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Abstract

Stemming from traditional knowledge graphs
(KGs), hyper-relational KGs (HKGs) provide
additional key-value pairs (i.e., qualifiers) for
each KG fact that help to better restrict the fact
validity. In recent years, there has been an in-
creasing interest in studying graph reasoning
over HKGs. Meanwhile, as discussed in re-
cent works that focus on temporal KGs (TKGs),
world knowledge is ever-evolving, making it
important to reason over temporal facts in
KGs. Previous mainstream benchmark HKGs
do not explicitly specify temporal information
for each HKG fact. Therefore, almost all exist-
ing HKG reasoning approaches do not devise
any module specifically for temporal reasoning.
To better study temporal fact reasoning over
HKGs, we propose a new type of data struc-
ture named hyper-relational TKG (HTKG). Ev-
ery fact in an HTKG is coupled with a times-
tamp explicitly indicating its time validity. We
develop two new benchmark HTKG datasets,
i.e., Wiki-hy and YAGO-hy, and propose an
HTKG reasoning model that efficiently models
hyper-relational temporal facts. To support fu-
ture research on this topic, we open-source our
datasets and model1.

1 Introduction

Traditional knowledge graphs (KGs) represent
world knowledge by storing a collection of facts in
the form of triples. Each KG fact can be described
as (s, r, o), where s, o are the subject and object en-
tities of the fact and r denotes the relation between
them. On top of traditional triple-based KGs, hyper-
relational KGs (HKGs) are designed to introduce
additional information into each triple-based fact
(also known as primary triple in HKGs) by incor-
porating a number of key-value restrictions named
as qualifiers (Zhang et al., 2018; Guan et al., 2019;

*Equal contribution. Work done at LMU Munich.
†Corresponding author.
1https://github.com/0sidewalkenforcer0/HypeTKG

Figure 1: Examples of HKG (A) and HTKG (B) facts.
Contents inside dashed line squares denote qualifiers.
We also provide another example of HTKG fact show-
casing diverse sets of qualifiers in App. A.

Galkin et al., 2020). Compared with triple-based
KGs, HKGs provide more complicated semantics.
For example, in Fig. 1 (A), the degree and major
information of Albert Einstein is provided, which
helps to differentiate between the facts regarding
two universities attended by him.

Many reasoning approaches have been proposed
for HKGs, e.g., (Wang et al., 2021; Xiong et al.,
2023b), but unfortunately, they all assume that the
hyper-relational facts are static. As discussed in
recent works (Dasgupta et al., 2018; Ding et al.,
2022a), world knowledge is ever-evolving. In tem-
poral KGs, each fact is represented by a quadruple
(s, r, o, t) with an additional timestamp specifying
the time validity. Previous mainstream HKG bench-
marks do not explicitly specify time validity for
each HKG fact. This hinders the development of
the reasoning systems that can effectively handle
temporal dynamics within hyper-relational facts,
and as a result, almost all existing HKG reason-
ing methods lack a dedicated module for tempo-
ral reasoning. Modeling temporal knowledge in
HKGs is important as the temporal validity of a
fact improves knowledge expressiveness and might
be correlative to its qualifiers. A model should be
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expressive enough to model such correlation.
To better study temporal fact reasoning over

HKGs, we propose a new type of data structure
named hyper-relational TKG (HTKG, see formal
definition in Sec. 2.1). Every fact in an HTKG is
defined in the form of ((s, r, o, t), {(rqi , eqi)}ni=1).
(s, r, o, t) is its primary quadruple (i.e., primary
fact, t is a timestamp denoting the valid time) and
{(rqi , eqi)}ni=1 are a number of n augmented quali-
fiers. We illustrate an HTKG fact example in Fig.
1 (B). The two awards Ang Lee was nominated for
because of Brokeback Mountain can be differen-
tiated considering the specified timestamps. An
HTKG is composed solely of a collection of hyper-
relational temporal facts so we use HTKGs to study
temporal fact reasoning over HKGs. We construct
two benchmark HTKGs Wiki-hy and YAGO-hy
based on two traditional TKG benchmarks Wiki-
data11k (Jung et al., 2021) and YAGO1830 (Han
et al., 2021a).

Since previous HKG reasoning approaches pay
little attention to temporal reasoning, they are not
fit for modeling HTKGs. To this end, we develop a
model to achieve link prediction (LP) over hyper-
relational TKGs (HypeTKG) as follows: (1) We
first devise a qualifier-attentional time-aware graph
encoder (QATGE) that considers both temporal in-
formation and qualifiers in the graph aggregation
process. (2) We then design a qualifier matching
decoder (QMD). Given any HTKG LP query, QMD
not only considers its own qualifiers, but also mod-
els all the qualifiers appearing in query subject-
related facts2. The motivation of QMD is that the
evidence for LP not only is stored in the query
qualifiers but also can be found in other subject-
related facts. Compared with previous methods,
HypeTKG is able to capture the correlation be-
tween temporal validity and qualifiers.

Another point worth noting is that some re-
cent works have started to explore whether time-
invariant (TI) relational knowledge3 can help to en-
hance temporal fact reasoning on traditional TKGs
(Li et al., 2021, 2022; Liu et al., 2023). This arouses
our interest in studying whether TI relational facts
are beneficial in HTKG reasoning. In our work, we
mine the TI relational knowledge from the Wiki-
data KB. We pick out the facts that contain ten
frequently mentioned TI relations, e.g., official lan-

2Each query subject-related fact is a fact that takes the
query subject as the subject entity of its primary quadruple.

3TI knowledge are represented with fact triples (s, r, o)
(same as the facts in triple-based KGs) and are valid anytime.

guage, and ensure that these facts remain valid
within the whole time scopes of HTKGs. We adjust
HypeTKG and create a model variant HypeTKGψ

that dynamically controls the influence of TI infor-
mation for better reasoning on temporal facts. We
also provide a wide range of baselines with TI facts
and benchmark their temporal fact LP performance
on our proposed HTKGs.

To summarize, our contribution is three-folded:
(1) We propose a new data structure HTKG that
draws attention to temporal fact reasoning over
HKGs and propose two corresponding benchmarks
(Sec. 2.1 and 3). (2) We propose HypeTKG, a
model specifically designed to reason over HTKGs.
Experimental results show that HypeTKG performs
well in temporal fact reasoning over HTKGs (Sec.
5.2). (3) We study the influence of TI relational
knowledge on HTKG reasoning and adapt Hy-
peTKG to accommodate to TI information. We
show that our model can benefit by carefully bal-
ancing the information between temporal and TI
knowledge (Sec. 5.3).

2 Preliminaries and Related Work

2.1 Definition and Problem Statement
Definition 1 (Hyper-Relational TKG). Let E , R,
T denote a set of entities, relations and times-
tamps4, respectively. An HTKG G is a set of hyper-
relational temporal facts. Each fact is denoted as
((s, r, o, t), {(rqi , eqi)}ni=1), where (s, r, o, t) is its
primary quadruple. eqi ∈ E and rqi ∈ R are the
entity and relation in its ith qualifier qi, respectively.
n is the number of qualifiers.

Definition 2 (Hyper-Relational TKG LP). Let
Gtr be a ground-truth HTKG. Gtr = Gobs ∪ Gun

(Gobs ∩ Gun = ∅), where Gobs is a set of observed
HTKG facts and Gun is a set of unobserved facts.
Given Gobs, HTKG LP aims to predict the missing
entity in the LP query ((s, r, ?, t) , {(rqi , eqi)}ni=1)
(or ((?, r, o, t), {(rqi , eqi)}ni=1)) derived from each
fact in Gun.

Following previous works on TKGs, e.g., (Han
et al., 2021b), for each fact, we create another
fact ((o, r−1, s, t), {(rqi , eqi)}ni=1) and add it to the
graph, where r−1 denotes r’s inverse relation. We
derive an object entity prediction query from each
fact and perform object prediction. Note that we
follow (Galkin et al., 2020) and only predict miss-
ing entities in primary facts.

4We decompose time periods into a series of timestamps
following (Jin et al., 2020).
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2.2 Related Work

Due to page limit, see App. K for the detailed
discussion of various previous methods.

Temporal Fact Reasoning on Traditional TKGs
Extensive research has been conducted for TKG
reasoning. Although traditional TKG facts have no
qualifiers, each of them has a specified time identi-
fier for temporal fact reasoning. A series of works
develops time-aware score functions (Leblay and
Chekol, 2018; Xu et al., 2020; Goel et al., 2020;
Shao et al., 2022; Messner et al., 2022; Li et al.,
2023; Pan et al., 2024) that compute plausibility
scores of quadruple-based TKG facts based on var-
ious types of geometric operations. Some other
methods employ neural structures, e.g., LSTM
(Hochreiter and Schmidhuber, 1997) or time-aware
graph neural networks, to achieve temporal reason-
ing (Jin et al., 2020; Wu et al., 2020; Han et al.,
2021b; Zhu et al., 2021; Li et al., 2021; Jung et al.,
2021; Ding et al., 2022a; Li et al., 2022; Liu et al.,
2023; Ding et al., 2024). There are two settings in
TKG LP, i.e., interpolation and extrapolation. In
extrapolation, to predict a fact happening at time
t, models can only observe previous TKG facts
before t, while such restriction is not imposed in
interpolation. In our work, we only focus on the
interpolated LP on HTKGs and leave extrapolation
for future work.

