
Findings of the Association for Computational Linguistics: EACL 2024, pages 3411–3425
November 12-16, 2024 ©2024 Association for Computational Linguistics

Data Diversity Matters for Robust Instruction Tuning

Alexander Bukharin1, Shiyang Li2, Zhengyang Wang2, Jingfeng Yang2,
Bing Yin2, Xian Li2, Chao Zhang1,2, Tuo Zhao 1,2,

Haoming Jiang3,

1Georgia Institute of Technology, 2Amazon
Correspondence: abukharin3@gatech.edu

Abstract
Recent works have shown that by curat-
ing high quality and diverse instruction tun-
ing datasets, we can significantly improve
instruction-following capabilities. However,
creating such datasets is difficult and most
works rely on manual curation or proprietary
language models. Automatic data curation is
difficult as it is still not clear how we can de-
fine diversity for instruction tuning, how diver-
sity and quality depend on one other, and how
we can optimize dataset quality and diversity.
To resolve these issue, we propose a new al-
gorithm, Quality-Diversity Instruction Tuning
(QDIT). QDIT provides a simple method to si-
multaneously control dataset diversity and qual-
ity, allowing us to conduct an in-depth study
on the effect of diversity and quality on instruc-
tion tuning performance. From this study we
draw two key insights (1) there is a natural
tradeoff between data diversity and quality and
(2) increasing data diversity significantly im-
proves the worst case instruction following per-
formance, therefore improving robustness. We
validate the performance of QDIT on several
large scale instruction tuning datasets, where
we find it can substantially improve worst and
average case performance compared to quality-
driven data selection.

1 Introduction

Large pre-trained language models have demon-
strated a remarkable ability to perform a wide range
of natural language processing tasks (Vaswani et al.,
2017; Devlin et al., 2018; Radford et al., 2019; He
et al., 2020; Brown et al., 2020). Although these
models are powerful, pre-trained models such as
GPT-3 can be quite difficult to work with and of-
ten do not follow user instructions (Brown et al.,
2020). To unlock instruction-following capabili-
ties, researchers have turned to instruction tuning,
in which language models are trained to follow
instructions on a small set of example instruction-
response pairs (Mishra et al., 2021; Wei et al., 2021;

Sanh et al., 2021; Wang et al., 2022b). Instruction
tuning (IFT) has become extremely popular, as it
provides a simple way for researchers to train pow-
erful and aligned language models (Taori et al.,
2023; Chiang et al., 2023; Xu et al., 2023).

Although initial works apply instruction tuning
to large-scale datasets, it has recently been found
that a small set of well chosen instruction-response
pairs is sufficient for good performance. In particu-
lar, Zhou et al. (2023) showed that by training on
only 1000 instructions manually selected or crafted
by experts, superior performance can be achieved
compared to training on larger datasets. Training
with a small dataset has the added benefits of low-
ering training costs and enabling faster iteration.
Although such manual data selection is not scal-
able, this work raises an important question: How
can we automatically select an instruction tuning
dataset?

Recent work on dataset curation have identi-
fied two characteristics that an instruction tuning
dataset should have: (1) the instruction responses
should be high quality (Chen et al., 2023; Peng
et al., 2023) and (2) the instructions should cover
a wide range of tasks (i.e. be diverse) (Wei et al.,
2021; Zhou et al., 2023; Gudibande et al., 2023).
To curate high quality datasets, researchers have
used proprietary LLMs to measure the quality of
each data point in the dataset and then select only
the highest quality data points. To improve dataset
diversity, researchers have manually selected in-
structions that cover a wide range of topics and
formats (Zhou et al., 2023; Ivison et al., 2023).
While both of these methods enhance instruction-
following capabilities, it is not clear how we can
select high quality and diverse datasets without re-
lying on manual curation from human experts, a
process that is time-consuming and expensive.

In pursuit of this goal, we propose a new algo-
rithm, QDIT, to measure and optimize the diversity
and quality of instruction tuning datasets. QDIT

3411

mailto:email@domain

measures diversity using the facility location func-
tion (Cornuéjols et al., 1983). The facility location
function provides an intuitive measure of subset
diversity, as it essentially measures how well rep-
resented each data point in the full dataset is by
the data points in the selected subset. With this
diversity function and quality functions from prior
works, we then define a dataset’s quality-diversity
score as a simple linear combination of dataset qual-
ity and diversity. To optimize the quality-diversity
score, QDIT employs a greedy strategy, where
the data point that will improve the joint quality-
diversity score the most is selected at each time
step (Nemhauser et al., 1978). This procedure is
extremely efficient, and can easily scale to datasets
with millions of instruction.

QDIT provides an effective way to control the di-
versity and quality of the instruction tuning dataset,
allowing us to conduct an in-depth study of diver-
sity and quality in instruction tuning. From this
study we identify two key findings: (1) there is
an inherent tradeoff between dataset diversity and
dataset quality and (2) improving dataset diversity
primarily improves the worst and average case in-
struction following ability, while not affecting best
case instruction following ability much. Based on
these finding, we are able to use QDIT to optimize
the quality-diversity tradeoff, improving worst case
performance while maintaining or improving best
case and average performance for robust instruc-
tion following. We extensively validate our results
on five large-scale instruction tuning datasets.

