
Findings of the Association for Computational Linguistics: EACL 2024, pages 3534–3568
November 12-16, 2024 ©2024 Association for Computational Linguistics

Enhancing Agent Learning through World Dynamics Modeling

Zhiyuan Sun1* †, Haochen Shi1*

Marc-Alexandre Côté2, Glen Berseth1,3, Xingdi Yuan2‡, Bang Liu1,3‡

1 Université de Montréal & Mila, Montréal, Canada
2 Microsoft Research, Montréal, Canada

3 Canada CIFAR AI Chair

Abstract

Large language models (LLMs) have been in-
creasingly applied to tasks in language under-
standing and interactive decision-making, with
their impressive performance largely attributed
to the extensive domain knowledge embedded
within them. However, the depth and breadth of
this knowledge can vary across domains. Many
existing approaches assume that LLMs pos-
sess a comprehensive understanding of their
environment, often overlooking potential gaps
in their grasp of actual world dynamics. To
address this, we introduce Discover, Verify,
and Evolve (DiVE), a framework that discov-
ers world dynamics from a small number of
demonstrations, verifies the accuracy of these
dynamics, and evolves new, advanced dynam-
ics tailored to the current situation. Through
extensive evaluations, we assess the impact of
each component on performance and compare
the dynamics generated by DiVE to human-
annotated dynamics. Our results show that
LLMs guided by DiVE make more informed
decisions, achieving rewards comparable to hu-
man players in the Crafter environment and sur-
passing methods that require prior task-specific
training in the MiniHack environment1.

1 Introduction

By absorbing internet-scale knowledge autoregres-
sively, large language models (LLMs) develop a
broad understanding of the world (Achiam et al.,
2023; Team et al., 2023; Brown et al., 2020; Tou-
vron et al., 2023). This understanding enables them
to perform well across a variety of tasks (Brown
et al., 2020; Huang et al., 2022; Yao et al., 2022,
2024). However, achieving this level of compre-
hension requires a training dataset that is diverse,

* Equal contribution.
† zhiyuan.sun@umontreal.ca
‡ Equal advising.
1 The code is available at https://github.com/

ZhiyuuanS/DiVE

: LLMs’ Knowledge
: Domain Knowledge
: Overlapping Knowledge

Figure 1: The knowledge gap between LLMs and down-
stream domains. Although LLMs have a broad under-
standing of the world, they may struggle to grasp the
complex dynamics of specific downstream domains.

precise, and in-depth to cover essential domain
information. Otherwise, a knowledge gap may
emerge between LLMs and the target domain, as
illustrated in Figure 1.

Since LLMs tend to follow the most common
patterns in the dataset (Gunasekar et al., 2023) and
are prone to hallucination, it is crucial that the nec-
essary information not only appears frequently on
the internet but is also reliable (Dziri et al., 2022).
For tasks and environments that are newly emerg-
ing (Hafner, 2021; Samvelyan et al., 2021), these
requirements are often difficult to meet due to the
noisy nature of internet data, leading to potential
knowledge gaps.

While LLMs may have a general understanding
of a domain, optimal decision-making requires in-
depth, state-specific knowledge. Providing LLMs
with such tailored information enhances their grasp
of both the environment and the current state. For
example, mastering Go involves not just knowing
the rules but also applying strategies for specific
board states. This specialized knowledge varies
across domains and states, making offline collec-
tion impractical.

To address these challenges, we propose
Discover, Verify, and Evolve (DiVE). Building on

3534

https://github.com/ZhiyuuanS/DiVE
https://github.com/ZhiyuuanS/DiVE

the concept of the World Model (Ha and Schmid-
huber, 2018), DiVE not only discovers and veri-
fies primitive world dynamics from demonstrations
but also evolves state-specific knowledge for the
downstream domain. By providing LLMs with this
comprehensive set of dynamics, DiVE bridges the
knowledge gap between LLMs and the downstream
domain, thereby enhancing their decision-making
abilities.

DiVE consists of three distinct components: The
Discoverer: this component iteratively uncovers
the environment’s dynamics from demonstrations
using a curriculum learning approach. The Veri-
fier: this component eliminates unreliable dynam-
ics caused by LLMs’ tendency to hallucinate. The
Evolver: this component reasons through in-depth,
state-specific strategies tailored to the current situa-
tion based on the learned dynamics.

In the Crafter environment (Hafner, 2021) and
the MiniHack environment (Samvelyan et al.,
2021), DiVE learns comprehensive and reliable
dynamics from demonstrations, guiding the agent’s
decision-making process by evolving in-depth
strategies. This enables the agent to outperform all
baselines, achieving rewards comparable to human
players in the Crafter environment and surpassing
the performance of methods requiring task-specific
training in the MiniHack environment. To gain
deeper insights into DiVE’s behavior, we provide
both quantitative and qualitative analyses.

In summary, our primary contribution is a frame-
work that learns world dynamics from demonstra-
tions, guiding LLMs in the decision-making pro-
cess by online evolving contextual strategies. This
approach bridges potential knowledge gaps, result-
ing in a more optimal decision-making process for
LLMs.

2 The Knowledge Gap

In this work, we consider a setting where a pre-
trained LLM-based agent is employed to solve
tasks in downstream domains. Conceptually, we
define KLLM as the set of knowledge embedded
in the LLMs through their training process, and
Ktarget as the universal set of knowledge relevant to
the downstream domains.

To ensure the effectiveness of the LLMs, we aim
for Krelevant, the subset of KLLM that is relevant to
Ktarget, to cover the broadest possible scope. Ad-
ditionally, we seek for Krelevant to contain more
reliable knowledge K+ than inaccurate knowledge

K−, where Krelevant = K+ ∪ K−. Thus, we de-
fine three desirable properties to guide our system
design:

• Recall R = |K+|
|Ktarget| measures the extent to which

the knowledge required to solve tasks in the tar-
get domain is covered by the LLMs. A low recall
typically indicates a significant knowledge gap
between the LLMs’ training data and the target
domain.

• Precision P = |K+|
|Krelevant| measures the accuracy of

the LLMs’ knowledge when applied to the target
domain. An example of inaccurate dynamics is
shown in Figure 2 (left), where the LLMs hallu-
cinate that defeating a skeleton will drop items,
which is not true in Crafter. This may be due to
the LLMs memorizing Minecraft-specific data.

• Depth D measures the abstraction levels of
knowledge representations. Knowledge can be
represented at varying levels of abstraction, from
basic game rules to higher-level strategies.

We recognize that precisely quantifying the
knowledge overlap between LLMs and a down-
stream domain is challenging. In Section 3, we pro-
vide a mathematical analysis showing how DiVE
improves across all three dimensions. In Sec-
tion 5.4, we measure the knowledge overlap to
demonstrate that DiVE effectively learns useful
game dynamics and, to some extent, bridges the
knowledge gap.

3 DiVE: Discover, Verify, and Evolve

In an ideal scenario, one could bridge the knowl-
edge gap by fine-tuning the LLM to adapt to the
target domain. However, this approach is often less
practical due to its reliance on large amounts of
annotated data and significant computational over-
head (Hu et al., 2021; Zheng et al., 2024; Carta
et al., 2023; Ouyang et al., 2022). Our frame-
work, DiVE, is designed to address the knowledge
gap while considering all three desirable proper-
ties—recall, precision, and depth—without requir-
ing extensive data collection from the target do-
main. It is a prompt-based method that learns world
dynamics W directly from the environment.

As shown in Figure 2, DiVE is initially boot-
strapped using a small set of human demonstra-
tion trajectories H , each consisting of observations
ot, actions at, and rewards rt at each timestep
t. We then transform each observation ot into

3535

It is daytime\nState description: \n-
East: immediate (grass); nearby
(unexplored_area); \n- North:
immediate (grass); nearby
(unexplored_area); \n- North East:
immediate (grass); nearby (cow,
unexplored_area); \n- North West:
immediate (grass); nearby
(unexplored_area, tree); \n- South:
immediate (grass); nearby
(unexplored_area); cow: North East 5
blocks away (nearby) (objects in
between: {'grass'}) \n- Facing grass on
the south.\nYour status:\n- health:
9/9\n- food: 9/9\n- drink: 9/9\n- energy:
9/9\nYou have nothing in your
inventory.

It is daytime\nState description: \n-
East: immediate (grass); nearby
(unexplored_area); \n- North:
immediate (grass); nearby
(unexplored_area); \n- North East:
immediate (grass); nearby (cow,
unexplored_area); \n- North West:
immediate (grass); nearby
(unexplored_area, tree); \n- South:
immediate (grass); nearby
(unexplored_area); cow: North East 5
blocks away (nearby) (objects in
between: {'grass'}) \n- Facing grass on
the south.\nYour status:\n- health:
9/9\n- food: 9/9\n- drink: 9/9\n- energy:
9/9\nYou have nothing in your
inventory.

It is nighttime\nState description: \n-
East: immediate (sand); nearby (path,
grass); distant (tree, unexplored_area);
\n- North: immediate (zombie); nearby
(path, sand, grass); distant (tree,
unexplored_area); \n…… - zombie:
North 1 blocks away (immediate)
(objects in between: None) \n- table:
South East 9 blocks away (nearby)
(objects in between: {'path', 'sand',
'water', 'grass'}) \n- Facing zombie on
the north.\nYour status:\n- health:
2/9\n- food: 8/9\n- drink: 8/9\n- energy:
3/9\nYour inventory:\n- wood: 1\n-
stone: 9\n- coal: 4\n- wood_pickaxe:
1\n- stone_pickaxe: 1\n- wood_sword:
1\n- stone_sword: 1\n

It is nighttime\nState description: \n-
East: immediate (sand); nearby (path,
grass); distant (tree, unexplored_area);
\n- North: immediate (zombie); nearby
(path, sand, grass); distant (tree,
unexplored_area); \n…… - zombie:
North 1 blocks away (immediate)
(objects in between: None) \n- table:
South East 9 blocks away (nearby)
(objects in between: {'path', 'sand',
'water', 'grass'}) \n- Facing zombie on
the north.\nYour status:\n- health:
2/9\n- food: 8/9\n- drink: 8/9\n- energy:
3/9\nYour inventory:\n- wood: 1\n-
stone: 9\n- coal: 4\n- wood_pickaxe:
1\n- stone_pickaxe: 1\n- wood_sword:
1\n- stone_sword: 1\n

Verbalize

Discover

Verify

stone can be found near iron, coal, but it is
not associated with cow, zombie, skeleton.

you cannot walk directly through stone.

stone turn into path after collect_stone.

you cannot walk directly through zombie.

skeleton turn into path after defeat_skeleton,
increase bone by 1 and arrow by 1.