Hyper-Relational KG Reasoning Mainstream
HKG reasoning methods can be categorized into
three types. The first type of works (Zhang et al.,
2018; Liu et al., 2020; Fatemi et al., 2020; Di
et al., 2021; Wang et al., 2023) treats each hyper-
relational fact as an n-ary fact represented with
an n-tuple: rabs(e1, e2, ..., en), where n is the non-
negative arity of an abstract relation rabs

5 represent-
ing the number of entities involved within rabs and
e1, ..., en are the entities appearing in this n-ary
fact. Although these methods show strong effec-
tiveness, previous study (Galkin et al., 2020) has
shown that the way of treating HKG facts as n-ary
facts naturally loses the semantics of the original
KG relations and would lead to a combinatorial ex-
plosion of relation types. The second type of works
(Liu et al., 2021; Guan et al., 2023) transforms
each hyper-relational fact into a set of key-value
pairs: {(ri : ei)}ni=1. Formulating hyper-relational

5Abstract relation rabs is derived from a combination of
several KG relations by concatenating the relations in the
primary triple and qualifiers (Galkin et al., 2020).

facts into solely key-value pairs would also cause
a problem that the relations from the primary fact
triples and qualifiers cannot be fully distinguished
(Galkin et al., 2020). To overcome the problems in-
curred in first two types of methods, recently, some
works (Guan et al., 2020; Rosso et al., 2020; Galkin
et al., 2020; Wang et al., 2021; Xiong et al., 2023b;
Chung et al., 2023) formulate each hyper-relational
fact into a primary triple with a set of key-value
qualifier pairs: {((s, r, o), {(rqi , eqi)}ni=1)}. This
formulation distinguishes the primary fact triples
and qualifiers, and meanwhile preserves the se-
mantics of the original KG relations. While HKG
reasoning methods perform well on HKG LP, none
of them focuses on temporal reasoning because
no temporal identifiers are explicitly specified in
HKGs.

To draw attention to temporal fact reasoning over
hyper-relational facts, a recent work (Hou et al.,
2023) proposes n-tuple TKG (N-TKG), where each
hyper-relational fact is represented with an n-tuple:
(r, {ρi : ei}ni=1, t). n and t are the arity and the
timestamp of the fact, respectively. ρi is the labeled
role of the entity ei. r denotes fact type. Compared
with HTKG, N-TKG has limitation: HTKGs ex-
plicitly separate primary facts with additional qual-
ifiers, while N-TKGs mix all the entities from the
primary facts and qualifiers and are unable to fully
emphasize the importance of primary facts. Hou et
al. also propose a model NE-Net for extrapolated
LP on N-TKGs. It is not optimal for interpolation
because it can only model the graph information
before the prediction timestamp. See App. K for
more discussion.

3 Proposing New Benchmarks

We propose two HTKG benchmark datasets Wiki-
hy and YAGO-hy. Wiki-hy contains HTKG facts
extracted from Wikidata (Vrandecic and Krötzsch,
2014), where they happen from year 1513 to 2020.
YAGO-hy is constructed from the facts in YAGO3
(Mahdisoltani et al., 2015) and the time scope is
from year 1830 to 2018. We use previous tradi-
tional TKG benchmarks Wikidata11k (Jung et al.,
2021) and YAGO1830 (Han et al., 2021a) as bases
and search for the qualifiers of their facts in Wiki-
data. We use the MediaWiki API6 to identify the
quadruple-based TKG facts in Wikidata and extract
all the qualifiers stated under the corresponding
Wikidata statements. Since Wikidata11k is origi-

6https://www.wikidata.org/w/api.php
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Dataset Ntrain Nvalid Ntest |Epri| |EQual| |Rpri| |RQual| |T | |∃ Qual| avg(|Qual|) Qual% |GTI| |ETI|
Wiki-hy 111, 252 13, 900 13, 926 11, 140 1, 642 92 44 508 26, 670 1.59 9.59% 5, 360 3, 801

YAGO-hy 51, 193 10, 973 10, 977 10, 026 359 10 33 188 10, 214 1.10 6.98% 7, 331 5, 782

Table 1: Dataset statistics. Ntrain/Nvalid/Ntest is the number of facts in the training/validation/test set. |Epri|/|Rpri|/|T |
is the number of entities/relations/timestamps in primary quadruples. |EQual|/|RQual| is the number of additional
entities/relations only existing in qualifiers. |∃ Qual|/Qual% is the number/the proportion of facts containing at least
one qualifier. Complete sets of entities and relations are E = Epri ∪ EQual and R = Rpri ∪RQual, respectively. ETI is
the number of entities additionally introduced in TI facts GTI and ETI ∩ E = ∅.

nally extracted from Wikidata, we can directly find
its relations and entities in this KB. YAGO1830’s
entities share the same pool as Wikidata but rela-
tion types are taken from schema.org. We map
YAGO1830’s relations to Wikidata’s relations to
enable fact matching (detailed mapping in App. B).
We provide dataset statistics of both datasets in Ta-
ble 1. Qualifier searching will include additional
entities and relations. We include them in model
training and evaluation. We augment quadruple-
based TKG facts with their searched qualifiers. The
facts without any searched qualifier will remain un-
changed. All the facts in our datasets are based on
English. We discuss why we use Wikidata-based
but not other popular ICEWS-based TKGs to con-
struct HTKGs in App. C.

We explore TI knowledge as follows. We first
find the top 400 frequent relations in Wikidata KB.
Based on them, we then manually check each of
them and pick out top 10 frequent relations that de-
scribe TI relationships among entities. The selected
TI relations are family name, native language, sub-
class of, official language, child, sibling, father,
mother, ethnic group, country of origin. We ensure
that they are disjoint from the existing relations in
the original HTKGs. Starting from the entities in
our HTKGs, we search for their associated TI facts
in Wikidata, where each of them corresponds to a
selected TI relation. For example, for the YAGO-
hy entity Emmy Award, we take the facts such as
(Emmy Award, subclass of, television award). As
a result, we collect a set of facts denoted as GTI
(GTI ∩ Gtr = ∅) for Wiki-hy and YAGO-hy. We
allow models to use all of them for enhancing LP
over temporal facts during train/valid/test. See Ta-
ble 1 for GTI statistics.

4 HypeTKG

HypeTKG consists of two parts, i.e., a qualifier-
attentional time-aware graph encoder (QATGE)
and a qualifier matching decoder (QMD). To fur-
ther learn from TI knowledge, we equip HypeTKG

with additional modules and develop a model vari-
ant HypeTKGψ (model structure shown in Fig. 2).

4.1 Qualifier-Attentional Time-Aware Graph
Encoder

QATGE learns a contextualized representation for
every entity. Given an entity e, QATGE first
finds its temporal neighbors from Gobs: Ne =
{ζ} = {((e′, r′, t′), {(r′qi , e′qi)}ni=1)}, where each
temporal neighbor ζ is derived from a fact
((e′, r′, e, t′), {(r′qi , e′qi)}ni=1) ∈ Gobs connecting to
e. For each ζ, QATGE employs an attention-based
module to model its qualifiers. It computes the
representation hζqi for the ith qualifier qi of ζ with
a function ϕ(·, ·).
hζqi = ϕ(he′qi

,hr′qi
)

= W1(he′qi
∥hr′qi ) ∗ f(h

C
e′qi

◦ hC
r′qi

) ∗ (he′qi ⊕ hr′qi
).

(1)

he′qi
∈ Rd and hr′qi

∈ Rd denote the representa-
tions of the entity and relation in qi, respectively. ∥
means concatenation and W1 ∈ Rd×2d is a weight
matrix. hC

e′qi
∈ C

d
2 and hC

r′qi
∈ C

d
2 are the complex

vectors mapped from he′qi
and hr′qi

. The real part
of hC

e′qi
is the first half of he′qi and the imaginary

part is the second half (see mapping explanation
and example in App. F). ◦ is the Hadmard product
on the complex space. f(·) : C d

2 → Rd is a map-
ping function that maps the complex vectors back
to the real vectors. ∗ and ⊕ are element-wise prod-
uct and add operations, respectively. After getting
{hζqi}, QATGE integrates the information from all
of them by computing an attentional feature hζQual
related to the primary relation r′ of ζ.

h̃ζqi = (hζqi
⊤
hr′) ∗w,

αi[j] =
exp(h̃ζqi [j])∑n
k=1 exp(h̃ζqk [j])

; ai = [αi[1], ..., αi[d]]
⊤,

hζQual =
∑

qi

WQual(ai ∗ hζqi).

(2)

w ∈ Rd is a trainable parameter. h̃ζqi [j] denotes
the jth element of h̃ζqi . ai is an attention vector,
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(a) Qualifier-attentional time-aware graph encoder (QATGE). (b) Qualifier matching decoder (QMD).

Figure 2: Model structure of HypeTKGψ . HypeTKGψ first uses QATGE to encode all the entities. It then uses QMD
to compute score regarding every candidate entity ec ∈ E . Temporal information is considered in both QATGE and
QMD for temporal reasoning. The structure of HypeTKG can be derived by excluding the components concerning
TI facts. View with Sec. 4 for better understanding. e′′1 , ..., e

′′
nsTI

and r′′1 , ..., r
′′
nsTI

are the entities and relations from a
number of nsTI TI neighbors of query subject s, respectively.

where each of its element αi[j] denotes the atten-
tion score determining how important the jth el-
ement of the ith qualifier qi is in the jth element
of hζQual. The importance increases as the score

rises. WQual ∈ Rd×d is a weight matrix. hζQual can
be viewed as a parameter that adaptively selects
the information highly-related to r′ from all the
qualifiers of ζ. To compute e’s representation he,
we aggregate over all its temporal neighbors in Ne

with a gated structure.

he =
1

|Ne|
∑
ζ∈Ne W2ϕ

(
h(e′,t′),

(
γhζQual + (1− γ)hr′

))
,

(3)

where W2 ∈ Rd×d is a weight matrix. γ is a
trainable gate parameter controlling the amount of
information taken from either the primary relation
r′ or the qualifiers. QATGE incorporates temporal
information by learning a time-aware representa-
tion for each temporal neighbor’s subject entity:
h(e′,t′) = ft(he′∥ht′). ft(·) : R2d → Rd is a
layer of neural network. ht′ =

√
1/d[cos(ω1t

′ +
ϕ1), . . . , cos(ωdt

′ + ϕd)], where ω1 . . . ωd and
ϕ1 . . . ϕd are trainable parameters.