2 Related Work

There have been several works that attempt to im-
prove the quality and diversity of IFT datasets.
⋄ Manual Data Selection. Several works have
shown that superior instruction-following capabili-
ties can be unlocked by carefully selecting and writ-
ing instruction-response pairs (Zhou et al., 2023;
Touvron et al., 2023; Wang et al., 2023a; Ivison
et al., 2023). To select such data quality and diver-
sity are emphasized, with data from various scien-
tific fields and internet forums being selected. It is
not clear how such datasets can be automatically
selected.
⋄ Distilling Closed Models. To reduce the hu-
man effort required for dataset creation, researchers
have used powerful proprietary LLMs such as GPT-
4 to create instruction tuning datasets (Taori et al.,
2023; Peng et al., 2023; Chia et al., 2023). Again

researchers found dataset quality (Peng et al., 2023)
and diversity (Xu et al., 2023; Li et al., 2023b) to
be most important. Although resulting in powerful
datasets, the reliance on proprietary language mod-
els in these works is expensive and may raise legal
concerns (Wang et al., 2023b).
⋄ Automatic Data Selection for Instruction Tun-
ing. Due to the aforementioned issues, in this paper
we focus on automatic selection of smaller instruc-
tion tuning datasets from larger ones. Chen et al.
(2023); Dong et al. (2023b) show that by rating the
quality of each data point and training on the high-
est quality data points, downstream performance
can be significantly improved. Li et al. (2023a)
propose to select instructions based on difficulty.
Wang et al. (2022a); Liu et al. (2023) attempt to in-
crease diversity by restricting the distance between
selected points to be larger than a given threshold.
We find that this method does not necessarily lead
to a significant increase in diversity, and compare
QDIT to similar approaches in our experiments.

Our work is also related to several works that
seek to increase diversity in NLP , but do not con-
sider data quality (Kumar et al., 2019; Kirchhoff
and Bilmes, 2014; Das et al., 2023; Maharana et al.,
2023). Concurrently, Bhatt et al. (2024); Wang et al.
(2024) analyze the efficacy of various diversity and
uncertainty metrics for IFT, but do not consider
dataset quality.

3 Methodology

Before presenting QDIT, we discuss how to quan-
tify instruction diversity and instruction-response
quality.

3.1 Quantifying Dataset Diversity and Quality

Given a set A ⊆ V , a natural way to measure the
diversity of the set A with respect to V is by the
facility location function (Cornuéjols et al., 1983)

d(A) =
∑

v∈V
maxa∈Asim(a, v), (1)

where sim(a, v) refers to the similarity of a and v.
In QDIT, we use the cosine similarity of instruction
embeddings as the similarity function in (1), where
the instruction embeddings are computed with sen-
tence transformers (Reimers and Gurevych, 2019).
See Appendix A for more details. Intuitively, we
can see that a set A that has a high diversity score
d(A) will have an a ∈ A close to each v ∈ V and
will therefore be representative of the set V .

3412

To measure dataset quality, we follow prior
works and measure the quality of each (instruc-
tion, response) pair using a large language model
such as ChatGPT (Chen et al., 2023) or measure
the quality of each data point using a scoring model
trained on large amounts of human preference data
(Ouyang et al., 2022; Bai et al., 2022). We refer to
such a function with q(·), and measure a dataset’s
overall quality by averaging the quality score of
each data point.

3.2 Quality-Diversity Instruction Tuning

In order to simultaneously control quality and di-
versity of the selected data, we propose a linear
combination of quality and diversity as the quality-
diversity (Q-D) score:

f(a|A,α) = (1− α)d(a|A) + αq(a),

where α ∈ [0, 1] is a hyperparameter controlling
the tradeoff betwen quality and diversity.

To optimize the Q-D score of the selected data,
we consider a greedy algorithm – named QDIT
shown in Algorithm 1. Specifically, at each itera-
tion, we select the data point that most increases the
Q-D score of the current subset. When α = 0, the
greedy algorithm achieves the best possible approx-
imation ratio (in the worst case) that a polynomial
time algorithm can achieve. See more details in
(Nemhauser et al., 1978). We remark that when
α = 1, QDIT is reduced to the quality driven selec-
tion algorithm proposed in Chen et al. (2023) and
when α = 0, QDIT is reduced the classical greedy
algorithm (Nemhauser et al., 1978).

Algorithm 1 QDIT Data Selection: Select a subset
of K data points from N data points

Require: K, α
1: A← ∅
2: R← V
3: N ← 0
4: while N < K do
5: a← argmaxa∈Rf(a|A,α)
6: A← A ∪ {a}
7: R← R \ a
8: N ← N + 1
9: end while

Once we finish the selection, we apply instruc-
tion tuning on the selected data.
Computational Complexity of QDIT. Finding
a ∈ A that maximizes the quality-diversity score

at each time step has complexity O(|V |3), leading
to a total complexity ofO(|V |3K) for QDIT based
data selection. This is problematic, since for some
datasets |V | is greater than 1 million. We take sev-
eral approaches to reduce data selection cost: (1)
parallelization on GPUs, (2) employing the lazy
greedy selection algorithm of Minoux (2005), and
(3) sub-sampling according to Mirzasoleiman et al.
(2015). These methods can be employed simulta-
neously, allowing us to select from millions of data
points within a few hours. We provide more details
in Appendix B.