……

zombie turn into grass after defeat_skeleton,
increase rotten_fresh by 1 and bone by 1.

stone can be found near iron, coal, but it is
not associated with cow, zombie, skeleton.

you cannot walk directly through stone.

stone turn into path after collect_stone.

you cannot walk directly through zombie.

skeleton turn into path after defeat_skeleton,
increase bone by 1 and arrow by 1.

……

zombie turn into grass after defeat_skeleton,
increase rotten_fresh by 1 and bone by 1.

(verbalized
demonstration)

(discovered game dynamics)(verified game dynamics)

(demonstration)

𝑜𝑡

𝑜𝑡+1

𝑎𝑡
Crafter Env

LLM Agent

+

Evolve Use collected stones to build a
protective barrier around the safe
location.

…… (situational strategies)

stone can be found near iron, coal, but it is
not associated with cow, zombie, skeleton.

you cannot walk directly through stone.
stone turn into path after collect_stone.

you cannot walk directly through zombie.

…… (verified game dynamics)

Figure 2: Overall pipeline of DiVE. Left: Learning basic game dynamics from offline demonstrations (Section 3.1).
We want to highlight the incorrect game dynamics being identified by the Verifier (labeled by ×), they are evidence
of the LLMs hallucinate false facts perhaps because of memorizing Minecraft data. Right: Learning situational
strategies from online interactions (Section 3.2). For simplicity, we omit the verbalization process in the right figure.

the language space as õt using a Verbalizer, re-
sulting in trajectories represented by õt, at, and
rt at each timestep t. Subsequently, the Discov-
erer extracts a set of world dynamic candidates,
W̃ = {W̃+, W̃−}, from human demonstrations H ,
where W̃+ and W̃− represent the correct and inac-
curate world dynamic sets, respectively.

Empirically, we find that the inclusion of W̃− in
W̃ is often unavoidable, either due to LLM’s diffi-
culties in extracting meaningful knowledge from
trajectory data or its tendency to hallucinate. To
address this, we employ the Verifier to filter out
potentially invalid and conflicting world dynamic
candidates from W̃ , leaving only the valid dynam-
ics W . Lastly, we use the Evolver, designed to
derive advanced dynamics I tailored to the ver-
balized observation õt based on the filtered world
dynamics W .

The final decision-making process on primitive
actions at ∈ A is hierarchically decomposed as
planning tasks on sub-goals SG, sub-tasks ST ,
and actions A. The planning procedure is further
guided by both W and I. In cases where W ≠
∅, Recall, Precision and Depth are guaranteed to
increase as formulated below:

Recall :
|K+|

|Ktarget|
Discoverer
======⇒

H

|K+|+ |W|
|Ktarget|

Precision :
|K+|

|Krelevant|
Verifier
====⇒
W̃,H

|K+|+ |W|
|Krelevant|+ |W|

Depth : ∅ Discoverer
======⇒

Verifier
W Evolver

====⇒
W,H

I ∪W

The DiVE framework can be divided into two
stages: an offline dynamics learning stage and an

online strategy learning stage.

3.1 Offline Dynamics Learning

The offline dynamics learning procedure aims to
bridge the knowledge gap between LLMs’ under-
standing and the basic dynamics of downstream
domains by learning the world dynamics W as a
prior for the decision-making process. Instead of
relying on human-authored game manuals or hand-
books to extract world dynamics, as in (Wu et al.,
2024b,a), which are not only difficult to obtain in
many real-world scenarios but also often lack criti-
cal details (as demonstrated in Table 6), we propose
learning world dynamics W directly from experi-
ences H , which are more accessible and provide
richer information.

Hierarchical Curriculum Learning Given the
varying complexities of learning the dynamics of
different elements in downstream domains, we
adopt a curriculum learning approach (Bengio et al.,
2009). Our method follows a sequential learning
strategy that progresses from simpler to more com-
plex dynamics, thereby enabling more effective
learning. Specifically, we propose a method for
learning the dynamics of each element within the
task decomposition hierarchy, denoted as TD =
{A ∪ O,ST, SG}, where O represents the set of
objects in downstream domains.

Our approach begins with elements of lower
abstraction, such as actions a ∈ A and objects
o ∈ O, and gradually progresses to higher-level
elements, such as sub-tasks sti ∈ ST . The sub-
tasks ST are represented as nodes in the achieve-

3536

ment graph G = (V,E) within the downstream
domains, i.e., ST = V . Finally, we transition to
the subgoals sgi ∈ SG. The subgoal sequence
SG = [sg1, sg2, . . .] is an ordered list used to un-
lock achievements in the achievement graph G,
where SG = TopologicalSort(G), and each sgi
corresponds to a vertex in V .

We leverage the Discoverer to extract this order
from human demonstrations H . Achieving a sub-
goal sgi may involve completing several sub-tasks
multiple times. This approach ensures a logical pro-
gression through tasks, thereby enabling a deeper
understanding and integration of downstream do-
main dynamics.

Discoverer The Discoverer is designed to iden-
tify dynamic candidates W̃ related to elements
within the task decomposition hierarchy TD. A
single dynamics discovery step for an element
E ∈ TD involves the following three main steps:

1. Construction of the Semantic Experience
Bank: For each element E, we construct a se-
mantic experience bank BE using demonstra-
tions H . This bank stores experiences that are
transformed from H into a suitable granular-
ity for analyzing dynamics related to E. The
transformation process involves chunking and
summarizing the verbalized demonstrations to
capture essential semantic details.

2. Sampling of Relevant Experiences: For each
attribute of an instance e ∈ E, a subset of expe-
riences BE

e that are relevant to the instance e is
sampled from BE .

3. Identification of Dynamic Candidates: A dy-
namic candidate w̃ is identified from the subset
BE

e by recognizing patterns that are consistent
across all experiences within BE

e .

The action-level semantic experience bank, de-
noted as BA, stores transition tuples derived from
verbal demonstrations and is represented as: BA =

{{õt, at, õt+1}i}|B
A|

i=1 . Similarly, the object-level
semantic experience bank, denoted as BO, gath-
ers individual observations contain an specific
object and is represented as: BO = {õi}|B

O|
i=1 .

The sub-task-level semantic experience bank, de-
noted as BST , aggregates trajectory segments rep-
resenting the completion of sub-tasks and is for-
matted as: BST = {{õt, . . . , atst , õtst+1}i}|B

ST |
i=1 ,

where tst denotes the timestep at which a sub-
task st ∈ ST is completed. For sub-goals, the

sub-goal-level experience bank, denoted as BSG,
records sequences of sub-tasks that culminate in
the completion of sub-goals, expressed as: BSG =

{{stt, . . . , sttsg}i}|B
SG|

i=1 , where tsg is the timestep
at which the sub-goal sg is achieved.

For action-level dynamics learning, the relevant
experiences, denoted as BA

a , are compiled by ran-
domly sampling transition tuples from BA where
the action a has been successfully executed. A sim-
ilar approach is employed for dynamics learning
of other elements within the task decomposition
hierarchy TD.

For action-level dynamics discovery, we iden-
tify the prerequisites and outcomes of each action
(e.g., The action MakeWoodPickaxe requires
1 wood). For object-level dynamics, we focus on
co-occurrence relationships between objects and
their temporal patterns. The attribute set for a sub-
task generally encompasses the necessary steps for
completion, as well as its prerequisites, outcomes,
and termination conditions. In contrast, the primary
attribute of interest for a sub-goal is its correct po-
sition within the sub-goal sequence SG.

Verifier Dynamic discovery processes are vul-
nerable to noise from various sources, including
confounders, hallucinations by the LLMs, and dif-
ficulties in the LLMs’ ability to extract meaning-
ful insights from trajectory data. To address these
challenges, we introduce a dynamic verifier de-
signed to filter out noisy dynamic candidates from
W̃ . For each dynamic candidate w ∈ W̃ , the ver-
ifier begins by sampling a subset of relevant se-
mantic experiences, denoted as BE

e , from the cor-
responding semantic experience bank BE . Here,
w represents a dynamic candidate associated with
a specific attribute of the instance e ∈ E, where
E ∈ {A ∪O,ST, SG} corresponds to an element
of the task decomposition hierarchy TD. The veri-
fication of w is conducted as follows: w is deemed
inaccurate and filtered out if it does not consistently
hold across experiences within BE

e or if it conflicts
with any established dynamics. The dynamics that
pass this verification process are classified as veri-
fied dynamics and are denoted as W .

3.2 Online Strategy Learning

To effectively incorporate the learned world dynam-
ics W into the downstream domains, we deploy an
LLM-based agent defined by π : S ×W → P(A).
Here, S represents the state space, A denotes the
action space, and P symbolizes the probability dis-

3537

tribution over the action space. Instead of directly
mapping the world dynamics W and the current
state observation ot to the action at, we tackle the
challenge of long-horizon planning by integrating
an online strategy learning method. This approach
decomposes the planning process into three distinct
stages: sub-goal planning, sub-task planning, and
action planning.

Sub-goal Planning Given that the sub-goal se-
quence SG = [sg1, sg2, . . .] is derived from hu-
man demonstrations H and treated as a fixed se-
quence, we utilize a straightforward heuristic for
sub-goal planning. When a sub-goal is completed,
the current sub-goal is updated to the first uncom-
pleted sub-goal in SG.