4.2 Qualifier Matching Decoder

QMD leverages the entity and relation represen-
tations encoded by QATGE for LP. Assume we
want to predict the missing entity of the LP query
((s, r, ?, t), {(rqi , eqi)}

nque
i=1) (nque is the number of

query qualifiers), QMD learns a query feature hque.
QMD first models query qualifiers {(rqi , eqi)}

nque
i=1

with a qualifier-wise Transformer (Vaswani et al.,
2017). Each query qualifier’s entity and relation
are treated as two tokens and concatenated as a
sub-sequence for this qualifier. The classification
([CLS]) token is then concatenated with the query
qualifier tokens as a sequence and input into the
qualifier-wise Transformer, where the sequence

length is 2nque + 1. We take the output repre-
sentation of the [CLS] token as the query quali-
fier feature h

que
Qual ∈ Rd who contains comprehen-

sive information from all query qualifiers. Apart
from h

que
Qual, we also devise a qualifier matcher that

further exploits additional supporting information
from the qualifiers of other observed facts related
to query subject s in Gobs. Qualifier matcher finds
all the HTKG facts in Gobs where each of them
takes s as the subject of its primary quadruple7. It
then collects all their qualifiers {(r̄ql , ēql)}nall

l=1 and
computes a global qualifier feature

ηl =
exp((W3(hr̄ql ∥hēql ))

⊤(W4(h(s,t)∥hr)))∑nall
m=1 exp((W3(hr̄qm ∥hēqm ))⊤(W4(h(s,t)∥hr)))

,

hglo
Qual =

∑

ql

ηlW3(hr̄ql ∥hēql ),
(4)

where nall denotes the number of s-related quali-
fiers and W3,W4 ∈ Rd×2d are weight matrices.
h(s,t) = ft(hs∥ht). ηl is the attention score of
the lth subject-related qualifier indicating its con-
tribution to the LP query. Given h

que
Qual and h

glo
Qual

(hglo
Qual ∈ Rd), QMD uses another query-wise Trans-

former to compute a query feature. We concatenate
the representation of another separate [CLS] to-
ken with h(s,t)∥hr∥hque

Qual∥h
glo
Qual and input it into

the query-wise Transformer. The output represen-
tation of this separate [CLS] token corresponds to
hque ∈ Rd. hque is used by QMD to compute a
score for each candidate entity ec ∈ E

λ(ec) = (hque ∗ ht)⊤W5hec . (5)

W5 ∈ Rd×d is a score matrix. HypeTKG takes
the candidate entity with the highest score as the
predicted answer.

7We only consider subject-related qualifiers because we
can only observe the subject entity in each LP query and we
aim to find the additional qualifiers most related to the query.
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4.3 Time-Invariant Knowledge Modeling
Previous sections discuss how HypeTKG performs
HTKG LP without using TI knowledge. In this
section, we discuss how we adapt HypeTKG
to TI knowledge by developing a model variant
HypeTKGψ. We first introduce another gated struc-
ture in QATGE to incorporate TI knowledge in the
encoding process. We change Eq. 3 to

htemp
e =

1

|Ne|
∑

ζ∈Ne
W2ϕ

(
h(e′,t′),

(
γhζQual + (1− γ)hr′

))
,

hψe =
1

|Nψ
e |

∑

ζψ∈Nψ
e

Wψϕ(he′′ ,hr′′),

he = (1− β)htemp
e + βhψe .

(6)

β is a trainable parameter controlling the mag-
nitude of TI information. Nψ

e = {ζψ} =
{(e′′, r′′)|(e′′, r′′, e) ∈ GTI} denotes e’s TI neigh-
bors derived from additional TI facts. h

temp
e and

hψe contain the encoded temporal and TI informa-
tion, respectively. In QMD, we incorporate TI
knowledge when we compute the query feature
hque. Same as how we model query qualifiers, we
use a TI-wise Transformer to model s’s TI neigh-
bors and output a TI feature hsTI. We expand the
input length of the query-wise Transformer and in-
put h(s,t)∥hr∥hque

Qual∥h
glo
Qual∥hsTI for computing hque.

Note that we do not model TI neighbors of all |E|
candidate entities in QMD because (1) this will
incur excessive computational cost and (2) this part
of information has been learned in QATGE.

4.4 Parameter Learning
We minimize a binary cross-entropy (BCE) loss for
learning model parameters. We take every fact in
Gobs as a query fact δ and switch its object entity o
to every other entity e ∈ (E \ {o}) to create |E| − 1
negative facts {δ−}. Our loss is defined as

L = 1
|Gobs|×|E|

∑
δ∈Gobs

(lδ +
∑
δ− lδ−). (7)

lδ = −yδ log(λ(δ)) − (1 − yδ) log(1 − λ(δ)),
lδ− = −yδ− log(λ(δ−))−(1−yδ−) log(1−λ(δ−))
denote the BCE of δ and δ−, respectively. yδ = 1
and yδ− = 0 because we want to simultaneously
maximize λ(δ) and minimize λ(δ−). |Gobs| is the
number of HTKG facts in Gobs.

5 Experiments

We do HTKG LP over Wiki-hy and YAGO-hy. We
report HTKG LP results in Sec. 5.2. We study
whether additional TI knowledge helps HTKG LP
in Sec. 5.3. We do ablation studies and study

the impact of the ratio of utilized qualifiers in Sec.
5.4. Finally, we present several case studies to
show the effectiveness of leveraging TI knowledge
and qualifier matcher for temporal fact reasoning
over HTKGs in Sec. 5.5. We provide complexity
analysis of our model in App. D. We also study the
impact of qualifier-augmented fact proportion and
present it in App. I.

5.1 Experimental Setting

We use two evaluation metrics, i.e., mean reciprocal
rank (MRR) and Hits@1/3/10. We follow the filter-
ing setting used in previous HKG reasoning works
(Galkin et al., 2020). See App. E for detailed ex-
planations of evaluation metrics. We consider two
types of baselines: (1) Traditional TKG interpola-
tion methods8, i.e., DE-SimplE (Goel et al., 2020),
TeRo (Xu et al., 2020), T-GAP (Jung et al., 2021),
BoxTE (Messner et al., 2022), TARGCN (Ding
et al., 2022a), TeAST (Li et al., 2023) and HGE
(Pan et al., 2024). Since these methods have no way
to model qualifiers, we neglect the qualifiers dur-
ing implementation. (2) HKG reasoning methods,
i.e., NaLP-Fix (Rosso et al., 2020), HINGE (Rosso
et al., 2020), HypE (Fatemi et al., 2020), StarE
(Galkin et al., 2020), GRAN (Wang et al., 2021),
HyconvE (Wang et al., 2023), ShrinkE (Xiong et al.,
2023b) and HyNT (Chung et al., 2023). These
methods cannot model temporal information in
HTKGs. We make them neglect the timestamps
during implementation. See App. G for HypeTKG
and baseline implementation details. Note that NE-
Net (Hou et al., 2023) still has no existing software
and data, so we are unable to directly compare it
with HypeTKG here.

5.2 Comparative Study

We report the HTKG LP results of all methods in
Table 2. We observe that HypeTKG outperforms all
baselines and achieves state-of-the-art. We believe
this is because (1) traditional TKG reasoning meth-
ods lose a large amount of semantic information by
failing to model qualifiers (2) and previous HKG
reasoning baselines cannot distinguish from differ-
ent timestamps, which is key to temporal fact rea-
soning. We also observe that HypeTKGψ achieves
even better results than the original model. We will
have a more detailed discussion in Sec. 5.3.

8TKG extrapolation methods are not considered since we
only study interpolated LP over HTKGs. Extrapolation meth-
ods are constrained to only use the graph information before
each LP query, making them suboptimal for interpolation.
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Datasets WiKi-hy YAGO-hy
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DE-SimplE 0.351 0.218 0.405 0.640 0.684 0.625 0.715 0.807
TeRo 0.572 0.473 0.640 0.727 0.760 0.720 0.782 0.822
T-GAP 0.588 0.486 0.651 0.726 0.773 0.736 0.800 0.835
BoxTE 0.449 0.348 0.512 0.646 0.685 0.642 0.725 0.767
TARGCN 0.589 0.498 0.652 0.733 0.769 0.742 0.772 0.817
TeAST 0.601 0.507 0.669 0.761 0.794 0.763 0.817 0.844
HGE 0.602 0.507 0.666 0.765 0.790 0.760 0.814 0.837

NaLP-Fix 0.507 0.460 0.569 0.681 0.730 0.709 0.751 0.813
HINGE 0.543 0.497 0.585 0.694 0.758 0.730 0.762 0.819
HypE 0.624 0.604 0.631 0.658 0.800 0.785 0.799 0.830
StarE 0.565 0.491 0.599 0.703 0.765 0.737 0.776 0.820
GRAN 0.661 0.610 0.679 0.750 0.808 0.789 0.817 0.842
HyconvE 0.641 0.600 0.656 0.729 0.771 0.754 0.782 0.811
ShrinkE 0.669 0.593 0.703 0.789 0.808 0.782 0.824 0.852
HyNT 0.537 0.444 0.587 0.723 0.763 0.724 0.787 0.836

HypeTKG 0.687 0.633 0.710 0.789 0.832 0.817 0.838 0.857

HypeTKGψ 0.693 0.642 0.715 0.792 0.842 0.821 0.839 0.858

Table 2: HTKG LP results. The best results without
using TI facts are marked in bold. H@1/H@3/H@10
means Hits@1/Hits@3/Hits@10.