4 Experiments

We first analyze how the QDIT algorithm affects
dataset quality and diversity and then present our
main results and analysis.

4.1 Preliminary Analysis

To verify that QDIT can indeed control the qual-
ity and diversity of the selected dataset, we first
investigate whether the facility location function is
aligned with our intuitive understanding of diver-
sity. Next, we study how the α parameter affects
the dataset’s quality and diversity. For this analysis,
we apply the QDIT algorithm to the Alpaca dataset
(Taori et al., 2023).

To qualitatively verify that the facility location
function is aligned with dataset diversity, we use
the Berkeley Neural Parser (Kitaev and Klein,
2018; Kitaev et al., 2019) to extract the root verb
and first direct noun from each instruction in the
Alpaca dataset. We then plot the distribution of
verb-noun pairs in Figure 1 for random, quality
driven, and QDIT data selection. From Figure 1,
we observe that selecting based on the facility loca-
tion function indeed improves the dataset diversity
compared to random selection, as more verb-noun
pairs (1347 vs 1308) are included in the dataset and
the dataset becomes more uniform. On the other
hand, selecting based on quality alone decreases
dataset diversity.

Next we plot how α in QDIT affects dataset qual-
ity and diversity of 3K selected points in Figure 2.
Similar figures for other datasets can be found in
Appendix C. From these figures, we can observe
that there is a tradeoff between quality and diver-
sity, and that QDIT allows us to smoothly control
this tradeoff. Moreover, we observe that QDIT
is able to improve diversity without significantly
decreasing data quality. Altogether, these results

3413

(a) Random Selection (b) Quality Driven Selection (c) QDIT (α = 0)

Figure 1: Distribution of root verbs and first nouns selected by different algorithms. The dataset size is 3000.

Figure 2: Effect of α on QDIT’s dataset quality and
diversity. The red line represents random selection.

indicate that QDIT is a practical way to control
dataset diversity and quality.

4.2 Experimental Setup

Now that we can control quality and diversity with
QDIT, we seek to study how dataset quality and
diversity affect instruction following ability.
⋄ Training Setup. We use QDIT on two small in-
struction tuning datasets: Alpaca 52K (Taori et al.,
2023), and Dolly 15K (Conover et al., 2023) as well
as three large scale datasets: Ultrachat 1.3M (Ding
et al., 2023), LMSYS-Chat 1M (Zheng et al., 2023),
and a combined dataset of Alpaca 52K, Dolly 15K ,
and the OIG-small-chip2 dataset (210K). We refer
to this dataset as “Mixed 270K". For each large
dataset we select a dataset size of 10K points. For
each small dataset size we follow the small data
setting from Chen et al. (2023) and select ∼ 5% of
the original dataset.

To measure instruction-response quality, we use
the provided ChatGPT quality scores from Chen
et al. (2023) for Alpaca and for all other datasets
we use the reward model from Dong et al. (2023a),

which is trained on the Anthropic Helpful Harmless
dataset and achieves a test accuracy of over 75%.
For our main experiments we follow the training
procedure from Taori et al. (2023) and use LLaMA-
1 7B as our base model (Touvron et al., 2023). In all
settings we use the same number of training epochs,
meaning that the training cost is proportional to the
number of training instructions. Complete details
can be found in Appendix D.

⋄ Evaluation. We evaluate the trained models in
two main ways: through LLM-based pairwise com-
parison (Dubois et al., 2023) and by using a reward
model. For pairwise comparison, we evaluate the
trained model versus a variety of reference models,
employing Claude 2 as the judge on five evaluation
sets: InstructEval (Wang et al., 2022a), WizardLM
(Xu et al., 2023), Vicuna (Chiang et al., 2023),
Koala (Geng et al., 2023), and a set of 200 exam-
ples manually curated from the ShareGPT dataset.
In order to mitigate the effects of the judge LLM’s
positional bias, we evaluate the responses in both
orders (i.e. QDIT response shown first and QDIT
response shown second). We then follow Chen et al.
(2023) and measure performance according to win-
ning score (# Win−# Lose

Total comparisons + 1). Detailed compari-
son plots can be found in Appendix E. In addition
to language model based evaluation, we evaluate
our models based on the reward score achieved on
each evaluation dataset. We refer to this score as
“HH Score."
⋄ Evaluating Robustness. Beyond evaluating av-
erage performance on the test dataset, we also eval-
uate the worst and best case performance of each
model. We can evaluate the worst case performance
with the HH Score by calculating the average score
achieved on the worst 10% of instructions for each
model (note that the worst instructions can change
depending on the model). Similarly, we can evalu-

3414

Table 1: Instruction Tuning results. Random 50K refers to a model trained on a randomly sampled set of 50K points
on the corresponding dataset. The top and bottom 10% winning and losing score is versus the Alpaca 52K.

