@inproceedings{sun-etal-2024-enhancing-agent,
title = "Enhancing Agent Learning through World Dynamics Modeling",
author = "Sun, Zhiyuan and
Shi, Haochen and
C{\^o}t{\'e}, Marc-Alexandre and
Berseth, Glen and
Yuan, Xingdi and
Liu, Bang",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.202",
pages = "3534--3568",
abstract = "Large language models (LLMs), trained on vast amounts of internet data, have developed a broad understanding of the world, enhancing the decision-making capabilities of embodied agents. This success is largely due to the comprehensive and in-depth domain knowledge within their training datasets. However, the extent of this knowledge can vary across different domains, and existing methods often assume that LLMs have a complete understanding of their environment, overlooking potential gaps in their grasp of actual world dynamics. To address this gap, we introduce \textbf{Di}scover, \textbf{V}erify, and \textbf{E}volve (DiVE), a framework that \textbf{discovers} world dynamics from a small number of demonstrations, \textbf{verifies} the correctness of these dynamics, and \textbf{evolves} new, advanced dynamics tailored to the current situation. Through extensive evaluations, we analyze the impact of each component on performance and compare the automatically generated dynamics from with human-annotated world dynamics. Our results demonstrate that LLMs guided by can make better decisions, achieving rewards comparable to human players in the Crafter environment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2024-enhancing-agent">
<titleInfo>
<title>Enhancing Agent Learning through World Dynamics Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhiyuan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haochen</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc-Alexandre</namePart>
<namePart type="family">Côté</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Glen</namePart>
<namePart type="family">Berseth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingdi</namePart>
<namePart type="family">Yuan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models (LLMs), trained on vast amounts of internet data, have developed a broad understanding of the world, enhancing the decision-making capabilities of embodied agents. This success is largely due to the comprehensive and in-depth domain knowledge within their training datasets. However, the extent of this knowledge can vary across different domains, and existing methods often assume that LLMs have a complete understanding of their environment, overlooking potential gaps in their grasp of actual world dynamics. To address this gap, we introduce Discover, Verify, and Evolve (DiVE), a framework that discovers world dynamics from a small number of demonstrations, verifies the correctness of these dynamics, and evolves new, advanced dynamics tailored to the current situation. Through extensive evaluations, we analyze the impact of each component on performance and compare the automatically generated dynamics from with human-annotated world dynamics. Our results demonstrate that LLMs guided by can make better decisions, achieving rewards comparable to human players in the Crafter environment.</abstract>
<identifier type="citekey">sun-etal-2024-enhancing-agent</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.202</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>3534</start>
<end>3568</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enhancing Agent Learning through World Dynamics Modeling
%A Sun, Zhiyuan
%A Shi, Haochen
%A Côté, Marc-Alexandre
%A Berseth, Glen
%A Yuan, Xingdi
%A Liu, Bang
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F sun-etal-2024-enhancing-agent
%X Large language models (LLMs), trained on vast amounts of internet data, have developed a broad understanding of the world, enhancing the decision-making capabilities of embodied agents. This success is largely due to the comprehensive and in-depth domain knowledge within their training datasets. However, the extent of this knowledge can vary across different domains, and existing methods often assume that LLMs have a complete understanding of their environment, overlooking potential gaps in their grasp of actual world dynamics. To address this gap, we introduce Discover, Verify, and Evolve (DiVE), a framework that discovers world dynamics from a small number of demonstrations, verifies the correctness of these dynamics, and evolves new, advanced dynamics tailored to the current situation. Through extensive evaluations, we analyze the impact of each component on performance and compare the automatically generated dynamics from with human-annotated world dynamics. Our results demonstrate that LLMs guided by can make better decisions, achieving rewards comparable to human players in the Crafter environment.
%U https://aclanthology.org/2024.findings-emnlp.202
%P 3534-3568
Markdown (Informal)
[Enhancing Agent Learning through World Dynamics Modeling](https://aclanthology.org/2024.findings-emnlp.202) (Sun et al., Findings 2024)
ACL
- Zhiyuan Sun, Haochen Shi, Marc-Alexandre Côté, Glen Berseth, Xingdi Yuan, and Bang Liu. 2024. Enhancing Agent Learning through World Dynamics Modeling. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 3534–3568, Miami, Florida, USA. Association for Computational Linguistics.