber, dlr, tin, interest, income, crude, coffee, jobs, meal-feed, lei, lumber, gas, nat-gas, veg-oil,
orange, heat, wpi, cpi, earn, jet, potato, bop, money-supply, carcass, acq, pet-chem, grain, fuel, retail,
cpu. News story: {input}.
Take a step-by-step approach in your response, cite sources and give reasoning. Your answer should
be brief and contained within one paragraph.

(a) R52

Below is a news story from the reuters dataset. Please assign a topic to this news story. You must select
the topic from this set: acq, rubber, lead, money-supply, income, l-cattle, crude, cpu, palmkernel, jobs,
money-fx, instal-debt, rand, castor-oil, coffee, strategic-metal, nat-gas, oat, tea, corn, yen, soy-oil,
grain, groundnut-oil, gas, cpi, cocoa, nzdlr, soybean, rapeseed, retail, sun-meal, coconut, jet, copper,
sorghum, carcass, heat, hog, ipi, potato, lin-oil, oilseed, alum, gnp, meal-feed, fuel, barley, ship,
rape-oil, cotton-oil, sunseed, palm-oil, soy-meal, naphtha, nkr, trade, palladium, lei, wheat, bop,
interest, earn, reserves, housing, veg-oil, groundnut, tin, dlr, gold, copra-cake, wpi, livestock, zinc,
sugar, rye, pet-chem, dmk, dfl, orange, iron-steel, nickel, sun-oil, lumber, rice, propane, platinum,
silver, cotton, coconut-oil. News story: {input}.
Take a step-by-step approach in your response, cite sources and give reasoning. Your answer should
be brief and contained within one paragraph.

(b) Reuters

Please answer this multiple-choice question by choosing one of the given choices. If you are given
a passage, please answer the question according to the passage content. If the passage is not given,
please answer the question directly from your knowledge. Question: {input}
If there is no enough information, you should choose a most possible choice. Take a step-by-step
approach in your response, cite sources and give reasoning before sharing final answer in the format:
The answer is <selected choice>.

(c) Multi-choice QA

Here are a question and the corresponding answer for an abstractive question answering task. Please
concisely clarify the rationale behind the answer for this question. If you are given a passage, please
use the passage content to clarify the answer. If the passage is not given, please use your knowledge
to tell why the answer is reasonable. Question: {input}. Answer {label}.
Take a step-by-step approach in your response and give reasoning. You output should be concise and
in one paragraph.

(d) Abstractive QA

Here are a math question and the ground truth answer for a math problem task. Please concisely
clarify the rationale behind the answer for this math question. Question: {input}. Answer: {label}
Take a step-by-step approach in your response and give reasoning. You output should be concise and
in one paragraph.

(e) Math

Table 9: Teacher annotation prompts for all datasets. Note that for Math, Abstractive QA which has complex
reasoning trajectories, we directly provide the ground-truth answer and ask the teacher model to explain the rationale
behind the answer and for other datasets, we ask the teacher model to annotate the label and provide the reasoning
steps.

3332



Input: ENERGY GIANT &lt;EGC> EXPANDS NATURAL GAS OPERATIONS. Energy Giant
Corp (EGC) announced plans to expand its natural gas operations in the Midwest, following approval
from the Federal Energy Regulatory Commission. The expansion will see EGC increase its natural
gas production by 15%, aiming to meet the growing demand in the region. The company stated that
the expansion will be funded by a mix of internal accruals and debt, with the project expected to be
operational by the end of the next fiscal year. EGC also highlighted that the expansion aligns with its
commitment to sustainable energy solutions, as natural gas is a cleaner-burning fuel compared to coal
and oil. The company’s shares rose 2% in early trading following the announcement.
Rationale: The news story is about Energy Giant Corp (EGC) announcing plans to expand its natural
gas operations in the Midwest. The company plans to increase its natural gas production by 15% to
meet the growing demand in the region. The expansion will be funded by a mix of internal accrivals
and debt. The company’s shares rose 2% in early trading following the announcement.The story
does not mention anything about copper, livestock, gold, money-fx, tea, ipi, trade, cocoa, iron-steel,
reserves, zinc, nickel, ship, cotton, platinum, alum, strategic-metal, instal-debt, lead, housing, gnp,
sugar, rubber, dlr, tin, interest, income, crude, coffee, jobs, meal-feed, lei, lumber, gas, veg-oil, orange,
heat, wpi, cpi, earn, jet, potato, bop, money-supply, carcass, acq, pet-chem, grain, fuel, retail, cpu.
However, the story is about the expansion of natural gas operations, which falls under the topic of
’nat-gas’. The answer is nat-gas.

(a) The example of teacher synthetic data in R52 dataset for domain: nat-gas.

Input: A rectangle has a length of 14 units and a width of 8 units. A diagonal is drawn from one
corner of the rectangle to the opposite corner. What is the length of the diagonal in units?
Rationale: The length of the diagonal of a rectangle can be found using the Pythagorean theorem,
which relates the lengths of the sides of a right triangle. The theorem states that the square of the
length of the hypotenuse (the side opposite the right angle, which is the diagonal in this case) is equal
to the sum of the squares of the lengths of the other two sides (the length and width of the rectangle).
For this rectangle, the length (l) is 14 units and the width (w) is 8 units. According to the Pythagorean
theorem, the length of the diagonal (d) can be calculated as follows: d2 = l2 + w2. Plugging in the
values gives d2 = 142 + 82 = 196 + 64 = 260. Taking the square root of both sides to solve for d
gives d =

√
260. Factoring out the square root of 4 (which is a perfect square) from under the radical

to simplify, we get d = 2
√
65. Thus, the length of the diagonal is 2

√
65 units. The answer is: 2

√
65.

(b) The example of teacher synthetic data in math dataset for domain: geometry.

Table 10: Examples of the synthetic input and rationales from the teacher model for the tail domains.
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