Ultrachat 1.3M Average Performance Worst Case Performance Best Case Performance
Winning Score

vs. Alpaca 52K ↑
Winning Score

vs. Random 50K ↑
HH Score
Mean ↑

Lowest 10%
HH Score ↑

Lowest 10%
Winning Score ↑

Top 10%
HH Score↑

Top 10%
Winning Score ↑

Random 10K 1.138 0.969 6.219 2.620 1.074 9.526 1.167
Quality 10K 1.224 1.013 6.961 3.405 1.175 10.454 1.303

QDIT 10K (α = 0.7) 1.226 1.038 6.993 3.497 1.280 10.454 1.293
Mixed 270K Average Performance Worst Case Performance Best Case Performance

Winning Score
vs. Alpaca 52K ↑

Winning Score
vs. Random 50K ↑

HH Score
Mean ↑

Lowest 10%
HH Score ↑

Lowest 10%
Winning Score ↑

Top 10%
HH Score↑

Top 10%
Winning Score ↑

Random 10K 0.899 0.986 5.443 2.260 0.940 8.80 0.896
Quality 10K 0.959 1.04 6.140 2.973 0.989 9.670 0.984

QDIT 10K(α = 0.9) 0.987 1.083 6.276 3.054 0.973 9.676 1.044
LMSYS 1M Average Performance Worst Case Performance Best Case Performance

Winning Score
vs. Alpaca 52K ↑

Winning Score
vs. Random 50K ↑

HH Score
Mean ↑

Lowest 10%
HH Score ↑

Lowest 10%
Winning Score ↑

Top 10%
HH Score↑

Top 10%
Winning Score ↑

Random 10K 1.113 1.0 6.176 2.575 1.057 9.589 1.187
Quality 10K 1.198 1.137 7.066 3.391 1.052 10.39 1.284

QDIT 10K (α = 0.7) 1.224 1.149 7.0 3.551 1.149 10.34 1.343

Table 2: Instruction Tuning results on small datasets. The setting is the same as Table 1.

Alpaca 52K Average Performance Worst Case Performance Best Case Performance
Winning Score

vs. Alpaca 52K ↑
Winning Score

vs. Random 50K ↑
HH Score
Mean ↑

Lowest 10%
HH Score ↑

Lowest 10%
Winning Score ↑

Top 10%
HH Score↑

Top 10%
Winning Score ↑

Random 3K 0.929 - 5.486 2.105 0.931 8.986 0.937
Quality 3K 0.920 - 5.629 2.306 0.873 9.073 0.934

QDIT 3K (α = 0.7) 1.026 - 5.661 2.513 0.924 8.791 1.056
Dolly 15K Average Performance Worst Case Performance Best Case Performance

Winning Score
vs. Alpaca 52K ↑

Winning Score
vs. Random 15K ↑

HH Score
Mean ↑

Lowest 10%
HH Score ↑

Lowest 10%
Winning Score ↑

Top 10%
HH Score↑

Top 10%
Winning Score ↑

Random 1K 0.64 0.72 4.632 1.474 0.632 6.144 0.645
Quality 1K 0.71 0.83 5.389 2.082 0.681 7.751 0.746

QDIT 1K (α = 0.7) 0.739 0.874 5.495 2.229 0.742 7.873 0.872

Figure 3: Improvement (averaged over the five datasets)
in HH Score of QDIT over Quality-based selection.

ate the worst case performance with pairwise com-
parison by measuring the winning score on the
hardest 10% of prompts according to HH score.
Best case performance is measured in a similar
manner. Measuring best and worst case perfor-
mance provides more detailed insights into how
diversity and quality affect model robustness.
⋄ Baselines. We primarily compare the QDIT al-
gorithm with two baselines: random data selection
and quality based selection. For the Alpaca dataset,
the quality baseline is trained on the same data as

Alpagasus (Chen et al., 2023).

4.3 Main Results
The main results can be found in Table 1 for large
datasets and Table 2 for small datasets.
Effect of Quality. Similar to prior works, we find
that selecting data based on quality significantly
improves average performance, improving the av-
erage winning score versus Alpaca 52K by 6.37%
and the average HH score by 11.6% when com-
pared to random selection. However, we also find
that selecting based on quality alone can hurt worst
case performance, decreasing the lowest 10% win-
ning score in two out of five settings compared to
random data selection. We hypothesize that this
performance drop is due to the fact that quality
based selection hurts dataset diversity.
Effect of Diversity. On the other hand, we find
that data selection with QDIT is able to achieve
both a high average HH score (QDIT improves
upon quality driven selection by 4.17% for win-
ning score vs Alpaca 52K and improves average
HH score by 1.5%) while achieving a much bet-

3415

(a) Dolly 1K (b) Alpaca 3K (c) Mixed 10K (d) Ultrachat 10K (e) LMSYS 10K

Figure 4: Effect of α on best case and worst case performance. The red line represents a randomly selected dataset
and α = 1.0 is quality-driven data selection. Worst HH Score refers to the bottom 10 percent of HH scores.

ter worst case performance than both random and
quality-driven selection. In particular, we find that
QDIT improves worst case HH score by 5.2% and
worst winning score vs Alpaca 52K by 6.26% when
compared to quality-driven data selection. This
trend can be seen in Figure 3, where QDIT im-
proves most over quality selection in the lowest
and middle percentiles, while not affecting the high-
est percentiles. We hypothesize that QDIT’s more
diverse dataset teaches the model to respond to
a wide range of instructions, thereby decreasing
the probability that it fails to follow evaluation in-
structions. Aggregated across different datasets the
gain in robustness passes a paired t-test (p < 0.05).
We provide more details and experiments on more
random seeds in Appendix I.