5.3 Do TI Relational Knowledge Help HTKG
Reasoning?

We let HypeTKG and all baselines use the ad-
ditional TI facts and report their temporal fact
LP performance on Wiki-hy and YAGO-hy in
Table 3. For the HKG approaches, we directly
include these facts into our datasets. For tradi-
tional TKG reasoning approaches, we create a
number of temporal facts for each TI fact along
the whole timeline and include these temporal
facts into the datasets. For example, let tmin/tmax
denotes the minimum/maximum timestamp of
an HTKG. We transform a TI fact (s, r, o) to
{(s, r, o, tmin), ..., (s, r, o, tmax)}. Surprisingly, we
observe that while HypeTKG constantly benefit
from the additional TI relational knowledge, other
baselines cannot. We attribute this to the following
reasons: (1) TI facts introduce distributional shift.
Baseline methods learn TI and temporal knowl-
edge without distinguishing their difference, mak-
ing them less focused on the temporal facts. (2) Hy-
peTKG employs its gate-structured graph encoder
that adaptively controls the amount of information
from the TI facts. HypeTKG’s decoder also uses
Transformer to distinguish the importance of dif-
ferent TI facts. These two steps help HypeTKG
to exploit the TI knowledge that is most beneficial
in LP and discard the redundant information. We
further study whether TI knowledge can improve
reasoning on quadruple-based TKGs in App. H.

5.4 Further Analysis

Ablation Study We conduct ablation studies to
demonstrate the importance of different model com-

Datasets WiKi-hy YAGO-hy
Model w.o. TI w. TI ∆ ↑ w.o. TI w. TI ∆ ↑
DE-SimplE 0.351 0.326 -0.025 0.684 0.643 -0.041
TeRo 0.572 0.553 -0.019 0.760 0.742 -0.018
T-GAP 0.588 0.568 -0.020 0.773 0.761 -0.012
BoxTE 0.449 0.409 -0.040 0.685 0.670 -0.015
TARGCN 0.589 0.588 -0.001 0.769 0.769 0.000
TeAST 0.601 0.581 -0.020 0.794 0.779 -0.015
HGE 0.602 0.592 -0.010 0.790 0.780 -0.010

NaLP-Fix 0.507 0.504 -0.003 0.730 0.728 -0.002
HINGE 0.543 0.535 -0.008 0.758 0.754 -0.004
HypE 0.624 0.623 -0.001 0.800 0.798 -0.002
StarE 0.565 0.547 -0.018 0.765 0.758 -0.007
GRAN 0.661 0.667 +0.006 0.808 0.794 -0.014
HyconvE 0.641 0.630 -0.011 0.771 0.767 -0.004
ShrinkE 0.669 0.655 -0.014 0.808 0.806 -0.002
HyNT 0.537 0.536 -0.001 0.763 0.765 +0.002

HypeTKG 0.687 0.693 +0.006 0.832 0.842 +0.010

Table 3: MRR for all methods with (w. TI) and without
(w.o. TI) TI facts. ∆ ↑ denotes the absolute improve-
ment. Note that HypeTKG w. TI equals HypeTKGψ .

ponents of HypeTKG. In study A (Variant A), we
neglect the qualifiers in all HTKG facts and do
not include any qualifier learning component. In
study B (Variant B), we remove qualifier attention
in QATGE. In study C (Variant C), we remove the
qualifier matcher in QMD. In study D (Variant D),
we exclude time modeling modules and neglect
timestamps in primary quadruples. From Table
4, we observe that learning qualifiers is essential
in reasoning HTKGs. Both qualifier attention in
QATGE and qualifier matcher contribute to quali-
fier modeling. We also find that modeling temporal
information is essential for temporal fact reasoning.

Setting Wiki-hy YAGO-hy
Model Time Q Att Q Match MRR H@1 H@10 MRR H@1 H@10

Variant A ✓ ✗ ✗ 0.642 0.569 0.775 0.795 0.770 0.841
Variant B ✓ ✗ ✓ 0.671 0.616 0.777 0.826 0.811 0.856
Variant C ✓ ✓ ✗ 0.671 0.615 0.777 0.803 0.781 0.842
Variant D ✗ ✓ ✓ 0.652 0.597 0.751 0.792 0.769 0.835
HypeTKG ✓ ✓ ✓ 0.687 0.633 0.789 0.832 0.817 0.857

Table 4: Ablation studies. Q means qualifier.

Figure 3: HypeTKG performance with a varying ratio
of used qualifiers.
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Case Query Answer Subject-Related Qualifiers Attention Score

A1 ((Andrey Kolmogorov, award received, ?, 1941), ∅) USSR State Prize
(country of citizenship, Soviet Union) 9.39e−1

(field of work,mathematics) 6.09e−2

(country, Soviet Union) 2.61e−10

A2 ((Andrey Kolmogorov, place of death, ?, 1987), Moscow
(country of citizenship, Soviet Union) 0.99

(field of work,mathematics) 1.64e−21

{(country, Soviet Union)}) (country, Soviet Union) 5.00e−22

Table 5: Case study A: cases for studying qualifier matcher.

Case Query Prediction w. TI Prediction w.o. TI Related TI Facts

B1 ((Pisa, country, ?, 1860), ∅) Kingdom of Sardinia Kingdom of Prussia
(Pisa, official language, Italian)

(Kingdom of Sardinia, official language, Italian)
(Kingdom of Prussia, official language,German)

B2 ((AK, place of birth, ?, 1903), {(country,Russian Empire)}) Tbilisi Moscow (AK, native language,Georgian)
(Tbilisi, official language,Georgian)

Table 6: Case study B: cases for studying the effectiveness of TI relational knowledge. Prediction w./w.o. TI means
the prediction result with/without using time-invariant facts. AK is the abbreviation of the entity Aram Khachaturian.

Impact of the Ratio of Utilized Qualifiers To
further investigate the importance of learning
qualifiers for reasoning hyper-relational tempo-
ral facts, we report HypeTKG’s performance on
Wiki-hy/YAGO-hy by using a varying ratio of
utilized qualifiers. We implement HypeTKG on
all Wiki-hy/YAGO-hy facts but randomly sample
0%/25%/50%/75%/100% of all the existing quali-
fiers during training and evaluation. From Fig. 3,
we observe that HypeTKG achieves better results
as the ratio increases, showing a positive correla-
tion between its performance and the number of
utilized qualifiers. This indicates that modeling
qualifiers is beneficial for LP over temporal facts.

5.5 Case Studies

A: Effectiveness of Qualifier Matcher We do
case studies to show how our qualifier matcher
improves HTKG reasoning (Table 5). HypeTKG
ranks the ground truth missing entities in these
cases as top 1. As discussed in Sec. 4.2,
the qualifier matcher interprets the contribution
of all the existing qualifiers related to the sub-
ject entity of the LP query with attention scores
ηl. In Case A1, no qualifier is provided in
the query for prediction. We find that qualifier
matcher assigns a great attention score to the quali-
fier (country of citizenship, Soviet Union) from an-
other fact. It can be taken as a hint to predict the
ground truth missing entity USSR State Prize. This
implies that to better reason the facts without quali-
fiers, our qualifier matcher can find the clues from
other hyper-relational facts. In Case A2, we find
that the qualifier matcher focuses more on the qual-
ifiers from other facts but not from the query. Note

that the query qualifiers have been modeled with a
query-specific qualifier feature h

que
Qual before com-

puting the global qualifier feature. This indicates
that our qualifier matcher can maximally extract in-
formation from the extra qualifiers rather than only
focusing on the query qualifiers, enabling efficient
information fusion. See App. J for more case study
details and one more case (A3) discussion.

B: Effectiveness of TI Knowledge We demon-
strate how TI relational knowledge enhances
HTKG reasoning with two cases (Table 6). In
both cases, HypeTKG achieves optimal prediction
by leveraging TI knowledge, and makes mistakes
without it. In B1, HypeTKG predicts the false an-
swer Kingdom of Prussia without the support of TI
facts. However, after considering them, HypeTKG
manages to make accurate prediction because Pisa
should share the same official language with the
country that contains it. In B2, since both Tbilisi
and Moscow belonged to Russian Empire in 1903,
it is hard for HypeTKG to distinguish them during
prediction without any further information. How-
ever, by knowing that Aram Khachaturian’s native
language is same as the official language of Tbilisi,
i.e., Georgian, HypeTKG can exclude the influence
of Moscow because people speak Russian there.

6 Conclusion

In this work, we propose a new data structure
named HTKG for studying temporal fact rea-
soning over HKGs. To reason HTKGs, we de-
sign a model HypeTKG that is able to simultane-
ously deal with temporal information and quali-
fiers. We benchmark HypeTKG and various previ-
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ous HKG/TKG reasoning methods on two newly-
constructed datasets, i.e., Wiki-hy and YAGO-hy.
We show that HypeTKG achieves superior perfor-
mance on HTKG LP. Besides, we mine the TI re-
lational knowledge from Wikidata KB and study
whether it can benefit models on hyper-relational
temporal fact reasoning. We find that temporal fact
reasoning on HTKGs can be enhanced by carefully
balancing the information between temporal and
TI knowledge.