Sub-task Planning For a given current sub-goal
sgi, we have developed an LLM-based sub-task
planner. This planner evaluates and ranks all sub-
tasks st ∈ ST based on the learned world dynam-
ics W , the verbalized current observation õt, and
the most recently executed sub-task stt−1. The
highest-ranked sub-task is then designated as the
current sub-task stt. To ensure accurate execution,
the completion of a sub-task st is contingent upon
satisfying its specific termination condition. This
condition is verified by querying an LLM using the
current verbalized observation, the observation at
the time the sub-task began, and the termination
conditions of the current sub-task.

Learning Strategies In addition to learning the
fundamental rules of the downstream domains, we
also focus on developing advanced game-playing
strategies based on these dynamics. Unlike world
dynamics learning, the strategy space is often too
expansive for exhaustive exploration. To address
this challenge, we propose evolving the dynam-
ics into strategies, denoted as I, using an online
learning approach.

This method reduces the search space by condi-
tioning not only on the dynamics W , but also on the
verbalized current observation õt and the sub-task
sti. This targeted approach enables the generation
of strategies that are more contextually grounded
and responsive to current game scenarios compared
to those developed through offline methods. To sup-
port this process, we have designed an LLM-based
Evolver that generates strategy candidates Ĩ by ap-
plying deductive reasoning to the learned dynamics
W . Specifically, the Evolver derives strategy can-
didates using rules of inference, such as modus

ponens. These strategy candidates, denoted as Ĩ,
are then evaluated for validity and ranked based on
their utility by an LLM-based critic. Finally, the
valid and useful candidates are incorporated into
the situational strategy set I.

Action Planning The final action selection pro-
cess is executed in two main steps:

1. Invalid Action Masking: This step involves fil-
tering out actions that are infeasible under the
current situation, based on the verified dynamics
W and current verbalized observation õt.

2. Action Selection: From the set of valid actions,
a specific primitive action a is chosen based on
multiple factors: the current sub-task sti, the
verbalized current observation õt, the world dy-
namics W , a windowed history of previously
planned actions and observations, and the de-
rived strategies I.

4 Experiment Setup

To demonstrate the effectiveness of DiVE in bridg-
ing the knowledge gap, we evaluate its performance
within the Crafter and MiniHack environments. For
a fair comparison, all LLM-based agents, includ-
ing ours, utilize the GPT-4o model and the same
environment seed in the Crafter setting. Further
details on the setups can be found in Appendix A.1
and B.1.

4.1 Crafter
Crafter (Hafner, 2021) is an open-world survival
game set on 64× 64 grid-based maps, featuring a
diverse array of materials such as tree, stone, and
coal, as well as entities including cow, zombie,
and skeleton semi-randomly spawn on the maps.
The games include an achievement graph with 22
unique achievements across 7 levels. The agent
perceives its surroundings through a local 7 × 9
observation window and maintains awareness of its
status within the game environment.

The text description generated by the verbalizer
includes: the nearest object of each type within
the accumulated observations, the objects situated
between these nearest objects, the objects in each
direction, as well as the agent’s current inventory
and status. An example of the verbalization process
is provided in Appendix B.5.

The agent is evaluated using two primary met-
rics: reward and score. Agents receive a +1 reward
for each new achievement unlocked (e.g., make

3538

wood pickaxe, place furnace) and a ±0.1 re-
ward for every health point gained or lost. The
score is calculated by aggregating the success rates
si for each achievement and is formulated as:

S
.
= exp

(
1

N

N∑

i=1

ln (1 + si)

)
− 1.

We compare DiVE against the following baselines:

• LLM-based approaches: SPRING (Wu
et al., 2024b), ELLM (Du et al., 2023), and
Chain-of-Thought (CoT)(Wei et al., 2022).

• Reinforcement Learning (RL) approaches:
DreamerV3(Hafner et al., 2023), PPO (Schul-
man et al., 2017), and AD (Moon et al., 2024).

• Human Players: Expert performance on the
Crafter environment.

4.2 MiniHack
MiniHack (Samvelyan et al., 2021) is a grid-based
environment built on the video game NetHack (Küt-
tler et al., 2020). Unlike the Crafter environment,
it supports the creation of tasks that target specific
agent capabilities. In our work, we focus on the
Skill Acquisition Tasks subset, which evaluates
the agent’s ability to leverage the rich diversity of
NetHack’s objects, monsters, and dungeon features,
as well as their interactions. These tasks introduce
complex world dynamics, where actions are fac-
torized autoregressively and require executing a
sequence of follow-up actions for the initial action
to produce the desired effect.

We use the Lava Crossing, Wand of Death, and
Quest tasks as testbeds to evaluate DiVE. We pro-
vide detailed descriptions of these task in Ap-
pendix A.2. The agent is rewarded for unlocking
achievements within each task. To facilitate in-
teraction with LLMs, we use the NLE language
wrapper (Goodger et al., 2023) to verbalize both
observations and actions from the environment.

We compare DiVE against SSO (Nottingham
et al., 2024) and Reflexion (Shinn et al., 2024), both
of which require prior training on the tasks. Follow-
ing the official guidelines, we run each method for
30 iterations, evaluating performance after every
10 iterations by attempting the task 10 times using
a fixed set of skills or reflections. The final perfor-
mance is determined based on the results from the
last 10 evaluation attempts.

Method Score Reward

Human Experts 50.5± 6.8% 14.3± 2.3

DiVE 35.9± 3.2% 14.5± 2.4
SPRING∗ 8.2± 2.3% 6.9± 1.8
CoT 1.3± 0.3% 2.5± 0.5
AD 21.79± 1.4% 12.6± 0.3
ELLM N/A 6.0± 0.4
DreamerV3 14.5± 1.6% 11.7± 1.9
PPO 4.6± 0.3% 4.2± 1.2
Random 1.6± 0.0% 2.1± 1.3

Table 1: Performance comparison of DiVE against base-
line models in the Crafter environment. Methods with ∗

indicate that they were obtained using the official code
implementation, executed with the same five random
seeds and model configurations as used for DiVE.

5 Experimental Results

We evaluate the performance of DiVE in the Crafter
and MiniHack environments. In Section 5.1, we
present the overall results to demonstrate DiVE’s
effectiveness in bridging the knowledge gap in
these tasks. Section 5.2 provides a detailed analy-
sis of the contributions of individual components
through controlled experiments. Then, in Sec-
tion 5.3, we evaluate the effectiveness of the dy-
namics learned by DiVE in the Crafter environ-
ment. Finally, in Section 5.4, we further analyze
the learned dynamics in both the Crafter environ-
ment and a modified MiniHack setting with altered
dynamics.

5.1 DiVE’s Performance
Table 1 and 2 demonstrate that DiVE surpasses
all other baselines in the Crafter and MiniHack
environments. In the Crafter environment, DiVE
exceeds the previous state-of-the-art (SOTA) LLM-
based method, SPRING, by a substantial margin,
achieving a 337.8% relative improvement in score
and a 110.1% enhancement in reward. Addition-
ally, DiVE also surpasses the prior SOTA RL-based
approach, DreamerV3, with a 21.4% absolute im-
provement in score and a 2.8 absolute increase in
reward. Notably, DiVE achieves rewards compara-
ble to human players using 10 demonstrations.

In the MiniHack environment, with only a single
demonstration, DiVE matches the performance of
SSO and Reflexion (both of which require 30 iter-
ations of training) on the Lava Crossing task, and
outperforms both baselines on the Wand of Death
and Quest tasks. Specifically, DiVE achieves a 68%
improvement over Reflexion on the Wand of Death
task and a 30% and 36% improvement over SSO
and Reflexion, respectively, on the Quest task.

3539

Method Lava Crossing Wand of Death Quest

Reflexion 0.8±0.0 0.32±0.15 0.87±0.43
SSO∗ 0.8±0.0 0.52±0.31 0.91±0.29
DiVE 0.8±0.0 0.54±0.34 1.18±0.38

Table 2: Comparison of DiVE performance against
baseline models in the MiniHack environment. Results
marked with ∗ were obtained using the official code
implementation and evaluated over 10 runs.

Methods Score Reward
Component analysis
DiVE 35.9± 3.2% 14.5± 2.4
w/o E 21.1± 9.7% 11.3± 4.3
w/o V 9.8± 1.0% 10.1± 0.7
w/o V&E 11.5± 4.9% 8.3± 3.8
w/o D&V&E 0.9± 0.1% 2.5± 1.3
CoT 1.3± 0.3% 2.5± 0.5
CoT + D&V 3.6± 0.9% 3.9± 2.3
Dynamics from distinct sources
DiVE 35.9± 3.2% 14.5± 2.4
w/o D&V+S† 15.7± 5.3% 8.9± 5.1
w/o D&V&E+S† 12.1± 4.6% 8.7± 3.0
w/o D&V&E+H† 34.2± 2.8% 14.5± 0.9

Table 3: Impact of different components on perfor-
mance: Crafter. D, V, and E represent Discover, Verifier,
and Evolver, respectively; S† refers to dynamics derived
from the game manual, H† refers to human-annotated
dynamics.

5.2 Contribution of Individual Components
We conduct a series of ablation studies to clar-
ify the contribution of each individual element to
DiVE’s overall performance. We report the results
on Crafter in the first section of Table 3, and the
results on MiniHack in Table 4.

Crafter The significant performance gap be-
tween DiVE and its variant without the Evolver
component empirically demonstrates the Evolver’s
effectiveness in developing gameplay strategies
based on world dynamics W , thereby enhancing
the agent’s overall proficiency in this environment.
Similarly, the performance decline observed in the
variant without the Verifier underscores the impor-
tance of formulating strategies I based on accurate
world dynamics W . Moreover, the further perfor-
mance drop in the version lacking both the Verifier
and Evolver components highlights their comple-
mentary roles—the Verifier ensures precision in
capturing dynamics, while the Evolver focuses on
strategy development.