From these experiments we conclude that by in-
creasing data diversity while maintaining data qual-
ity, QDIT can improve instruction following ca-
pability compared to quality-driven selection. We
note that improvements in worst-case performance
are typically more important than improvements in
best-case performance, as a high worst case perfor-
mance will ensure users have a consistently positive
experience.

Figure 5: QDIT with different base models.

4.4 Analysis

Effect of α. We plot the effect of α on average and
worst case performance in Figure 4. From Figure 4,
we can see that the performance of QDIT changes
smoothly with respect to α, indicating that QDIT
is relatively robust to the value of α. In particu-
lar, values of α ∈ {0.5, 0.7, 0.9} typically having
the highest worst case and average performance.
However, decreasing α by too much (α = 0.1) will
result in a significant drop in performance, as will
increasing α by too much (α = 1). This highlights
the need for a careful tradeoff between dataset qual-
ity and diversity.
Benchmark Performance. For a more compre-
hensive evaluation of QDIT, we follow Chia et al.
(2023) and Gao et al. (2021) by evaluating our
model on various benchmark datasets including
MMLU (Hendrycks et al., 2020), BBH (Suzgun
et al., 2022), DROP (Dua et al., 2019), ARC (Clark
et al., 2018), LAMBADA (Paperno et al., 2016),
and SCIQ (Welbl et al., 2017). The results can
be found in Table 3. Details on our evaluation
strategy can be found in Appendix G. Although
these benchmarks are not fully aligned with in-
struction following ability, we find that QDIT typi-
cally improves benchmark performance compared
to quality-driven selection, achieving a higher aver-
age score on four out of five datasets.
Different Base Models. We evaluate the perfor-
mance of QDIT with different base models in Fig-
ure 5. From Figure 5 we find that QDIT can im-
prove both average performance and worst case per-
formance for other base models, including the more
powerful LLama-2-13B. We remark that LLama-2-
13B is only trained for 2 epochs, possibly resulting
in a lower HH score.
Data Size. We evaluate the performance of QDIT
with different training data sizes in Figure 7, where
we find that QDIT leads to the highest gains in low-
data regimes, but can still improve performance for

3416

Table 3: Evaluation on benchmark datasets. We bold the best result out of quality based selection and QDIT. The α
values are those used in Tables 1 and 2.

Ultrachat 10K LMSYS 10K
MMLU BBH ARC DROP LAMBADA SCIQ AVG MMLU BBH ARC DROP LAMBADA SCIQ AVG

Random 32.12 33.19 58.34 26.24 69.77 85.4 50.84 33.05 32.57 60.15 25.06 68.5 86.7 51.01
Quality 35.44 32.06 60.34 17.01 70.38 85.8 50.17 34.74 32.32 58.54 25.95 68.58 82.6 50.46
QDIT 36.13 32.12 60.71 26.73 69.8 86.8 52.05 37.34 32.52 61.44 26.41 69.28 85.0 52.0

Alpaca 3K Mixed 10K
MMLU BBH ARC DROP LAMBADA SCIQ AVG MMLU BBH ARC DROP LAMBADA SCIQ AVG

Random 36.17 30.25 61.67 26.32 71.64 87.0 52.18 32.93 30.92 58.34 20.33 68.1 84.1 49.12
Quality 34.71 29.97 60.99 19.62 69.85 82.7 49.64 33.07 31.38 60.34 26.37 69.4 88.4 51.49
QDIT 35.47 30.44 61.95 27.02 69.68 84.1 51.44 34.29 31.23 60.71 26.00 69.72 89.8 51.96

Dolly 1K
MMLU BBH ARC DROP LAMBADA SCIQ AVG

Random 28.11 27.27 59.39 17.26 71.74 80.7 47.41
Quality 33.61 29.95 60.43 24.69 72.22 82.8 50.62
QDIT 33.78 30.33 59.84 22.59 72.26 80.6 49.9

(a) QDIT:Cluster (b) QDIT:Threshold (c) QDIT

Figure 6: The selection strategy of the various QDIT algorithms on an example dataset. Six data points are selected
and the selected data points are circled.

Figure 7: Ablation with different data sizes. The dataset
is Ultrachat.

larger datasets. We also find that increasing the
dataset size beyond 50K only results in marginal
gains of average performance, and can even de-
crease worst case HH score. This is likely due to
the fact that the average reward score of the dataset
decreases as the dataset size increases.
QDIT Variants. We study two variants of the
QDIT algorithm that also attempt to improve
data quality and diversity. The first variant,
QDIT:Threshold, first orders the data point by qual-
ity, and then iteratively selects instructions that
do not have a similarity score greater than τ with

Figure 8: Performance of different QDIT variants on
Ultrachat. Winning Score is versus Alpaca 52K.

any point included selected subset. This algorithm
essentially de-duplicates the dataset, and is simi-
lar to algorithms used in Wang et al. (2022a) and
Liu et al. (2023). The second variant we propose is
QDIT:Cluster (similar to Ge et al. (2024)), in which
we first cluster the instructions and then select an
equal amount of data points from each cluster in a
quality-driven manner. Comprehensive details can
be found in Appendix H.

We demonstrate how each variant selects algo-
rithms in Figure 6. From these figures, we can see
that the clustering-based approach may not work

3417

Figure 9: Case study on instruction generalization.