7 Limitations

One limitation of our work is that we have not
explored qualifier prediction, i.e., predicting the
missing elements in the qualifiers. We also have
not considered another challenge in temporal fact
reasoning, i.e., time prediction. We think our work
can be the base of future studies on these two top-
ics. Also, as we have only studied interpolated
link prediction on HTKGs, developing HTKG ex-
trapolation methods would also be an important
direction in the future. Besides, given the growing
interest in inductive learning on traditional TKGs
(e.g., (Ding et al., 2022b, 2023b,a), we believe it is
equally important to explore inductive learning on
HTKGs, which remains unaddressed in this work.

Acknowledgement

This work has been funded by the Munich Center
for Machine Learning and supported by the Fed-
eral Ministry of Education and Research and the
State of Bavaria. Jingcheng Wu has been funded by
the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - SFB 1574 - Project
number 471687386. The authors thank the In-
ternational Max Planck Research School for In-
telligent Systems (IMPRS-IS) for supporting Bo
Xiong. This research has also been partially funded
by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Ex-
cellence Strategy - EXC 2075 - 390740016, the
Stuttgart Center for Simulation Science (SimTech),
the European Union’s Horizon 2020 research and
the the Bundesministerium für Wirtschaft und En-
ergie (BMWi), grant aggrement No. 01MK20008F.

References
Ivana Balazevic, Carl Allen, and Timothy M.

Hospedales. 2019. Tucker: Tensor factorization for
knowledge graph completion. In Proceedings of

the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019, pages 5184–5193. Association for
Computational Linguistics.

Antoine Bordes, Nicolas Usunier, Alberto García-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States, pages 2787–2795.

Elizabeth Boschee, Jennifer Lautenschlager, Sean
O’Brien, Steve Shellman, James Starz, and Michael
Ward. 2015. ICEWS Coded Event Data.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun
Cao, and Qingming Huang. 2021. Dual quaternion
knowledge graph embeddings. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications
of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2021, Virtual Event, February 2-9,
2021, pages 6894–6902. AAAI Press.

Chanyoung Chung, Jaejun Lee, and Joyce Jiyoung
Whang. 2023. Representation learning on hyper-
relational and numeric knowledge graphs with trans-
formers. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, KDD 2023, Long Beach, CA, USA, August 6-10,
2023, pages 310–322. ACM.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha P. Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
2001–2011. Association for Computational Linguis-
tics.

Shimin Di, Quanming Yao, and Lei Chen. 2021. Search-
ing to sparsify tensor decomposition for n-ary rela-
tional data. In WWW ’21: The Web Conference 2021,
Virtual Event / Ljubljana, Slovenia, April 19-23, 2021,
pages 4043–4054. ACM / IW3C2.

Zifeng Ding, Heling Cai, Jingpei Wu, Yunpu Ma, Ruo-
tong Liao, Bo Xiong, and Volker Tresp. 2024. zrllm:
Zero-shot relational learning on temporal knowledge
graphs with large language models. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June
16-21, 2024, pages 1877–1895. Association for Com-
putational Linguistics.

363

https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.7910/DVN/28075
https://ojs.aaai.org/index.php/AAAI/article/view/16850
https://ojs.aaai.org/index.php/AAAI/article/view/16850
https://doi.org/10.1145/3580305.3599490
https://doi.org/10.1145/3580305.3599490
https://doi.org/10.1145/3580305.3599490
https://doi.org/10.18653/v1/d18-1225
https://doi.org/10.18653/v1/d18-1225
https://doi.org/10.1145/3442381.3449853
https://doi.org/10.1145/3442381.3449853
https://doi.org/10.1145/3442381.3449853
https://doi.org/10.18653/V1/2024.NAACL-LONG.104
https://doi.org/10.18653/V1/2024.NAACL-LONG.104
https://doi.org/10.18653/V1/2024.NAACL-LONG.104


Zifeng Ding, Bailan He, Jingpei Wu, Yunpu Ma, Zhen
Han, and Volker Tresp. 2023a. Learning meta-
representations of one-shot relations for temporal
knowledge graph link prediction. In International
Joint Conference on Neural Networks, IJCNN 2023,
Gold Coast, Australia, June 18-23, 2023, pages 1–10.
IEEE.

Zifeng Ding, Yunpu Ma, Bailan He, Zhen Han, and
Volker Tresp. 2022a. A simple but powerful graph
encoder for temporal knowledge graph completion.
In NeurIPS 2022 Temporal Graph Learning Work-
shop.

Zifeng Ding, Jingpei Wu, Bailan He, Yunpu Ma, Zhen
Han, and Volker Tresp. 2022b. Few-shot induc-
tive learning on temporal knowledge graphs using
concept-aware information. In 4th Conference on
Automated Knowledge Base Construction.

Zifeng Ding, Jingpei Wu, Zongyue Li, Yunpu Ma,
and Volker Tresp. 2023b. Improving few-shot in-
ductive learning on temporal knowledge graphs us-
ing confidence-augmented reinforcement learning.
In Machine Learning and Knowledge Discovery in
Databases: Research Track - European Conference,
ECML PKDD 2023, Turin, Italy, September 18-22,
2023, Proceedings, Part III, volume 14171 of Lecture
Notes in Computer Science, pages 550–566. Springer.

Bahare Fatemi, Perouz Taslakian, David Vázquez, and
David Poole. 2020. Knowledge hypergraphs: Pre-
diction beyond binary relations. In Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, pages 2191–2197.
ijcai.org.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari,
Ricardo Usbeck, and Jens Lehmann. 2020. Message
passing for hyper-relational knowledge graphs. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 7346–
7359. Association for Computational Linguistics.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2020. Diachronic embedding
for temporal knowledge graph completion. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 3988–
3995. AAAI Press.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo
Wang, and Xueqi Cheng. 2020. Neuinfer: Knowl-
edge inference on n-ary facts. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 6141–6151. Association for Computa-
tional Linguistics.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo
Wang, and Xueqi Cheng. 2023. Link prediction on

n-ary relational data based on relatedness evaluation.
IEEE Trans. Knowl. Data Eng., 35(1):672–685.

Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and
Xueqi Cheng. 2019. Link prediction on n-ary re-
lational data. In The World Wide Web Conference,
WWW 2019, San Francisco, CA, USA, May 13-17,
2019, pages 583–593. ACM.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2021a. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and
Volker Tresp. 2021b. Learning neural ordinary equa-
tions for forecasting future links on temporal knowl-
edge graphs. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2021, Virtual Event / Punta Cana, Do-
minican Republic, 7-11 November, 2021, pages 8352–
8364. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Zhongni Hou, Xiaolong Jin, Zixuan Li, Long Bai, Saip-
ing Guan, Yutao Zeng, Jiafeng Guo, and Xueqi
Cheng. 2023. Temporal knowledge graph reason-
ing based on n-tuple modeling. In Findings of the
Association for Computational Linguistics: EMNLP
2023, Singapore, December 6-10, 2023, pages 1090–
1100. Association for Computational Linguistics.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren.
2020. Recurrent event network: Autoregressive struc-
ture inferenceover temporal knowledge graphs. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 6669–
6683. Association for Computational Linguistics.

Jaehun Jung, Jinhong Jung, and U Kang. 2021. Learn-
ing to walk across time for interpretable temporal
knowledge graph completion. In KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, Singapore, August
14-18, 2021, pages 786–795. ACM.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 4289–4300.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

364

https://doi.org/10.1109/IJCNN54540.2023.10191619
https://doi.org/10.1109/IJCNN54540.2023.10191619
https://doi.org/10.1109/IJCNN54540.2023.10191619
https://openreview.net/forum?id=DYG8RbgAIo
https://openreview.net/forum?id=DYG8RbgAIo
https://doi.org/10.1007/978-3-031-43418-1_33
https://doi.org/10.1007/978-3-031-43418-1_33
https://doi.org/10.1007/978-3-031-43418-1_33
https://doi.org/10.24963/ijcai.2020/303
https://doi.org/10.24963/ijcai.2020/303
https://doi.org/10.18653/v1/2020.emnlp-main.596
https://doi.org/10.18653/v1/2020.emnlp-main.596
https://aaai.org/ojs/index.php/AAAI/article/view/5815
https://aaai.org/ojs/index.php/AAAI/article/view/5815
https://doi.org/10.18653/v1/2020.acl-main.546
https://doi.org/10.18653/v1/2020.acl-main.546
https://doi.org/10.1109/TKDE.2021.3073483
https://doi.org/10.1109/TKDE.2021.3073483
https://doi.org/10.1145/3308558.3313414
https://doi.org/10.1145/3308558.3313414
https://openreview.net/forum?id=pGIHq1m7PU
https://openreview.net/forum?id=pGIHq1m7PU
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://aclanthology.org/2023.findings-emnlp.77
https://aclanthology.org/2023.findings-emnlp.77
https://doi.org/10.18653/v1/2020.emnlp-main.541
https://doi.org/10.18653/v1/2020.emnlp-main.541
https://doi.org/10.1145/3447548.3467292
https://doi.org/10.1145/3447548.3467292
https://doi.org/10.1145/3447548.3467292
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/b2ab001909a8a6f04b51920306046ce5-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl


Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In Com-
panion of the The Web Conference 2018 on The Web
Conference 2018, WWW 2018, Lyon , France, April
23-27, 2018, pages 1771–1776. ACM.

Jiang Li, Xiangdong Su, and Guanglai Gao. 2023.
Teast: Temporal knowledge graph embedding via
archimedean spiral timeline. In Proceedings of the
61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pages
15460–15474. Association for Computational Lin-
guistics.