The performance of DiVE without the Discov-
erer, Verifier, and Evolver components reverts to
the CoT baseline, indicating that simply decom-
posing the task according to the hierarchy H with-
out integrating domain knowledge Ktarget provides

Components Lava Crossing Wand of Death Quest

DiVE 0.80±0.00 0.54±0.34 1.18±0.38
w/o E 0.72±0.24 0.52±0.30 1.16±0.48
w/o V 0.69±0.25 0.52±0.38 1.18±0.38
w/o V&E 0.72±0.24 0.40±0.40 1.11±0.48
w/o D&V&E 0.72±0.17 0.20±0.00 0.41±0.29

Table 4: Impact of different components on perfor-
mance: MiniHack. D, V, and E represent Discover,
Verifier, and Evolver, respectively.

no performance benefit. The substantial gap be-
tween CoT + D&V and DiVE w/o E further demon-
strates that an LLM-based agent struggles with
long-horizon planning tasks in the absence of task
decomposition, underscoring the importance of the
decomposition hierarchy H.

MiniHack Since MiniHack is built on the popu-
lar video game NetHack (Goodger et al., 2023),
LLMs already possess a certain level of under-
standing of the environment. For example, DiVE
without the Discover, Verifier, and Evolver com-
ponents (CoT baseline) can successfully solve the
Lava Crossing task. However, as the complexity
of the tasks increases, using LLMs alone is insuf-
ficient for solving more challenging scenarios like
the Wand of Death and Quest tasks, highlighting
a potential knowledge gap for these more intricate
problems.

The primary performance gains of DiVE in the
MiniHack environment can be attributed to the
Discover component, which accurately identifies
the underlying environment dynamics required for
each task. Due to the embedded knowledge of
LLMs about the MiniHack environment, they can
identify these dynamics effectively, as shown by
the minimal performance drop when DiVE is used
without the Verifier. However, in the modified Mini-
Hack setting described in Section 5.4, we highlight
the critical role of the Verifier in maintaining relia-
bility. Additionally, since the tasks have a relatively
short horizon, the dynamics uncovered by the Dis-
cover component are sufficient to complete them
successfully.

5.3 Evaluation of Learned Dynamics

We investigate the performance of DiVE leveraging
world dynamics derived from different sources in
Crafter. As shown in the second section of Table 3,
DiVE significantly outperforms variants that uti-
lize the dynamics S† from the game manual (Wu
et al., 2024b). This performance improvement in-
dicates that the learned dynamics W are more ad-

3540

Figure 3: Recall of learned dynamics over discovery
steps, presented with mean and standard deviation, in
the Crafter environment.

vantageous than S†, likely because S† lacks certain
beneficial details that are captured in W . The per-
formance gap between methods using S† with and
without the Evolver further highlights the impor-
tance of strategy evolution, whose effectiveness is
closely tied to the quality of the underlying world
dynamics.

In addition to dynamics learned from human
demonstrations and game manual, we have ex-
plored a third source: human-annotated dynamics.
The results show that DiVE performs comparably
to the variants using human-annotated dynamics,
demonstrating the robustness and effectiveness of
DiVE’s approach to dynamic learning.

As previously mentioned, it is difficult to quan-
tify the desired properties because we cannot pre-
cisely measure the domain-relevant information
Krelevant in LLMs or the exact amount of domain
knowledge Ktarget required. However, by using
human-annotated dynamics H† as a reference
benchmark for Ktarget, we can estimate the preci-
sion and recall of the learned dynamics W , en-
abling us to effectively assess the progress of LLM-
based dynamic learning. Specifically, we define re-
call as R = |W∩H†|

|H†| and precision as P = |W∩H†|
|W| .

As illustrated in Figure 3, both the discovered
dynamics W̃ and the verified dynamics W exhibit
an increase in recall as the number of discovery
steps progresses, indicating that the richness of the
learned dynamics improves over time. Moreover,
the narrowing gap in recall between W̃ and W sug-
gests that the Verifier effectively filters out ’noisy’
dynamic candidates while preserving those that
generalize across different trajectory segments.

To evaluate whether the Verifier preserves cor-
rect world dynamic candidates W̃+ while filtering
out unreliable ones W̃−, we analyze the precision

Correctness Outcome

Correct (✓) none
Confounder (✗) 1 health
In-domain Hallucination (✗) 1 wood
Out-domain Hallucination (✗) 1 bone

Table 5: The dynamics underlying the outcome of de-
feating zombie in the Crafter environment.

of both the discovered dynamics W̃ and the verified
dynamics W . As shown in Figure 4, the precision
of the verified dynamics consistently and signif-
icantly exceeds that of the discovered dynamics,
demonstrating the Verifier’s effectiveness in identi-
fying and eliminating inaccurate candidates. This
confirms the Verifier’s role in enhancing the relia-
bility of the dynamics used for decision-making.

5.4 Analysis of Learned Dynamics

The correctness of the learned and verified dynam-
ics is classified as either correct or erroneous, with
errors stemming from confounders, in-domain hal-
lucinations, or out-of-domain hallucinations. As
shown in Table 5, an example of a confounder-
related mistake occurs in Crafter when a simulta-
neous increase in health points is incorrectly at-
tributed to the act of defeating a zombie. In this
scenario, the Discoverer misclassifies the health
increase as a direct result of defeating the zombie.
In the case of in-domain hallucinations, the Dis-
coverer incorrectly associates an increase in wood
with defeating the zombie, even though it is not
possible for wood to increase during this event,
despite its presence in the observation. Lastly, out-
of-domain hallucinations involve the discovery of
dynamics that reference nonexistent objects in the
observation or elements not present in the Crafter
environment.

Compared to the dynamics from the game man-
ual, as shown in Table 6, we found that DiVE’s
dynamics are not only more precise but also more
detailed. For instance, while SPRING only iden-
tified that placing a stone requires stones, DiVE
determined that it specifically requires exactly one
stone and the precise facing condition needed for
successful placement. Moreover, using this infor-
mation, the Evolver can infer advanced dynamics
for placing a stone, such as its potential to serve as a
barrier between the agent and dangerous creatures.

In a customized MiniHack Lava Crossing setting,
we modified the task such that it requires the agent

3541

Sources Dynamics

Manual Place stone requires stones
Discoverer Place stone requires 1 stone and

faces paths, grass, sand, water,
and lava

Evolver Place stone to block zombies
and skeletons, preventing them
from reaching the player

Table 6: Comparing SPRING and DiVE on place stone’s
dynamics in the Crafter environment.

to use the Wand of Death to freeze the lava for
crossing, even though the wand’s original purpose
is to zap monsters. Based on the demonstration,
the Discoverer mistakenly identifies the precon-
dition for using the wand as The player must
be adjacent to a wall or obstacle that
can be destroyed or altered by the wand
of death, with the outcome being The wand of
death was used, altering the environment
by removing walls and revealing a dark
area to the east, southeast, and south.
This unreliable dynamic is successfully identified
and filtered out by the Verifier, highlighting its cru-
cial role in maintaining the reliability of learned
dynamics.

6 Related Work

Language Models Language models (LLMs) are
trained autoregressively in a left-to-right sequence,
predicting each token based on its preceding con-
text from an internet-scale corpus. Through this
training, LLMs develop a comprehensive under-
standing of both language and the world it repre-
sents (Achiam et al., 2023; Touvron et al., 2023;
Dubey et al., 2024; The, 2024), enabling them
to perform competently across a wide range of
tasks (Yao et al., 2024; Shinn et al., 2024).

Embodied Agent Building an embodied agent
using LLMs is challenging because LLMs lack em-
bodied experience (Valmeekam et al., 2022; Wang
et al., 2024) in downstream environments (Weir
et al., 2022; Shridhar et al., 2020; Côté et al.,
2019). However, LLMs can still provide founda-
tional world knowledge that serves as a prior for the
agent (Shi et al., 2024; Colas et al., 2023; Zhong
et al., 2024; Fu et al., 2024a). A notable distinction
of our work is that we do not assume LLMs have
the necessary knowledge to solve tasks in specific
domains.

Figure 4: Precision of learned dynamics before and after
verification in the Crafter environment.

Discover Dynamics LLMs can discover knowl-
edge by inducing and deducing rules for reasoning
tasks (Zhu et al., 2023) and by extracting under-
lying domain knowledge from prior trajectories
and interactive experiences (Colas et al., 2023;
Majumder et al., 2023; Fu et al., 2024b; Zhao
et al., 2024). However, the knowledge obtained
through these methods is often unstructured, not
suited for addressing long-horizon planning prob-
lems, and lacks verification for reliability, as it
overlooks LLMs’ tendency to hallucinate (Zhang
et al., 2023b).

Evolve Dynamics LLMs can refine their
decision-making process by reflecting on past
trajectories (Shinn et al., 2024). Leveraging
this ability, studies such as (Wang et al., 2023;
Stengel-Eskin et al., 2024; Zhang et al., 2023a;
Nottingham et al., 2024) focus on evolving
new and advanced skills from pre-defined ones.
However, these approaches often assume that
LLMs already possess comprehensive domain
knowledge and can derive new dynamics based
solely on their understanding.

7 Conclusion

We introduce DiVE, a framework that bridges the
knowledge gap between LLMs and downstream
domains. The Discoverer extracts world dynamics,
while the Verifier filters unreliable candidates. In
an online setting, the Evolver reasons strategies
through interaction. Our experiments demonstrate
that DiVE effectively bridges the knowledge gap
between LLMs and downstream domains.

3542

Limitations

Evaluating DiVE in embodied environments may
not fully capture the diversity and complexity of
real-world dynamics that an agent might encounter
in practice. If the environment’s dynamics change
across episodes, the offline-learned dynamics from
DiVE may struggle to adapt, introducing potential
biases in the agent’s understanding and hindering
the development of advanced strategies. Moreover,
acquiring these dynamics from human demonstra-
tions can be difficult or impractical in certain sce-
narios.

Ethical Concerns

We do not anticipate any immediate ethical or so-
cietal impact from our work. This study aims to
bridge the knowledge gap between LLMs and the
target domain. However, despite our efforts, DiVE
may still exhibit hallucinations due to the inherent
tendency of LLMs to hallucinate.

Acknowledgements

This work is supported by the Canada CIFAR AI
Chair Program and the Canada NSERC Discovery
Grant (RGPIN-2021-03115).

3543

References
2024. The claude 3 model family: Opus, sonnet, haiku.

https://api.semanticscholar.org/CorpusID:268232499.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41–48.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding large language models in interac-
tive environments with online reinforcement learning.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 3676–3713.
PMLR.