Figure 10: Performance of QDIT with different evalua-
tors. The dataset is Alpaca.

well as some clusters may be low quality, resulting
in low-quality points being chosen. Moreover, the
success of this variant is highly dependent on the
success of clustering, which is difficult on large
and imbalanced instruction tuning datasets. On
the other hand, QDIT:Threshold will succeed in
de-duplicating the dataset, but may fail to select a
sufficiently diverse subset.

Experimentally, we observe in Figure 8 that the
two variants of QDIT achieve slightly worse aver-
age performance compared to QDIT, but they often
result in much worse worst-case performance.
Different Evaluators. To further investigate our
finding that data diversity can improve instruction
following performance, we compute the worst-case
winning score with different evaluators. Concretely,
we use Claude-2, Claude-2.1, GPT-3.5-Turbo, and
GPT-4-Turbo as different model based evaluators
(Achiam et al., 2023). We also conduct a blind
human preference study, using the authors as anno-
tators (see Appendix F). The results using differ-
ent models as evaluators can be seen in Figure 10.
From these results we can see QDIT consistently
improves worst-case performance.
Reducing the Train-Test Gap. One explanation
for QDIT’s improvement in instruction following

capabilities is a reduction in the gap between the
training and testing data. More concretely, a model
trained on a diverse dataset will be exposed to train-
ing instructions similar to those in the test set, and
will therefore perform better on the test set.

A qualitative example of this phenomena can be
found in Figure 9. In this example, the instruction
asks for help creating a short video. The closest
example (measured by cosine similarity of the in-
struction embedding) in the quality-based dataset is
unrelated to this task, while the closest instruction
in the QDIT-based dataset is a similar instruction
asking how to create a short video on nutrition.
As an end result, the QDIT model provides useful
video suggestions, while the Quality-driven model
merely repeats the provided video requirements.

In all of our experiments we observe that QDIT
selects datasets that better cover the testing dataset
compared to quality-based selection. This can be
seen in Figure 11, where we observe that the QDIT
selects more similar instruction to the test instruc-
tions than quality-based selection does. This phe-
nomenon provides one explanation on how QDIT
improves instruction following ability, but in gen-
eral it is difficult to directly attribute instruction
following capabilities to test-set coverage.

Figure 11: Number of test instructions where quality
based selection or QDIT contains the closest training
example. Ties are not included.

3418

5 Limitations and Risks

This paper seeks to understand how dataset diver-
sity and quality impact instruction tuning perfor-
mance. We consider several datasets, base models,
and benchmarks. Some limitations of our study
are that we do not consider extremely large scale
models (e.g. 70B), we assume a good measure of
instruction quality (i.e. reward model) is available,
and we only consider supervised finetuning, which
is only one part of LLM alignment. To further im-
prove upon the papers limitations, we would like
to try scaling our experiments to even larger model
sizes (e.g. 70B). In addition, it would be inter-
esting to conduct our study on more sophisticated
alignment techniques such as RLHF.

Our work is largely foundational and we there-
fore do not see any direct risks stemming from our
work. However, it is possible that our method could
be adapted to select harmful data to train on.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Gantavya Bhatt, Yifang Chen, Arnav M Das, Jifan
Zhang, Sang T Truong, Stephen Mussmann, Yinglun
Zhu, Jeffrey Bilmes, Simon S Du, Kevin Jamieson,
et al. 2024. An experimental design framework
for label-efficient supervised finetuning of large lan-
guage models. arXiv preprint arXiv:2401.06692.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Sou-
janya Poria. 2023. Instructeval: Towards holistic
evaluation of instruction-tuned large language mod-
els. arXiv preprint arXiv:2306.04757.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Gérard Cornuéjols, George Nemhauser, and Laurence
Wolsey. 1983. The uncapicitated facility location
problem. Technical report, Cornell University Opera-
tions Research and Industrial Engineering.

Arnav Das, Gantavya Bhatt, Megh Bhalerao, Vianne
Gao, Rui Yang, and Jeff Bilmes. 2023. Accelerat-
ing batch active learning using continual learning
techniques. arXiv preprint arXiv:2305.06408.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-
sations. arXiv preprint arXiv:2305.14233.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Rui Pan,
Shizhe Diao, Jipeng Zhang, Kashun Shum, and Tong
Zhang. 2023a. Raft: Reward ranked finetuning
for generative foundation model alignment. arXiv
preprint arXiv:2304.06767.

Yi Dong, Zhilin Wang, Makesh Narsimhan Sreedhar,
Xianchao Wu, and Oleksii Kuchaiev. 2023b. Steerlm:
Attribute conditioned sft as an (user-steerable) alter-
native to rlhf. arXiv preprint arXiv:2310.05344.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
Drop: A reading comprehension benchmark re-
quiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca-
farm: A simulation framework for methods that learn
from human feedback. Preprint, arXiv:2305.14387.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,

3419

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387
https://arxiv.org/abs/2305.14387

et al. 2021. A framework for few-shot language
model evaluation. Version v0. 0.1. Sept.

Yuan Ge, Yilun Liu, Chi Hu, Weibin Meng, Shimin
Tao, Xiaofeng Zhao, Hongxia Ma, Li Zhang, Hao
Yang, and Tong Xiao. 2024. Clustering and ranking:
Diversity-preserved instruction selection through
expert-aligned quality estimation. arXiv preprint
arXiv:2402.18191.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wal-
lace, Pieter Abbeel, Sergey Levine, and Dawn Song.
2023. Koala: A dialogue model for academic re-
search. Blog post.

Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang
Geng, Hao Liu, Pieter Abbeel, Sergey Levine, and
Dawn Song. 2023. The false promise of imitating
proprietary llms. arXiv preprint arXiv:2305.15717.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A Smith, Iz Belt-
agy, et al. 2023. Camels in a changing climate: En-
hancing lm adaptation with tulu 2. arXiv preprint
arXiv:2311.10702.

Katrin Kirchhoff and Jeff Bilmes. 2014. Submodularity
for data selection in machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
131–141.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Ashutosh Kumar, Satwik Bhattamishra, Manik Bhan-
dari, and Partha Talukdar. 2019. Submodular
optimization-based diverse paraphrasing and its ef-
fectiveness in data augmentation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3609–3619.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023a. From quantity to quality: Boosting
llm performance with self-guided data selection for
instruction tuning. arXiv preprint arXiv:2308.12032.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023b. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for
alignment? a comprehensive study of automatic
data selection in instruction tuning. arXiv preprint
arXiv:2312.15685.

Adyasha Maharana, Prateek Yadav, and Mohit Bansal.
2023. D2 pruning: Message passing for balancing di-
versity and difficulty in data pruning. arXiv preprint
arXiv:2310.07931.

Michel Minoux. 2005. Accelerated greedy algorithms
for maximizing submodular set functions. In Opti-
mization Techniques: Proceedings of the 8th IFIP
Conference on Optimization Techniques Würzburg,
September 5–9, 1977, pages 234–243. Springer.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
Amin Karbasi, Jan Vondrák, and Andreas Krause.
2015. Lazier than lazy greedy. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 29.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

George L Nemhauser, Laurence A Wolsey, and Mar-
shall L Fisher. 1978. An analysis of approximations
for maximizing submodular set functions—i. Mathe-
matical programming, 14:265–294.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

3420

https://bair.berkeley.edu/blog/2023/04/03/koala/
https://bair.berkeley.edu/blog/2023/04/03/koala/
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Peiqi Wang, Yikang Shen, Zhen Guo, Matthew Stal-
lone, Yoon Kim, Polina Golland, and Rameswar
Panda. 2024. Diversity measurement and subset se-
lection for instruction tuning datasets. arXiv preprint
arXiv:2402.02318.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, et al. 2023a. How far can camels go?
exploring the state of instruction tuning on open re-
sources. arXiv preprint arXiv:2306.04751.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022b. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams,
Makesh Narsimhan Sreedhar, Daniel Egert, Olivier
Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan
Swope, et al. 2023b. Helpsteer: Multi-attribute
helpfulness dataset for steerlm. arXiv preprint
arXiv:2311.09528.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonza-
lez, Ion Stoica, and Hao Zhang. 2023. Lmsys-chat-
1m: A large-scale real-world llm conversation dataset.
Preprint, arXiv:2309.11998.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

3421

http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2309.11998

A Similarity Metrics

In QDIT, we use the cosine similarity of instruction
embeddings as the similarity function in (1), where
the instruction embeddings are computed with sen-
tence transformers (Reimers and Gurevych, 2019).
More specifically, we use the all-mpnet-base-v2
model available from Huggingface.

B Computational Cost of QDIT

We measure the wall time of QDIT as taking ap-
proximately 9.42 minutes to select a dataset of size
10000. This experiment was conducted on a single
A100 40G GPU. In contrast, training on Ultrachat
10K takes 48 minutes on 8 A100 40G GPUs, mean-
ing that data selection (given the embeddings and
reward score) has 2% of the cost of training. Taking
into account the inference and evaluation process,
our method has an even smaller relative cost. We
remark that the reward score and embedding gen-
eration can typically be done on a small GPU very
quickly, or it can even be done on a CPU for mini-
mal cost.

C Tradeoff between Quality and
Diversity: Additional Results

We display additional results on the effect of α on
different datasets diversity and quality in Figures
12, 13, 14. We again find that there is a tradeoff
between quality and diversity, and that α can be
used to control this tradeoff.

D Training Details

We display the hyperparameter details in Table 4
and Table 5.

Table 4: General training details. The same hypera-
parameter setting is used for every dataset and data
selection strategy, following Chen et al. (2023).

Batch SizeLearning RateEpochsMax LengthWeight Decay

128 2× 10−5 3 512 0

Table 5: The hyperparameter α used in the main experi-
ments.

Dolly 15KAlpaca 52KMixed 270KUltrachat 1.3MLMSYS 1M

0.7 0.7 0.9 0.7 0.7

E Complete Win-Tie-Lose Results

In this appendix we show the win, ties, and losses
achieved versus the reference models as judged by
Claude 2. The results can be seen in Figures 15, 16,
17, 18, 19, and 20.

F Human Study Details

For the human study, we use a subset of the paper
authors as annotators. For each example, we ran-
domize the order of the reference model generation
and evaluated model generation, to keep the study
blind. We then ask the annotators to select their
preferred generation according to the Alpacafarm
prompt (Dubois et al., 2023).