Yujia Li, Shiliang Sun, and Jing Zhao. 2022. Tirgn:
Time-guided recurrent graph network with local-
global historical patterns for temporal knowledge
graph reasoning. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelli-
gence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
pages 2152–2158. ijcai.org.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. 2021. Temporal knowledge graph reason-
ing based on evolutional representation learning. In
SIGIR ’21: The 44th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, Virtual Event, Canada, July 11-15, 2021,
pages 408–417. ACM.

Kangzheng Liu, Feng Zhao, Guandong Xu, Xianzhi
Wang, and Hai Jin. 2023. RETIA: relation-entity
twin-interact aggregation for temporal knowledge
graph extrapolation. In 39th IEEE International Con-
ference on Data Engineering, ICDE 2023, Anaheim,
CA, USA, April 3-7, 2023, pages 1761–1774. IEEE.

Yu Liu, Quanming Yao, and Yong Li. 2020. Generaliz-
ing tensor decomposition for n-ary relational knowl-
edge bases. In WWW ’20: The Web Conference 2020,
Taipei, Taiwan, April 20-24, 2020, pages 1104–1114.
ACM / IW3C2.

Yu Liu, Quanming Yao, and Yong Li. 2021. Role-aware
modeling for n-ary relational knowledge bases. In
WWW ’21: The Web Conference 2021, Virtual Event
/ Ljubljana, Slovenia, April 19-23, 2021, pages 2660–
2671. ACM / IW3C2.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M.
Suchanek. 2015. YAGO3: A knowledge base from
multilingual wikipedias. In Seventh Biennial Con-
ference on Innovative Data Systems Research, CIDR
2015, Asilomar, CA, USA, January 4-7, 2015, Online
Proceedings. www.cidrdb.org.

Johannes Messner, Ralph Abboud, and İsmail İlkan
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A Additional HTKG example

We provide an additional HTKG fact highlighting
the diversity of qualifiers within distinct temporal
facts happening at the same timestamp (Fig. 4).
The two awards Al Gore received in 2007 can be
differentiated considering the coupled qualifiers.

Figure 4: Additional example of HTKG fact.

B YAGO-hy Construction Details

We provide the relation mapping from YAGO1830
to Wikidata in Table 7. During matching, we
carefully examine YAGO1830 facts and find that
playsFor represents a person playing for a sports
team, and isAffiliatedTo represents a person’s po-
litical affiliation. Therefore, we map playsFor to
member of sports team and isAffiliatedTo to mem-
ber of political party. Besides, YAGO1830 is origi-
nally a TKG extrapolation dataset, we redistribute
its facts and change it into an interpolation dataset
before qualifier searching. We ensure that the pro-
portions of the number of facts in train/valid/test
sets of YAGO-hy conform to the corresponding
sets in YAGO1830.

YAGO Relation Wikidata Relation Wikidata Relation ID

wasBornIn place of birth P19
diedIn place of death P20

worksAt employer P108
playsFor member of sports team P54

hasWonPrize award received P166
isMarriedTo spouse P26

owns owned by−1 P127
graduatedFrom educated at P69
isAffiliatedTo member of political party P102

created notable work P800

Table 7: Relation type mapping from YAGO1830 to
Wikidata. owned by−1 denotes the inverse relation of
owns

C Why Not Construct ICEWS-Based
HTKGs?

Integrated Crisis Early Warning System (ICEWS)
(Boschee et al., 2015) is another popular KB for
constructing quadruple-based TKGs. Hou et al.
(Hou et al., 2023) use ICEWS to construct an N-
TKG, i.e., NICE. We do not use ICEWS to con-
struct HTKGs due to the following reasons. Dif-
ferent from Wikidata, every fact in ICEWS has
no additional statements that can serve as quali-
fiers. To solve this problem, Hou et al. design rule
templates on ICEWS relations and decompose the
relation of each ICEWS quadruple-based fact into
several parts. For example, an ICEWS-based fact
(Iran, express intent to provide humanitarian aid,
Yemen, t) will be transformed into:

(express intent to cooperate,

volunteer : Iran,

cooperation target : Yemen,

cooperation content : provide humanitarian aid,

t).

N-TKG assumes that this transformation brings
auxiliary information into fact quadruples, how-
ever, we think the amount of additional information
is highly limited. This is because the transforma-
tion from an ICEWS-based fact quadruple into an
N-TKG fact does not consider any additional infor-
mation source other than the original quadruple. In
other words, the amount of information stored in
an ICEWS-based fact quadruple is nearly the same
as the amount carried by its n-tuple form. As dis-
cussed in previous works about HKGs, qualifiers
are introduced to better restrict the fact validity and
also increase the data expressiveness. Due to the
lack of additional linked statements in ICEWS, it
is not easy to construct meaningful HTKGs based
on this KB.

D Complexity Analysis

The time complexity of HypeTKG is the same as
most of previous GNN-based TKG approaches,
which is O(|T ||E| + |T ||R|), where T , E , and
R are the number of timestamps, entities, and re-
lations, respectively. Similarly, the memory com-
plexity is O(|E|d+ |R|d). The qualifier modeling
modules, though requires additional computation,
does not increase the time and memory complex-
ity as qualifiers are also composed by entities and
relations. As for HypeTKGψ, since it considers
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time-invariant knowledge that introduces additional
entities and relations, the time complexity becomes
O(|T |(|E| + |ETI|) + |T |(|R| + |RTI|)) and the
memory complexity is O((|E|+ |ETI|)d+ (|R|+
|RTI|)d). |ETI| and |RTI| are the numbers of intro-
duced new entities and relations in time-invariant
facts, respectively.

E Evaluation Metrics Details

MRR computes the mean of the reciprocal ranks
for all test queries: 1

2Ntest

∑
que

1
θque

, where θque de-
notes the rank of the ground truth missing entity in
the test query que. Note that for each fact in the
test set, we derive two LP queries for both subject
and object entity prediction, and therefore, the to-
tal number of test queries is 2Ntest. Hits@1/3/10
denotes the proportion of the test queries where
ground truth entities are ranked as top 1/3/10.

F Complex Vector Mapping Details

hC
e′qi

∈ C
d
2 and hC

r′qi
∈ C

d
2 are the complex vec-

tors mapped from he′qi
and hr′qi

. The real part of
hC
e′qi

is the first half of he′qi and the imaginary part

is the second half, e.g., if he′qi = [6, 3]⊤ ∈ R2,
then hC

e′qi
= [6 + 3

√
−1]⊤ ∈ C1. hC

r′qi
[j] =

cos(hr′qi
[j])+

√
−1 sin(hr′qi

[d2+j]), where hC
r′qi

[j]

and hr′qi
[d2+j] denote the jth and (d2+j)th element

of hC
r′qi

and hr′qi
, respectively.

G Implementation Details

We implement all the experiments of HypeTKG
and baselines with PyTorch (Paszke et al., 2019)
on an NVIDIA A40 with 48GB memory and a
2.6GHZ AMD EPYC 7513 32-Core Processor. For
HypeTKG, we set the batch size to 256 and use
the Adam optimizer with an initial learning rate
of 0.0001. We search hyperparameters following
Table 8. For each dataset, we do 108 trials to try dif-
ferent hyperparameter settings. We run 100 epochs
for each trial and compare their validation results.
We choose the setting leading to the best validation
result and take it as the best hyperparameter setting.
The best hyperparameter setting is also stated in
Table 8. Every result reported is the average result
of five runs with different random seeds. The error
bars are relatively small and are omitted. We report
the total training time of our model until it reaches
maximum performance in Table 9. We also specify

Hyperparameter Search Space

# Layers of Aggregation in QATGE {1, 2}
Embedding Size {100, 200, 300}
γ Initialization {0.1, 0.2, 0.3}
β Initialization {0.1, 0.2, 0.3}

Table 8: Hyperparameter searching strategy. Optimal
hyperparameters are marked in bold. The best hyperpa-
rameter settings of both datasets are the same.

Datasets YAGO-hy Wiki-hy

Model Training Time Training Time

HypeTKG 37.53h 48.32h

HypeTKGψ 40.06h 51.72h

Table 9: Training time.

the GPU memory usage (Table 10) and number of
parameters (Table 11).

Datasets YAGO-hy Wiki-hy

Model GPU Memory GPU Memory

HypeTKG 9,514MB 30,858MB

HypeTKGψ 15,422MB 43,976MB

Table 10: GPU memory usage.

For baselines, we use the official open-sourced
implementations of the following baseline meth-
ods, i.e., DE-SimplE9, TeRo10, T-GAP11, BoxTE12,
TARGCN13, TeAST14, HGE15, HINGE16, HypE17,
StarE18, GRAN19, HyConvE20, ShrinkE21 and
HyNT22. For NaLP-Fix, we use its faster imple-
mentation in the repository of HINGE. We use the
default hyperparameters of all baselines for HTKG
LP.

9https://github.com/BorealisAI/de-simple
10https://github.com/soledad921/ATISE
11https://github.com/jaehunjung1/T-GAP
12https://github.com/JohannesMessner/BoxTE
13https://github.com/ZifengDing/TARGCN
14https://github.com/dellixx/TeAST
15https://github.com/NacyNiko/HGE
16https://github.com/eXascaleInfolab/HINGE_code
17https://github.com/ServiceNow/HypE
18https://github.com/migalkin/StarE
19https://github.com/lrjconan/GRAN
20https://github.com/CarllllWang/HyConvE/tree/master
21https://github.com/xiongbo010/ShrinkE
22https://github.com/bdi-lab/HyNT
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Datasets YAGO-hy Wiki-hy

Model # Param # Param

HypeTKG 10,830,222 11,028,690

HypeTKGψ 13,075,246 13,274,314

Table 11: Number of parameters.