Cédric Colas, Laetitia Teodorescu, Pierre-Yves
Oudeyer, Xingdi Yuan, and Marc-Alexandre Côté.
2023. Augmenting autotelic agents with large lan-
guage models. In Proceedings of The 2nd Conference
on Lifelong Learning Agents, volume 232 of Proceed-
ings of Machine Learning Research, pages 205–226.
PMLR.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2019. Textworld: A learning environ-
ment for text-based games. In Computer Games:
7th Workshop, CGW 2018, Held in Conjunction with
the 27th International Conference on Artificial In-
telligence, IJCAI 2018, Stockholm, Sweden, July
13, 2018, Revised Selected Papers 7, pages 41–75.
Springer.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Co-
las, Trevor Darrell, Pieter Abbeel, Abhishek Gupta,
and Jacob Andreas. 2023. Guiding pretraining in
reinforcement learning with large language models.
In Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 8657–8677.
PMLR.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Nouha Dziri, Sivan Milton, Mo Yu, Osmar Zaiane, and
Siva Reddy. 2022. On the origin of hallucinations
in conversational models: Is it the datasets or the
models? In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5271–5285, Seattle, United States.
Association for Computational Linguistics.

Haotian Fu, Pratyusha Sharma, Elias Stengel-Eskin,
George Konidaris, Nicolas Le Roux, Marc-Alexandre
Côté, and Xingdi Yuan. 2024a. Language-guided
skill learning with temporal variational inference.
arXiv preprint arXiv:2402.16354.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. 2024b. Autoguide: Automated
generation and selection of state-aware guidelines
for large language model agents. arXiv preprint
arXiv:2403.08978.

Nikolaj Goodger, Peter Vamplew, Cameron Foale, and
Richard Dazeley. 2023. A nethack learning envi-
ronment language wrapper for autonomous agents.
Journal of Open Research Software, 11.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

David Ha and Jürgen Schmidhuber. 2018. Recurrent
world models facilitate policy evolution. In Ad-
vances in Neural Information Processing Systems 31,
pages 2451–2463. Curran Associates, Inc. https:
//worldmodels.github.io.

Danijar Hafner. 2021. Benchmarking the spectrum of
agent capabilities. In International Conference on
Learning Representations.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and
Timothy Lillicrap. 2023. Mastering diverse do-
mains through world models. arXiv preprint
arXiv:2301.04104.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In International Conference on Ma-
chine Learning, pages 9118–9147. PMLR.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller,
Roberta Raileanu, Marco Selvatici, Edward Grefen-
stette, and Tim Rocktäschel. 2020. The NetHack
Learning Environment. In Proceedings of the Con-
ference on Neural Information Processing Systems
(NeurIPS).

3544

https://proceedings.mlr.press/v202/carta23a.html
https://proceedings.mlr.press/v202/carta23a.html
https://proceedings.mlr.press/v232/colas23a.html
https://proceedings.mlr.press/v232/colas23a.html
https://proceedings.mlr.press/v202/du23f.html
https://proceedings.mlr.press/v202/du23f.html
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.18653/v1/2022.naacl-main.387
https://doi.org/10.5334/jors.444
https://doi.org/10.5334/jors.444
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://papers.nips.cc/paper/7512-recurrent-world-models-facilitate-policy-evolution
https://worldmodels.github.io
https://worldmodels.github.io

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra,
Peter Jansen, Oyvind Tafjord, Niket Tandon,
Li Zhang, Chris Callison-Burch, and Peter Clark.
2023. Clin: A continually learning language agent
for rapid task adaptation and generalization. arXiv
preprint arXiv:2310.10134.

Seungyong Moon, Junyoung Yeom, Bumsoo Park,
and Hyun Oh Song. 2024. Discovering hierarchi-
cal achievements in reinforcement learning via con-
trastive learning. Advances in Neural Information
Processing Systems, 36.

Kolby Nottingham, Bodhisattwa Prasad Majumder, Bha-
vana Dalvi Mishra, Sameer Singh, Peter Clark, and
Roy Fox. 2024. Skill set optimization: Reinforc-
ing language model behavior via transferable skills.
arXiv.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack
Parker-Holder, Minqi Jiang, Eric Hambro, Fabio
Petroni, Heinrich Kuttler, Edward Grefenstette, and
Tim Rocktäschel. 2021. Minihack the planet: A
sandbox for open-ended reinforcement learning re-
search. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 1).

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Haochen Shi, Zhiyuan Sun, Xingdi Yuan, Marc-
Alexandre Côté, and Bang Liu. 2024. Opex: A
component-wise analysis of llm-centric agents in
embodied instruction following. arXiv preprint
arXiv:2403.03017.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal.
2024. Regal: Refactoring programs to dis-
cover generalizable abstractions. arXiv preprint
arXiv:2401.16467.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,

Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for llms on plan-
ning and reasoning about change). In NeurIPS 2022
Foundation Models for Decision Making Workshop.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Ruoyao Wang, Graham Todd, Ziang Xiao, Xingdi Yuan,
Marc-Alexandre Côté, Peter Clark, and Peter Jansen.
2024. Can language models serve as text-based
world simulators? arXiv preprint arXiv:2406.06485.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Nathaniel Weir, Xingdi Yuan, Marc-Alexandre Côté,
Matthew Hausknecht, Romain Laroche, Ida Momen-
nejad, Harm Van Seijen, and Benjamin Van Durme.
2022. One-shot learning from a demonstration
with hierarchical latent language. arXiv preprint
arXiv:2203.04806.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria,
Yuanzhi Li, and Tom M Mitchell. 2024a. Read and
reap the rewards: Learning to play atari with the help
of instruction manuals. Advances in Neural Informa-
tion Processing Systems, 36.

Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan
Bisk, Russ R Salakhutdinov, Amos Azaria, Tom M
Mitchell, and Yuanzhi Li. 2024b. Spring: Studying
papers and reasoning to play games. Advances in
Neural Information Processing Systems, 36.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

3545

https://arxiv.org/abs/2402.03244
https://arxiv.org/abs/2402.03244
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ
https://openreview.net/forum?id=skFwlyefkWJ

Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xi-
ang Ren, Minsuk Chang, Shao-Hua Sun, and Joseph J
Lim. 2023a. Bootstrap your own skills: Learning to
solve new tasks with large language model guidance.
In 7th Annual Conference on Robot Learning.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023b. Siren’s song
in the ai ocean: A survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2024. Expel:
Llm agents are experiential learners. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632–19642.

Jiawei Zheng, Hanghai Hong, Xiaoli Wang, Jingsong
Su, Yonggui Liang, and Shikai Wu. 2024. Fine-
tuning large language models for domain-specific ma-
chine translation. arXiv preprint arXiv:2402.15061.

Victor Zhong, Dipendra Misra, Xingdi Yuan, and
Marc-Alexandre Côté. 2024. Policy improvement
using language feedback models. arXiv preprint
arXiv:2402.07876.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny
Zhou, Jian Tang, Dale Schuurmans, and Hanjun Dai.
2023. Large language models can learn rules. arXiv
preprint arXiv:2310.07064.

3546

https://openreview.net/forum?id=a0mFRgadGO
https://openreview.net/forum?id=a0mFRgadGO

Appendix

A MiniHack 15
A.1 Configuration . 15
A.2 Des-Files for Each MiniHack Task . 15
A.3 Prompts for MiniHack Tasks . 16

B Crafter 19
B.1 Configuration . 19
B.2 An Example of Learned Dynamics . 19
B.3 An Example of Trajectory . 19
B.4 Changes in Dynamics Precision Over Time . 21
B.5 An Example of Verbalized Observation . 21
B.6 Tech Tree in the Crafter Environment . 23
B.7 Prompts for Crafter Environment . 24

3547

A MiniHack

This section offers further details on the MiniHack environment, along with a comprehensive description
of the prompts utilized by DiVE within this environment.

A.1 Configuration
For this environment, we employ the gpt-4o-2024-08-06 model.

A.2 Des-Files for Each MiniHack Task
In this subsection, we present the Des-Files utilized for the Lava Crossing, Wand of Death, and Quest
tasks.

A.2.1 Lava Crossing

MAZE: "mylevel", ' '
FLAGS:hardfloor
INIT_MAP: solidfill ,' '
GEOMETRY:center ,center
MAP

|.....L.....|
|.....L.....|
|.....L.....|
|.....L.....|
.....L.....
ENDMAP
REGION :(0,0,12,6),lit ," ordinary"
$left_bank = selection:fillrect (1,1,5,5)
$right_bank = selection:fillrect (7,1,11,5)
OBJECT:('='," levitation "),rndcoord($left_bank),blessed
STAIR:rndcoord($right_bank),down
BRANCH :(1,1,5,5) ,(0,0,0,0)

A.2.2 Wand of Death

MAZE: "mylevel", ' '
FLAGS:hardfloor
INIT_MAP: solidfill ,' '
GEOMETRY:center ,center
MAP
|---------------------------|
|...........................|
|.....|---------------------|
|.....|
.....
ENDMAP
REGION :(1,1,5,5),lit ," ordinary"
REGION :(6,1,26,1),lit ," ordinary"
REGION :(26 ,1,27,1),lit ," ordinary"
$safe_room = selection:fillrect (1,1,5,5)
OBJECT:('/',"death") ,(1,1),blessed
MONSTER:('H', "minotaur "), (26,1)
STAIR :(27 ,1),down
BRANCH :(1,1,5,5) ,(1,1,2,2)

A.2.3 Quest

MAZE: "mylevel", ' '
FLAGS:hardfloor
INIT_MAP: solidfill ,' '
GEOMETRY:center ,center
MAP
-------------|

3548

|.....L......|-- |-----|
|.....L........| - - - - - -|.....|
|.....L.....................|
|.....L........| - - - - - -|.....|
|.....L......|-- |-----|
-------------|
ENDMAP
REGION :(0,0,28,6),lit ," ordinary"
$left_bank = selection:fillrect (1,1,5,5)
$right_bank = selection:fillrect (7,1,11,5)
$goal_room = selection:fillrect (25,2,27,4)

OBJECT:('/',"cold") ,(2,3),blessed
BRANCH :(1,1,3,3) ,(0,0,0,0)
MONSTER:random , (25,3)
STAIR :(26 ,3),down

A.3 Prompts for MiniHack Tasks

This section includes the prompts used to solve the MiniHack tasks.