G Benchmark Environments

For evaluation on common NLP benchmarks, we
follow Chia et al. (2023). In particular, we conduct
five shot evaluation on MMLU, three shot on BBH,
and three shot on DROP. For ARC, LAMBADA,
and SCIQ, we use the default zero shot setting of
(Gao et al., 2021).

H QDIT Variants

In this section we describe and analyze the variants
of QDIT.

QDIT:Cluster. In this variant of QDIT, we first
cluster all the instructions based on their sentence-
transformer embeddings using the k-means algo-
rithm, where k = 100. We then select an equal
number of points from each cluster, and points are
selected from each cluster based on quality.

QDIT:Threshold. In this variant of QDIT, we
first sort the instructions based on quality. We then
iteratively remove instructions from the selected
dataset if they have a similarity with some other
instruction in the dataset greater than a threshold τ .
In our experiments we use the cosine similarity as
the similarity metric and set τ = 0.5.

I Sensitivity to Randomness

To further investigate QDIT’s sensitivity to random
seeds, we conducted experiments over 3 seeds on
the Alpaca dataset. Our findings (see Table 6) are
consistent with the rest of our results: QDIT and
Quality based selection significantly outperform
random selection, and QDIT achieves much higher
worst case performance than both Random 3K and
Quality 3K. Also, we notice small standard devi-

3422

(a) 1K Selected Points (b) 5K Selected Points (c) 10K Selected Points

Figure 12: Effect of α on dataset quality and diversity. The dataset is Mixed 270K.

(a) 1K Selected Points (b) 5K Selected Points (c) 10K Selected Points

Figure 13: Effect of α on dataset quality and diversity. The dataset is Ultrachat 1.3M.

(a) 1K Selected Points (b) 5K Selected Points (c) 10K Selected Points

Figure 14: Effect of α on dataset quality and diversity. The dataset is LMSYS 1M.

ation, indicating our experimental framework is
robust to the choice of random seed.

Table 6: Results with different random seeds.

Alpaca 3K Avg. HH Score Worst HH Score

Random 3K 5.55 (0.05) 2.12 (0.04)
Quality 3K 5.61 (0.01) 2.30 (0.02)
QDIT 3K 5.63 (0.02) 2.41 (0.07)

J Initialization for Preference
Optimization

In this experiment, we first fine-tuned the Phi-2
model using supervised fine-tuning (SFT) with data
selected from the helpsteer dataset via random se-
lection, quality selection, and QDIT selection meth-
ods. The models were evaluated by computing the
win rate against a baseline SFT model trained on
the entire helpsteer dataset. We used both Claude
3.5 Sonnet and a Llama3-8B reward model trained
with RLHF-Flow for evaluation. The results of
these experiments are shown in Table 7.

These results further validate the efficacy of
QDIT as a selection method. Next, we conducted
experiments using Direct Preference Optimization

3423

(a) Random 10K vs. Alpaca 52K (b) Quality 10K vs. Alpaca 52K (c) QDIT 10K vs. Alpaca 52K

Figure 15: We display the results on Ultrachat as judged by Claude 2. The base model here is LLaMA-2 7B.

(a) Random 10K vs. Alpaca 52K (b) Quality 10K vs. Alpaca 52K (c) QDIT 10K vs. Alpaca 52K

Figure 16: We display the results on Ultrachat as judged by Claude 2. The base model here is LLaMA-1 7B.

(a) Random 10K vs. Random 50K (b) Quality 10K vs. Random 50K
(c) QDIT 10K vs. Random

50K

Figure 17: We display the results on Ultrachat as judged by Claude 2. The base model here is LLaMA-1 7B.

(a) Random 10K vs. Alpaca 52K (b) Quality 10K vs. Alpaca 52K (c) QDIT 10K vs. Alpaca 52K

Figure 18: We display the results on LMSYS as judged by Claude 2. The base model here is LLaMA-1 7B.

(a) Random 10K vs. Random
50K

(b) Quality 10K vs. Random
50K

(c) QDIT 10K vs. Random
50K

Figure 19: We display the results on LMSYS as judged by Claude 2. The base model here is LLaMA-1 7B.

3424

(a) Quality 10K vs. Alpaca
52K

(b) QDIT 10K vs. Alpaca
52K

Figure 20: We display the results on Ultrachat as judged by Claude 2. The base model here is Mistral 7B.

Table 7: SFT results for different selection methods on
the helpsteer dataset.

Experiment Win rate vs. Full SFT (RLHF-
Flow RM)

Win rate vs. Full SFT (Sonnet
3.5)

SFT: Random Selection 47.71% 35%
SFT: Quality Selection 54.27% 45%
SFT: QDIT 59.44% 52%

(DPO) on the same dataset, utilizing the helpsteer
preference data. The results of these experiments
are shown in Table 8.

Table 8: DPO results on different SFT base models with
the helpsteer dataset.

Experiment Win rate vs. Full SFT (RLHF-
Flow RM)

Win rate vs. Full SFT (Sonnet
3.5)

SFT: Random + DPO 49.11% 40%
SFT: Quality + DPO 59.44% 47%
SFT: QDIT + DPO 61.23% 53%

These results show that:

1. DPO improves the performance of all SFT
models.

2. The performance gain from DPO is smaller
for stronger SFT base models (e.g., QDIT),
but using QDIT to select SFT data still leads
to an improvement in final performance of up
to 12%.

3425