Datasets WiKi-hy YAGO-hy
Model MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

Variant Aψ 0.660 0.587 0.791 0.818 0.797 0.855

Table 12: TKG LP results with time-invariant knowl-
edge.

H Can TI Knowledge Improve Reasoning
over Traditional TKGs?

To answer this question, we also enable Variant A
(introduced in Sec. 5.4 Ablation Study) to use TI
facts and develop Variant Aψ. Since Variant A and
Aψ do not model qualifiers, letting them perform
HTKG LP equals doing LP over quadruple-based
traditional TKGs. We report Variant Aψ’s LP re-
sults in Table 12. By comparing them with Table
4, we find that our TI knowledge modeling compo-
nents can also effectively enhance reasoning over
traditional TKGs.

I Impact of Qualifier-Augmented Fact
Proportion.

To better quantify HypeTKG’s power in learning
qualifiers, we sample several datasets from Wiki-
hy and YAGO-hy with different proportions of
facts equipped with qualifiers. We experiment Hy-
peTKG and its variants on these new datasets.

(100)/(66/(33) Dataset Construction We take
Wiki-hy as example. We first pick out all the
facts, where each of them has at least one qual-
ifier, from Wiki-hy and construct Wiki-hy (100).
We call it Wiki-hy (100) because 100% of its facts
are equipped with qualifiers. Next, we keep Wiki-
hy (100) and randomly sample an extra number of
facts without any qualifier from the original Wiki-
hy. We add these facts into Wiki-hy (100) until
the proportion of the facts equipped with quali-
fiers reaches 66%. We call this new dataset Wiki-
hy (66). Similarly, we further expand Wiki-hy
(66) to Wiki-hy (33). YAGO-hy (100)/(66)/(33)
follows the same policy. During the process of
sampling extra quadruple-based facts, we put each
sampled fact to the same set where it comes from.

For example, when we construct Wiki-hy (66),
we keep Wiki-hy (100) unchanged and further
sample quadruple-based facts from Wiki-hy. If
a fact is sampled from the training set of Wiki-hy,
then it will be put into the training set of Wiki-
hy (66). For YAGO-hy, we construct YAGO-hy
(100)/(66)/(33) in the same way. We keep the
data example proportions of train/valid/test sets in
Wiki-hy (100)/(66)/(33) same as the ones in Wiki-
hy. YAGO-hy (100)/(66)/(33) follows the same
policy. Table 13 shows the dataset statistics of
(100)/(66)/(33) datasets used to study the impact
of qualifier-augmented fact proportion. As more
quadruple-based facts are added, e.g. from (100) to
(66), |Epri|/|Rpri| grows and some entities/relations
only existed in qualifiers will appear in primary
quadruples, leading to smaller |EQual|/|RQual|. This
does not mean that (100)/(66)/(33) datasets share
different pools of qualifier-augmented facts. Note
that the proportions of facts with at least one qual-
ifier in the original Wiki-hy and YAGO-hy are
9.59% and 6.98% (Table 1), respectively, which
are much smaller than 33%.

Dataset Ntrain Nvalid Ntest |Epri| |EQual| |Rpri| |RQual| |T |
Wiki-hy(100) 21, 210 2, 764 2, 696 3, 392 1, 648 25 49 507
Wiki-hy(66) 31, 815 4, 146 4, 044 8, 786 1, 643 58 47 507
Wiki-hy(33) 63, 630 8, 292 8, 088 10, 656 1, 642 72 46 507

YAGO-hy(100) 7, 232 1, 530 1, 452 1, 739 414 9 33 187
YAGO-hy(66) 10, 848 2, 295 2, 178 4, 844 392 10 33 188
YAGO-hy(33) 21, 696 4, 590 4, 356 7, 339 378 10 33 188

Table 13: (100)/(66)/(33) dataset statistics.

Experiments We report the performance of Hy-
peTKG and its first three variants on all created
datasets in Table 14 and 15. Regardless of the
proportion of qualifier-augmented facts, we have
two findings: (1) HypeTKG and Variant B & C
benefit from qualifiers on all datasets, confirming
the importance of learning qualifiers for reason-
ing hyper-relational temporal facts. (2) Variant
B & C constantly underperform HypeTKG on all
datasets, proving the effectiveness of both qualifier
modeling components. Note that (100)/(66)/(33)
datasets have different data distributions as the orig-
inal datasets. Therefore, it is not meaningful to di-
rectly compare each model variant’s performance
among them (e.g., compare Variant A across Wiki-
hy (100)/(66)/(33)). Our findings are based on dif-
ferent variants’ performance on the same dataset
(e.g., compare Variant A, B, C and HypeTKG on
Wiki-hy(100)).
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Setting Wiki-hy (33) Wiki-hy (66) Wiki-hy (100)
Model Time Q Att Match MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Variant A ✓ ✗ ✗ 0.499 0.420 0.624 0.522 0.457 0.622 0.629 0.562 0.739
Variant B ✓ ✗ ✓ 0.520 0.462 0.626 0.570 0.528 0.638 0.669 0.622 0.749
Variant C ✓ ✓ ✗ 0.519 0.461 0.622 0.567 0.524 0.639 0.662 0.607 0.749
HypeTKG ✓ ✓ ✓ 0.546 0.492 0.642 0.573 0.531 0.642 0.682 0.640 0.750

Table 14: Study of qualifier-augmented fact proportion on Wiki-hy.

Setting YAGO-hy (33) YAGO-hy (66) YAGO-hy (100)
Model Time Q Att Q Match MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

Variant A ✓ ✗ ✗ 0.650 0.624 0.694 0.574 0.531 0.644 0.593 0.576 0.622
Variant B ✓ ✗ ✓ 0.692 0.673 0.701 0.640 0.629 0.668 0.685 0.672 0.706
Variant C ✓ ✓ ✗ 0.687 0.669 0.700 0.638 0.625 0.667 0.683 0.670 0.705
HypeTKG ✓ ✓ ✓ 0.696 0.678 0.703 0.645 0.632 0.669 0.688 0.676 0.712

Table 15: Study of qualifier-augmented fact proportion on YAGO-hy.

J Case Study Details

A: Effectiveness of Qualifier Matcher We give
an insight of how our qualifier matcher improves
HTKG reasoning with three cases (Table 5). Hy-
peTKG ranks the ground truth missing entities in
these cases as top 1 and achieves optimal predic-
tion. As discussed in Sec. 4.2, we learn a global
qualifier feature in the qualifier matcher by consid-
ering the contribution of all the existing qualifiers
related to the subject entity of the LP query. Each
qualifier is assigned an attention score ηl indicat-
ing its contribution. Note that numerous queries
are derived from the facts that are without any
qualifier. For example, in Case A1, no qualifier
is provided in predicting which reward did An-
drey Kolmogorov receive in 1941 (Case A1 and
A2 are taken from YAGO-hy). HypeTKG extracts
all the qualifiers related to Andrey Kolmogorov
from other facts in YAGO-hy and computes the
global qualifier feature based on them. We find
that it assigns a great attention score to the quali-
fier (country of citizenship, Soviet Union) and this
qualifier can directly be taken as a hint to predict
the ground truth missing entity USSR State Prize
since USSR is also interpreted as Soviet Union.
We also find that (field of work,mathematics) is
also dominant in the global qualifier feature. This
is also reasonable because Andrey Kolmogorov
was a mathematician and he was awarded USSR
State Prize of mathematics in 1941. Compared
with these two qualifiers, the last qualifier, i.e.,
{(country, Soviet Union)}), is not so important in
prediction, and thus is assigned a low attention
score by HypeTKG. Case A1 implies that to reason

the facts without qualifiers, i.e., quadruple-based
facts, our qualifier matcher can find the clues from
the subject-related qualifiers existing in other hyper-
relational facts and support prediction. In Case A2,
we find that the qualifier matcher focuses more on
the qualifiers from other facts but not the one from
the query. Note that the query qualifiers have been
explicitly modeled with a query-specific qualifier
feature h

que
Qual before computing the global qualifier

feature. This indicates that our qualifier matcher
can maximally extract important information from
the extra qualifiers rather than only focusing on
the query qualifiers, enabling efficient information
fusion. Case A3 is taken from Wiki-hy. Since
qualifier relations and primary relations have inter-
section, some extra subject-related qualifiers from
other HTKG facts can directly indicate the answers
to the queries. In Case A3, we observe that Hy-
peTKG manages to recognize such qualifiers to
improve prediction. This further proves that our
qualifier matcher is able to help capture the corre-
lation between qualifiers and temporal validity. To
summarize, our qualifier matcher achieves reason-
ing enhancement by efficiently utilizing additional
information from the extra qualifiers related to the
query subject.

B: Effectiveness of TI Knowledge We demon-
strate how TI relational knowledge enhances
HTKG reasoning with two cases (Table 6). In
both cases, HypeTKG achieves optimal prediction
(ranks ground truth answers as top 1) by lever-
aging TI knowledge, and makes mistakes with-
out considering it. Case B1 is taken from Wiki-
hy. In B1, HypeTKG predicts the false answer
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Case Query Answer Subject-Related Qualifiers Attention Score

A1 ((Andrey Kolmogorov, award received, ?, 1941), ∅) USSR State Prize
(country of citizenship, Soviet Union) 9.39e−1

(field of work,mathematics) 6.09e−2

(country, Soviet Union) 2.61e−10

A2 ((Andrey Kolmogorov, place of death, ?, 1987), Moscow
(country of citizenship, Soviet Union) 0.99

(field of work,mathematics) 1.64e−21

{(country, Soviet Union)}) (country, Soviet Union) 5.00e−22

A3 ((Wernher von Braun, academic degree, ?, 1934), ∅) Doctor of Philosophy (academic degree,Doctor of Philosophy) 0.99
(academic major, physics ) 6.00e−10

Table 16: Case study A: cases for studying qualifier matcher.