A.3.1 Offline Dynamics Learning
The prompts for offline learning the dynamics from demonstrations.
Discover Action Dynamics

The player is playing a MiniHack game and would like you to analyze the game 's
dynamics. Specifically , they need help identifying the general preconditions and
outcomes of actions by comparing consecutive observations.

- In the previous state , the player observed: {previous_state['state_description ']}
and took the action: {action }.

- In the current state , the player observed: {state['state_description ']}.

Definitions:
- ** General precondition **: The condition that must be met for the action to succeed

, regardless of the specific game state.
- ** General outcome **: The effect of the action , regardless of the specific game

state.

Here is the action -to-text mapping: {state['action_prompt ']}.

Discover Object Dynamics

The player is playing a MiniHack game and would like you to analyze the game 's
dynamics. Specifically , they need help identifying the general preconditions and
outcomes of actions by comparing consecutive observations.

- In the previous state , the player observed: {previous_state['state_description ']}
and took the action: {action }.

- In the current state , the player observed: {state['state_description ']}.

Definitions:
- ** General precondition **: The condition that must be met for the action to succeed

, regardless of the specific game state.
- ** General outcome **: The effect of the action , regardless of the specific game

state.

Here is the action -to-text mapping: {state['action_prompt ']}.

Discover Subtask Dynamics

The player is playing a MiniHack game and would like your help in discovering the
detailed steps to complete a subtask , and the preconditions and outcomes of the
subtask. The player has provided the following information:

- In previous states , the player observed: {previous_state_description} and took the
following actions: {previous_action }.

Definition:

3549

- ** Steps for completing the subtask **: The general and detailed sequence of actions
, represented in text , that the player must follow to achieve the subtask. These
steps should be general and not tied to the specific state of the environment.

- ** Preconditions **: The general conditions that must be met for the subtask to be
completed.

- ** Outcomes **: The general effects of completing the subtask.

Here is the mapping of actions to their text representations: {state['action_prompt
']}.

A.3.2 Online Dynamics Learning
The prompts for online evolving the dynamics from existing dynamics.
Discover Subtask Dynamics

You are playing the MiniHack game.
Your current subtask is: {subtask }.
Your current observation is: {observation }.
The primitive dynamics of the game are: {action_dynamics }.
The object dynamics of the game are: {object_dynamics }.

You are asked to evolve useful strategies that aid in completing the subtask based
on the provided information.

Instructions for evolving strategies:
- Do not introduce any new objects that are not part of the primitive dynamics.
- The evolved dynamics should not contradict the primitive dynamics.
- If a difficulty cannot be resolved by existing dynamics , evolve new and advanced

dynamics by combining only existing dynamics using deductive reasoning.

Now , consider:
- All the potential difficulties that may arise , based on the primitive dynamics and

current observation.
- All the potential dangers that may be encountered , based on the primitive dynamics

and current observation.
- The strategies should be general that do not include specific actions , directions

and dis

List all the potential difficulties , dangers and the evolved strategies to resolve
them.

A.3.3 Grounding
The prompts for grounding the agent.
Task Termination

You are playing the MiniHack game.
Your observation is: {description }.
Your current subtask is: {current_subtask }.
Your previous history is: {previous_history }.
The action and character mapping is: {action_prompt }.

You are asked to decide whether the current subtask should been terminated:
- If the termination conditions are met or the player is in danger or the player is

in deadlock , the subtask should be terminated.

Output yes if the subtask has been completed , and no if it has not been completed.

Task Termination

You are playing the MiniHack game.
Your observation is: {description }.
Your current subtask is: {current_subtask }.
Your previous history is: {previous_history }.
The action and character mapping is: {action_prompt }.

You are asked to decide whether the current subtask should been terminated:

3550

- If the termination conditions are met or the player is in danger or the player is
in deadlock , the subtask should be terminated.

Output yes if the subtask has been completed , and no if it has not been completed.

Task Selection
You are playing the MiniHack game.
Your goal is: {task_description }.
Your observation is: {description }.
Your previously completed subtask is: {previous_subtask }.
All the subtasks are: {subtask_dynamics }.
All the environment dynamics are: {action_dynamics }.
All the object dynamics are: {object_dynamics }.

You are asked to select the next best subtask for completing the goal , based on all
the provided information.

Action Selection
You are playing the MiniHack game.
Your current subtask is: {subtask }.
Your current observation is: {description }.
You also observe the feedback from the environment for the previous action: {

observation}, which you need to consider for the next action.
The action and character mapping is: {action_prompt }.
Here are the strategies for the subtask: {evolved_strategy }.
Here are the primitive dynamics of the game: {action_dynamics} and {object_dynamics

}.

Your past action and thought history: {history}
Now , you are asked to:
- List the potential difficulties and dangers that may arise based on the ** current

observation ** and primitive dynamics for completing the subtask.
- Output the thoughts on the future actions how to resolve the difficulties and

dangers for completing the subtask.
- Select the best action for the next step based on the thoughts.
- Do not copy the previous thoughts.

In the game , the distance is only measured as very far > far > near

3551

B Crafter

This section provides a detailed overview of the Crafter environment and a comprehensive description of
the prompts used by DiVE.

B.1 Configuration
For this setup, we utilize the gpt-4o-2024-05-13 model in the Crafter environment with seeds 1, 2, 3, 4,
and 5.

B.2 An Example of Learned Dynamics

grass
grass can be found near ['tree ', 'water ', 'path '], but it is not associated with

['diamond ', 'coal ', 'iron ']
You can walk directly through grass.
grass can only be used for: ['collect_sapling ', 'eat_plant '] ,
coal
coal can be found near ['stone ', 'iron ', 'diamond '], but it is not associated

with ['grass ', 'cow ', 'skeleton ']
You cannot walk directly through coal.
coal turn into path after collect_coal
coal can only be used for: ['make_iron_pickaxe ', 'make_iron_sword ', '

collect_coal ']
coal can be collected by ['wood_pickaxe '] ,

B.3 An Example of Trajectory

subgoal
Collect 4 units of wood and maintain a
healthy level of health , food , drink ,
and energy.

subtask
collect_wood ": {

"General Plan": {
"step_1 ": "Locate a tree , ensuring 'tree ' is within immediate distance.",
"step_2 ": "Move closer to the tree if it 's not within immediate distance.

This may involve navigating around obstacles such as grass , stone , or
paths.",

"step_3 ": "Face the tree to meet the precondition of the action.",
"step_4 ": "Execute the 'collect_wood ' action to gather wood from the tree."

},
"termination_condition ": "The inventory 's wood amount increases by 1, or if

health , food , drink , or energy levels drop critically low , or a threat (such
as skeletons or zombies) is detected nearby ."

}

state description
It is daytimeState description:
- East: immediate (grass); nearby (unexplored_area);
- North: immediate (grass); nearby (unexplored_area);
- North East: immediate (grass); nearby (unexplored_area);
- North West: immediate (grass); nearby (unexplored_area);
- South: immediate (grass); nearby (unexplored_area);
- South East: immediate (grass); nearby (cow , unexplored_area);
- South West: immediate (grass); nearby (unexplored_area);
- West: immediate (grass); nearby (unexplored_area);
Closest:
- grass: North 1 blocks away (immediate) (objects in between: None)
- cow: South East 5 blocks away (nearby) (objects in between: {'grass '})
- Facing grass on the south.
Your status:
- health: 9/9
- food: 9/9
- drink: 9/9
- energy: 9/9
You have nothing in your inventory.

3552

evolve dynamics
Expand the exploration area to discover new surroundings that could potentially

include a tree.

action
move_north

3553

B.4 Changes in Dynamics Precision Over Time

Figure 5: Precision of verified dynamics over verified steps

As shown in Figure 5, the precision of the verified dynamics W increases significantly during the initial
verification step. However, as the process continues, further improvements in precision are minimal,
indicating that the first step successfully filters out most of the unreliable dynamics.

B.5 An Example of Verbalized Observation

Figure 6: The observation within the Crafter environment

3554

Verbalized Observation
It is daytime
State description:
- East: immediate (grass); nearby (unexplored_area);
- North: immediate (grass); nearby (unexplored_area);
- North East: immediate (grass); nearby (unexplored_area);
- North West: immediate (grass); nearby (tree , unexplored_area);
- South: immediate (grass); nearby (unexplored_area);
- South East: immediate (grass); nearby (unexplored_area , tree);
- South West: immediate (grass); nearby (tree , unexplored_area);
- West: immediate (grass); nearby (tree , unexplored_area);
Closest:
- grass: North 1 blocks away (immediate) (objects in between: None)
- tree: West 4 blocks away (nearby) (objects in between: {'grass '})
- Facing grass on the south.
Your status:
- health: 9/9
- food: 9/9
- drink: 9/9
- energy: 9/9
You have nothing in your inventory.

3555

B.6 Tech Tree in the Crafter Environment

Collect Iron

Collect Drink

Place Table

Make Wood Pickaxe

Defeat Skeleton

Defeat Zombie

Collect Wood

Collect Stone

Collect Coal

Make Stone Pickaxe

Make Iron PickaxeCollect Diamond

Place Furnace

Make Wood Sword

Eat Cow

Place Stone

Make Iron Sword

Make Stone Sword

Place Plant

Collect Sapling

Eat Plant

Wake Up

Figure 7: The tech tree within the Crafter environment

3556

B.7 Prompts for Crafter Environment
This section includes the prompts used in the Crafter environment.

B.7.1 Online Dynamics Learning

Given the following details:
- Primitive dynamics: {env_dynamics}
- Current subtask: {transition['subtask ']}
- Current observation: {transition['state_description ']}

You are asked to identify the difficulties in completing the current subtask and
provide 3 primitive or evolved dynamics to solve each of these difficulties.

Instructions for identifying difficulties:
- List the objects required to complete the subtask , specify their locations , and

explain where to find them if they are not in the current observation.
- Outline all possible obstacles that may be encountered along the way.

Instructions for evolving advanced dynamics:
- Do not introduce any new objects that are not part of the primitive dynamics.
- The evolved dynamics should not contradict the primitive dynamics.
- If a difficulty cannot be resolved by existing dynamics , evolve new and advanced

dynamics by combining only existing dynamics using deductive reasoning.

Instructions for providing deductive reasoning steps:
- For each evolved dynamics , provide the used primitive dynamics.
- For the deductive reasoning steps , provide the steps to combine the primitive

dynamics to evolve the advanced dynamics and the rule of inference used (Modus
Ponens , Modus Tollens ,)

Last , for each situation and dynamics should be general and do not contain details
about specific locations about the objects.

Output in the following format :{ output_format} and leaves 'None ' for
deductive_reasoning_steps if the dynamics are primitive.

3557

Given the following details:
- Primitive dynamics: {env_dynamics}
- Evolved dynamics: {transition['reformatted_dynamics ']}
- Current subtask: {transition['subtask ']}

You are asked to examine the validity of the evolved dynamics and provide feedback.

Instructions for examining the validity of the evolved dynamics:
- The evolved dynamics should only be a combination of existing dynamics using

deductive reasoning and should not introduce new dynamics. Output 'True ' if the
evolved dynamics introduce new dynamics; otherwise , output 'False '.

- The evolved dynamics should not introduce any new objects that are not mentioned
in the primitive dynamics. Output 'True ' if the evolved dynamics introduce new
objects; otherwise , output 'False '.

- Each deductive reasoning step should not contradict any of the primitive dynamics.
Output 'True ' if the evolved dynamics contradict the primitive dynamics;

otherwise , output 'False '.

Instructions for examing the usefulness of the evolved dynamics:
- The difficulties should be directly related to the current subtask.
- The evolved dynamics should be useful in solving the difficulties identified in

the subtask.
- Evluating the usefulness of the evolved dynamics on a scale of 1 to 5, where 5 is

the most useful and 1 is the least useful.

Last , output the validity of the evolved dynamics in the following format: {
output_format }.

B.7.2 Grounding
The prompts for grounding the agent.
Subtask Termination

Given the following details:
- Subtask description: {self._transition['subtask ']},
- Current observation: {self._transition['state_description ']},
- Initial observation: {self._transition['initial_state_description ']},
- Previous executed actions: {self._transition['previous_actions '][-3:]}
you are asked to decide whether the subtask should be terminated or not.

For deciding whether to terminate the subtask , consider:
- The previous action , provided it was executed successfully.
- The difference between the initial and current observations , including the

inventory changes.

The subtask should be terminated , and the output should be 'True ' only if any of its
termination conditions are met.

Otherwise , if none of the termination conditions are met , the subtask should
continue running , and the output should be 'False '.

Justify whether the termination conditions are met or not first , and then provide
the termination decision.

Output in this format: {output_format }.

Action Selection

Given the following details:
- Current observation: {self._transition['state_description ']}
- Current subtask 's description: {self._transition['subtask ']}
- Previous actions: {self._transition['previous_actions '][-3:]}
- Primitive dynamics: {self._transition['primitive_dynamics ']}

You are asked to:
- identify the objects related to the current subtask and provide their locations

and dynamics.
- select the top 3 actions that contributes to the subtask by either moving closer

to the object or interacting with the object; and provide all the objects and
dynamics directly related with each action.

3558

- based on each action 's related objects , provide the rationale and detailed
consequences of executing each action on the objects.

- select the best action to execute next and provide the justification for your
choice.

Lastly , select the action only from the available actions: {self._transition['
available_actions ']}; {feedback }.

Note: Avoid unnecessary crafting and placement if the items are within reachable
distance.

Please format your response in the following format: {action_format}

3559

B.7.3 Offline Dynamics Learning
Learning Basic Attribute
In the Crafter environment , the world dynamics are unique.

You are tasked with discovering the unique dynamics of actions within this
environment.

Given the state transitions described as follows: {partial_description}, identify
the materials used in the inventory for executing this action.

To discover the materials used in the inventory , consider the following aspects:
- List all the materials used not gained for each state transition and
their corresponding quantities;
- List all the common materials used in all state transitions and their

corresponding
quantities.

If no materials are used in common , simply output as "None".
materials are: wood , stone , coal , iron , diamond , sapling.
Output as many pre -conditions as you can think of in the following format: {

output_format}

Learning Basic Attribute
In the Crafter environment , the world dynamics are unique.

You are tasked with discovering the unique dynamics of actions within this
environment.

Given the state transitions described as follows: {partial_description}, identify
the objects within immediate distance required for executing this action.

To discover the objects within immediate distance , consider the following aspects:
- List all the objects within immediate distance for each state transition before

executing the action , which you can only choose from the object list.
- Identify and list the objects that are present in all state transitions within the

immediate distance before executing the action , which you can only choose from
the object list.

- The common object **must** be present in all state transitions ' immediate objects.

If no objects within immediate distance are in common , simply output as "None".
Object list: [coal , cow , diamond , furnace , iron , lava , skeleton , stone , table , tree ,

water , zombie , plant]
Output as many pre -conditions as you can think of in the following format: {

output_format}

3560

Learning Basic Attribute
In the Crafter environment , the world dynamics are unique.

You are tasked with discovering the unique dynamics of actions within this
environment.

Given the state transitions described as follows: {partial_description}, identify
the facing object required for executing this action.

To discover the objects within immediate distance , consider the following aspects:
- List the facing object for each state transition before this action executed , not

the direction.
- List the union of all the facing object across all the state transitions before

this action executed.
- The union of all the facing object must be present in at least one state

transitions ' facing object.

Object list: [coal , cow , diamond , furnace , iron , lava , skeleton , stone , table , tree ,
water , zombie , plant]

Output as many pre -conditions as you can think of in the following format: {
output_format}

Learning Basic Attribute
In the Crafter environment , the world dynamics are unique.

You are tasked with discovering the unique dynamics of actions within this
environment.

Given the state transitions described as follows: {partial_description}, identify
the the inventory tool required for executing this action.

To discover the objects within immediate distance , consider the following aspects:
- List all the tools in the inventory for each state transition.
- List the tools that are common across all the state transitions.
- The common tools must be present in all state transitions ' tools; if no tools are

required , simply output as "None".
- List the most advanced tool required for executing the action within the common

tools.

Tool list: [None , wood pickaxe , stone pickaxe , iron pickaxe , wood sword , stone sword
, iron sword].

Output as many pre -conditions as you can think of in the following format: {
output_format}

3561

Learning Basic Attribute
In the Crafter environment , the world dynamics are unique.

You are tasked with discovering the unique dynamics of actions within this
environment.

Given the state transitions described as follows: {partial_description}, identify
the inventory and status increase after executing this action.

To discover the increase about the inventory and status , consider the following
aspects:

- List all the increase of the inventory and status for each state transition after
executing the action.

- List the increase of the inventory and status that are common across all the state
transitions after executing the action.

- The common increase must be present in all state transition 's increase; if no
inventory and status can be found , simply output as "None";

Output as many pre -conditions as you can think of in the following format: {
output_format}

Learning Basic Attribute
In the Crafter environment , the world dynamics are unique.

You are tasked with discovering the unique dynamics of actions within this
environment.

Given the state transitions described as follows: {partial_description}, identify
the facing object changes for executing this action.

To discover the change about the facing object , consider the following aspects:
- List all the change about the facing object after executing the action for each

state transition.
- List the common change about the facing object across all the state transitions.
- The common change must be present in all state transitions ' facing object change;

if no change can be found , simply output as "None".

inventory: [wood , stone , coal , iron , diamond , sapling , wood_pickaxe , stone_pickaxe ,
iron_pickaxe , wood_sword , stone_sword , iron_sword]

status: [health , food , drink , energy], the maximum value of status is 9 and you can
use 'increased_to_9 ' to represent the status increase to the maximum value.

Output as many pre -conditions as you can think of in the following format: {
output_format}

3562

Verifying Basic Attribute
In the crafter environment , you have discovered unique dynamics and need to

verify the pre -conditions for the action '{action}'.
Given the state transitions before and after taking the action '{action}',

described as follows: {sampled_descriptions}

You are asked to verify the inventory materials used pre -conditions for the
action '{action}' based on the discovered dynamics.

Precondition: You need to use {precondition} to execute the action.

For the verification , you need to consider the followings:
- List all the inventory materials that are consumed not gained for each state

transition and their corresponding quantity ,
- List the common inventory materials used across all the state transitions.
- Determine if the inventory materials used mentioned in the pre -condition are

within the common inventory materials used.
- If it is within the common inventory materials used , then it is valid;

otherwise , it is invalid.

Finally , if there are more advanced tools exist , then it is invalid; otherwise ,
it is valid.

materials are: wood , stone , coal , iron , diamond , sapling.
Output in this format: {output_format}

Verifying Basic Attribute
In the crafter environment , you have discovered unique dynamics and need to verify

the pre -conditions for the action '{action}'.
Given the state transitions before and after taking the action '{action}', described

as follows: {sampled_descriptions}

You are asked to verify the immediate objects pre -conditions for the action '{action
}' based on the discovered dynamics.

Precondition: You only need {precondition} within immediate distance.

For the verification , you need to consider the followings:
- List all the objects within immediate distance before executing the action for

each state transition only from the object list.
- Identify and list the objects that are present in all state transitions within the

immediate distance before executing the action as common immediate objects ,
only from the object list.

- The common object **must** be present in all state transitions ' immediate objects.
- Determine if there are objects mentioned in the pre -condition that are not in the

common immediate objects.
- If there are objects mentioned in the pre -condition that are not in the common

immediate objects , then it is invalid; otherwise , it is valid.

Object list: [coal , cow , diamond , furnace , iron , lava , skeleton , stone , table , tree ,
water , zombie , plant]

Output in this format: {output_format}

3563

Verifying Basic Attribute
In the crafter environment , you have discovered unique dynamics and need to verify

the pre -conditions for the action '{action}'.
Given the state transitions before and after taking the action '{action}', described

as follows: {sampled_descriptions}

You are asked to verify the facing object pre -conditions for the action '{action}'
based on the discovered dynamics.