Case Query Prediction w. TI Prediction w.o. TI Related TI Facts

B1 ((Pisa, country, ?, 1860), ∅) Kingdom of Sardinia Kingdom of Prussia
(Pisa, official language, Italian)

(Kingdom of Sardinia, official language, Italian)
(Kingdom of Prussia, official language,German)

B2 ((AK, place of birth, ?, 1903), {(country,Russian Empire)}) Tbilisi Moscow (AK, native language,Georgian)
(Tbilisi, official language,Georgian)

Table 17: Case study B: cases for studying the effectiveness of TI relational knowledge. Prediction w./w.o. TI
means the prediction result with/without using time-invariant facts. AK is the abbreviation of the entity Aram
Khachaturian.

Kingdom of Prussia without the support of TI facts.
However, after considering them, HypeTKG man-
ages to make accurate prediction because Pisa
should share the same official language with the
country that contains it. Case B2 is taken from
YAGO-hy. In B2, since both Tbilisi and Moscow
belonged to Russian Empire in 1903, it is hard
for HypeTKG to distinguish them during predic-
tion without any further information. However,
by knowing that Aram Khachaturian’s native lan-
guage is same as the official language of Tbilisi,
i.e., Georgian, HypeTKG can exclude the influence
of Moscow because people speak Russian there.
The presented cases illustrate how our model better
reasons HTKGs with TI knowledge.

K Related Work Details

K.1 Traditional KG & TKG Reasoning

Extensive research has been conducted for KG rea-
soning. A series of works (Bordes et al., 2013;
Trouillon et al., 2016; Sun et al., 2019; Zhang
et al., 2019; Cao et al., 2021; Xiong et al., 2022b,a;
Nayyeri et al., 2023) designs KG score functions
that compute plausibility scores of triple-based KG
facts, while another line of works (Schlichtkrull
et al., 2018; Vashishth et al., 2020) incorporates
neural-based modules, e.g., graph neural network
(GNN) (Kipf and Welling, 2017), into score func-
tions for learning better representations. On top
of the existing KG score functions, some recent
works develop time-aware score functions (Leblay
and Chekol, 2018; Xu et al., 2020; Goel et al., 2020;

Shao et al., 2022; Messner et al., 2022; Li et al.,
2023; Xiong et al., 2023a; Pan et al., 2024) that
further model time information for reasoning over
traditional TKGs. Another group of TKG reason-
ing methods employ neural structures. Some of
them (Jin et al., 2020; Wu et al., 2020; Han et al.,
2021b; Zhu et al., 2021; Li et al., 2021, 2022; Liu
et al., 2023; Ding et al., 2024) achieve temporal
reasoning by first learning the entity and relation
representations of each timestamp with GNNs and
then using recurrent neural structures, e.g., LSTM
(Hochreiter and Schmidhuber, 1997), to compute
time-aware representations. Other methods (Jung
et al., 2021; Han et al., 2021a; Ding et al., 2022a)
develop time-aware relational graph encoders that
directly perform graph aggregation based on the
temporal facts sampled from different time. There
are two settings in TKG LP, i.e., interpolation and
extrapolation. In extrapolation, to predict a fact
happening at time t, models can only observe pre-
vious TKG facts before t, while such restriction
is not imposed in interpolation. Among the above
mentioned works, (Leblay and Chekol, 2018; Xu
et al., 2020; Goel et al., 2020; Shao et al., 2022;
Messner et al., 2022; Wu et al., 2020; Jung et al.,
2021; Ding et al., 2022a; Li et al., 2023; Xiong
et al., 2023a; Pan et al., 2024) are for interpolation
and (Jin et al., 2020; Han et al., 2021b; Zhu et al.,
2021; Li et al., 2021; Han et al., 2021a; Li et al.,
2022; Liu et al., 2023; Ding et al., 2024) are for
extrapolation. Traditional TKG reasoning methods
cannot optimally reason over HTKG facts because
they are unable to model qualifiers. In our work,
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we only focus on the interpolated LP on HTKGs
and leave extrapolation for future work.

K.2 Hyper-Relational KG Reasoning

Mainstream HKG reasoning methods can be cat-
egorized into three types. The first type of works
(Zhang et al., 2018; Liu et al., 2020; Fatemi et al.,
2020; Di et al., 2021; Wang et al., 2023) treats
each hyper-relational fact as an n-ary fact repre-
sented with an n-tuple: rabs(e1, e2, ..., en), where
n is the non-negative arity of an abstract relation
rabs representing the number of entities involved
within rabs and e1, ..., en are the entities appearing
in this n-ary fact. RAE (Zhang et al., 2018) gen-
eralizes traditional KG reasoning method TransH
(Wang et al., 2014) to reasoning n-ary facts and
improves performance by considering the related-
ness among entities. Similarly, HypE (Fatemi et al.,
2020) and GETD (Liu et al., 2020) derive the n-ary
fact reasoning models by modifying traditional KG
score functions SimplE (Kazemi and Poole, 2018)
and TuckER (Balazevic et al., 2019), respectively.
S2S (Di et al., 2021) improves GETD by enabling
reasoning over mixed-arity facts. HyConvE (Wang
et al., 2023) employs convolutional neural networks
to perform 3D convolution capturing the deep in-
teractions of entities and relations. Although these
methods show strong effectiveness, the way of treat-
ing HKG facts as n-ary facts naturally loses the
semantics of the original KG relations and would
lead to a combinatorial explosion of relation types
(Galkin et al., 2020). The second type of works
(Liu et al., 2021; Guan et al., 2023) transforms
each hyper-relational fact into a set of key-value
pairs: {(ri : ei)}ni=1. RAM (Liu et al., 2021)
introduces a role learning paradigm that models
both the relatedness among different entity roles as
well as the role-entity compatibility. NaLP (Guan
et al., 2023) captures the relatedness among all the
ri : ei pairs by using neural networks. Formulating
hyper-relational facts into solely key-value pairs
would also cause a problem. The relations from the
primary fact triples and qualifiers cannot be fully
distinguished, and the semantic difference among
them is ignored (Galkin et al., 2020). To over-
come the problems incurred in first two types of
methods, recently, some works (Guan et al., 2020;
Rosso et al., 2020; Galkin et al., 2020; Wang et al.,
2021; Xiong et al., 2023b) formulate each hyper-
relational fact into a primary triple with a set of key-
value qualifier pairs: {((s, r, o), {(rqi , eqi)}ni=1)}.
NeuInfer (Guan et al., 2020) uses fully-connected

neural networks to separately model each primary
triple and its qualifiers. HINGE (Rosso et al., 2020)
adopts a convolutional framework that is iteratively
applied on the qualifiers for information fusion.
StarE (Galkin et al., 2020) develops a qualifier-
aware GNN which allows jointly modeling an arbi-
trary number of qualifiers with the primary triple
relation. GRAN (Wang et al., 2021) models HKGs
with edge-biased fully-connected attention. It uses
separate edge biases for the relations in the primary
triples and qualifiers to distinguish their semantic
difference. ShrinkE (Xiong et al., 2023b) models
each primary triple as a spatial-functional trans-
formation from the primary subject to a relation-
specific box and lets qualifiers shrink the box to
narrow down the possible answer set. Based on
them, NestE (Xiong et al., 2024) considers nested
relational structure where a fact is composed of
other facts. It focuses on nested facts that can be
viewed as a generalization of hyper-relational facts.

A recent work (Hou et al., 2023) proposes a new
type of TKG, i.e., n-tuple TKG (N-TKG), where
each hyper-relational fact is represented with an
n-tuple: (r, {ρi : ei}ni=1, t). n and t are the arity
and the timestamp of the fact, respectively. ρi is
the labeled role of the entity ei. r denotes fact
type. Compared with HTKG, N-TKG has limita-
tion: HTKGs explicitly separate primary facts with
additional qualifiers, while N-TKGs mix all the
entities from the primary facts and qualifiers and
are unable to fully emphasize the importance of
primary facts. Besides, N-TKGs pair each entity
with a labeled role. A large proportion of roles are
not directly extracted from the associated KBs and
are manually created depending on the fact type
(e.g., the proposed NICE dataset in (Hou et al.,
2023)). In our work, qualifiers are directly taken
from the Wikidata KB, which guarantees that all
the additional information conforms to the original
KB and requires no further effort of manual label-
ing. Another drawback of (Hou et al., 2023) is that
the proposed NICE N-TKG dataset in this work is
based on ICEWS KB. As discussed in App. C, us-
ing ICEWS for constructing hyper-relational KGs
does not fully align to the motivation of introduc-
ing qualifiers into traditional TKGs. Our proposed
HTKGs are both based on Wikidata KB, which is
much more meaningful. To achieve extrapolated
LP over N-TKGs, (Hou et al., 2023) develops a
model called NE-Net that jointly learns from histor-
ical temporal information and entity roles. NE-Net
performs well on N-TKG extrapolation, but it is
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not optimal for interpolation over hyper-relational
facts because it is unable to encode the graph in-
formation after the timestamp of each LP query.
Our proposed HTKG reasoning model HypeTKG
is able to capture the temporal factual information
along the whole timeline of HTKGs, serving as a
more reasonable method for interpolated LP.
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