Precondition: You need to face {precondition} before execute the action.

For the verification , you need to consider the followings:
- List the facing object for each state transition before this action executed.
- List the union of all the facing object across all the state transitions before

this action executed.
- Determine if the facing object mentioned in the pre -condition is within the union

of all the facing object.
- If the facing object mentioned in the pre -condition is within the union of all the

facing objects , then it is valid; otherwise , it is invalid.

Finally , if there are more advanced tools exist , then it is invalid; otherwise , it
is valid.

Object list: [coal , cow , diamond , furnace , iron , lava , skeleton , stone , table , tree ,
water , zombie , plant]

Output in this format: {output_format}

Verifying Basic Attribute
In the crafter environment , you have discovered unique dynamics and need to verify

the pre -conditions for the action '{action}'.
Given the state transitions before and after taking the action '{action}', described

as follows: {sampled_descriptions}

You are asked to verify the inventory pre -conditions for the action '{action}' based
on the discovered dynamics.

Precondition: You only need {preconditions} to execute the action.

For the verification , you need to consider the followings:
List all the tools in the inventory for each state transition.

- List the tools that are common across all the state transitions.
- The common tools must be present in all state transitions ' tools; if no tools are

required , simply output as "None".
- If the tools mentioned in the pre -condition are within the common tools , then it

is valid; otherwise , it is invalid.

Tool list: [None , wood pickaxe , stone pickaxe , iron pickaxe , wood sword , stone sword
, iron sword].

Output in this format: {output_format}

3564

Verifying Basic Attribute
In the crafter environment , you have discovered unique dynamics and need to verify

the outcome for the action '{action}'.
Given the state transitions before and after taking the action '{action}', described

as follows: {sampled_descriptions}

You are asked to verify the inventory and status increase after executing this
action. '{action}' based on the discovered dynamics.

predicted_increases: You only increase {precondition} in the inventory and status
after executing the action.

For the verification , you need to consider the followings:
- List all the increases of the inventory and status for each state transition after

executing the action as the increases.
- List the increases of the inventory and status that are common across all the

state transitions after executing the action as the common increases.
- The common increases must be present in all state transition 's increases; if no

inventory and status increases can be found , simply output as "None".
- Determine if there are increases mentioned in the predicted_increases that are not

in the common increases.
- If there are increases mentioned in the predicted_increases that are not in the

common increases , then it is invalid; otherwise , it is valid.
Output in this format: {output_format}

inventory: [wood , stone , coal , iron , diamond , sapling , wood_pickaxe , stone_pickaxe ,
iron_pickaxe , wood_sword , stone_sword , iron_sword]

status: [health , food , drink , energy], the maximum value of status is 9 and you can
use 'increased_to_9 ' to represent the status increase to the maximum value from
the non -maximum value.

Verifying Basic Attribute
In the crafter environment , you have discovered unique dynamics and need to verify

the outcome for the action '{action}'.
Given the state transitions before and after taking the action '{action}', described

as follows: {sampled_descriptions}

You are asked to verify the facing object changes after executing this action. '{
action}' based on the discovered dynamics.

predicted_changes: The facing object changes is {precondition} after executing the
action.

For the verification , you need to consider the followings:
- List all the change about the facing object after executing the action for each

state transition.
- List the common change about the facing object across all the state transitions.
- The common change must be present in all state transitions ' facing object change;

if no change can be found , simply output as "None".
- Determine if the predicted changes are within the common changes.
- If the predicted changes are within the common changes , then it is valid;

otherwise , it is invalid.

3565

Verifying Basic Attribute
Given randomly selected frames featuring '{obj}', please complete the following:

1. Identify which objects are most closely related to '{obj}'.
- Rate their relevance using these terms: 'Very related ', 'Not related '.
- Here are the selected frames concerning '{obj}': {description}
2. Identify the common time relationship for this object.
3. Format your response as follows: {object_relationship_format}

Only consider the relationship with the following objects: ['grass ', 'coal ', 'cow ',
'diamond ', 'iron ', 'lava ', 'skeleton ', 'stone ', 'tree ', 'water ', 'zombie ', '
plant ', 'path ', 'sand ', 'plant -ripe ']

For the relationship definitions:
- Very related: They can always be found together.
- Not related: They cannot be found together.

Verifying Basic Attribute
Given randomly selected frames featuring '{obj}' described as: {description}, please

complete the following tasks:

1. Identify the objects and time most closely related to '{obj}' in the provided
description.
- Rate their relevance using the following terms: 'Very related , 'Not related '.

2. Based on the discovered dynamics {dynamics}, verify the relationships between the
objects and time.

3. Output all the valid relationships within the discovered dynamics that match all
the relevance levels of the objects in the provided frames only about the object
'{obj}'.

Consider relationships with the following objects only: ['grass ', 'coal ', 'cow ', '
diamond ', 'furnace ', 'iron ', 'lava ', 'skeleton ', 'stone ', 'table ', 'tree ', '
water ', 'zombie ', 'plant ', 'path ', 'sand ', 'plant -ripe '].

Relationship definitions:
- Very related: They are always found together.
- Not related: They are never found together.

Output in the following format: {object_relationship_format}

3566

Discover Subtask Attribute
In the Crafter environment , the world dynamics are complex and there are many

subtasks to be completed.
Here are the dynamics about the core action {action }:
The precondition:
- it need to face: {self.facing_object_preconditions[action]}
- it need to have {self.immediate_object_preconditions[action]} within immediate

distance
- it need to have {self.inventory_materials_precondition[action]} in the inventory.
- it need to have {self.inventory_tool_precondition[action]} in the inventory.
The outcome:
- its facing object changes to {self.facing_object_change[action]}
- its inventory and status outcome increases on {self.inventory_outcome[action]}
Note: 'None ' indicates that there are no specific preconditions or outcomes for the

corresponding elements of the dynamics ."

Given the subtask "{ subtask}", I want you to write the step -plan for completing this
subtask.

First , read and understand all the provided world dynamics.
Then , locate the world dynamics that are relevant to the subtask.
Next , write the subtask 's requirements , the step -plan for completing the subtask

based on the world dynamics and the outcomes in this format {subtask_plan_format
}

-steps: the general steps required to complete the subtask.
-termination_condition: when should this subtask be terminated; you should consider

the status , potential danger and the outcome of the action
Finally , only output the plan for the subtask.
Here are a few examples: {examples}

Here are the observations on how to completing the subtask: {partial_description}

Verify Subtask Attribute
In the Crafter environment , the world dynamics are complex and there are many

subtasks to be completed.
Here are the dynamics about the core action {action }:
The precondition:
- it need to face: {self.facing_object_preconditions[action]}
- it need to have {self.immediate_object_preconditions[action]} within immediate

distance
- it need to have {self.inventory_materials_precondition[action]} in the inventory.
- it need to have {self.inventory_tool_precondition[action]} in the inventory.
The outcome:
- its facing object changes to {self.facing_object_change[action]}
- its inventory and status outcome increases on {self.inventory_outcome[action]}
Note: 'None ' indicates that there are no specific preconditions or outcomes for the

corresponding elements of the dynamics ."

Given the subtask "{ subtask}", I want you to verify the plan for completing this
subtask {discovered_plan }.

First , read and understand all the provided world dynamics.
Then , locate the world dynamics that are relevant to the subtask.
Next , examine the provided plan 's requirements , the step -plan and the termination

conditions.
Lastly , if it can be applied across different examples , then it is a valid plan.
Here are the observations on how to completing the subtask: {partial_description}
Output within this format{subtask_verification_format}

3567

Discover Subgoal Attribute
Given the following considerations:
- The game 's final goal: collect diamonds and survive.
- All the subtasks: {['collect_coal ', 'collect_diamond ', 'collect_drink ', '

collect_iron ', 'collect_sapling ', 'collect_stone ', 'collect_wood ', '
defeat_skeleton ', 'defeat_zombie ', 'eat_cow ', 'eat_plant ', 'make_iron_pickaxe ',
'make_iron_sword ', 'make_stone_pickaxe ', 'make_stone_sword ', 'make_wood_pickaxe
', 'make_wood_sword ', 'move ', 'place_furnace ', 'place_plant ', 'place_stone ', '
place_table ', 'sleep ']}

- Environment dynamics: {env_dynamics}
- Human player completed subtasks in chronological order: {human_demo}
Note: action_x_y means this action is performed consecutively for y times

Your task is to generate a plan by reordering the subtasks to help the player
achieve the final game goal with different subgoals.

For plan generation , consider:
- List all the subtasks that contributes to the final goal from the human player 's

trajectory.
- Re -order the subtasks that fits the game 's dynamics.
- For each subtask , state it as a subgoal with a description and the exact

repetition of the subtask if needed.

Lastly , output the plan in this format: {output_format };

For example: {output_example}

Verify Subgoal Attribute
Given the following considerations:
- The game 's final goal: collect diamonds and survive.
- All the subtasks: {['collect_coal ', 'collect_diamond ', 'collect_drink ', '

collect_iron ', 'collect_sapling ', 'collect_stone ', 'collect_wood ', '
defeat_skeleton ', 'defeat_zombie ', 'eat_cow ', 'eat_plant ', 'make_iron_pickaxe ',
'make_iron_sword ', 'make_stone_pickaxe ', 'make_stone_sword ', 'make_wood_pickaxe
', 'make_wood_sword ', 'move ', 'place_furnace ', 'place_plant ', 'place_stone ', '
place_table ', 'sleep ']}

- Environment dynamics: {env_dynamics}
- Human player completed subtasks in chronological order: {human_demo}
Note: action_x_y means this action is performed consecutively for y times
- Discovered plan: {discovered_plan}

Your task is to verify the provided plan.

For plan verification , consider:
- List all the subtasks that contributes to the final goal from the human player 's

trajectory.
- Re -order the subtasks that fits the game 's dynamics.
- If the provided plan can be applicable to the different trajectories , then it is

valid.

Lastly , output this format: {output_format };

3568

