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Abstract

Large language models are playing an increas-
ingly significant role in molecular research, yet
existing models often generate erroneous infor-
mation. Traditional evaluations fail to assess a
model’s factual correctness. To rectify this ab-
sence, we present MoleculeQA1, a novel ques-
tion answering (QA) dataset which possesses
62K QA pairs over 23K molecules. Each QA
pair, composed of a manual question, a posi-
tive option and three negative options, has con-
sistent semantics with a molecular description
from authoritative corpus. MoleculeQA is not
only the first benchmark to evaluate molecular
factual correctness but also the largest molecu-
lar QA dataset. A comprehensive evaluation on
MoleculeQA for existing molecular LLMs ex-
poses their deficiencies in specific aspects and
pinpoints crucial factors for molecular mod-
eling. Furthermore, we employ MoleculeQA
in reinforcement learning to mitigate model
hallucinations, thereby enhancing the factual
correctness of generated information.

1 Introduction

Large Language Models (LLMs) have practical
applications in molecule research (Fabian et al.,
2020; Bagal et al., 2021), specifically in the use
of cross-modal models (Liu et al., 2023b; Cao
et al., 2023). These models bridge the gap between
molecular structures and natural language (Bran
and Schwaller, 2023), helping experts understand
the properties, potential applications, and acqui-
sition methods of specific compounds, improving
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understanding of the complex molecular architec-
ture and reducing experimental failure rates.

CID Ground-Truth Generated

9810996 The molecule is a dipeptide com-
posed of N-(3,3-dimethylbutyl)-
L-aspartic acid and methyl L-
phenylalanate units joined by a
peptide linkage.

The molecule is a dipeptide
obtained by formal conden-
sation of the alpha-carboxy
group of N-(3,3-dimethylbutyl)-
L-phenylalanine with ethanol.

10129879 The molecule is the stable isotope
of potassium with relative atomic
mass 38.963707.

The molecule is the stable iso-
tope of tellurium with relative
atomic mass 124.904425.

5281034 A synthetic androgen, it was
mainly used for the treatment of
anaemias until being replaced by
treatments with fewer side effects.

It has a role as a contraceptive
drug, a progestin and a synthetic
oral contraceptive.

15011611 It is found in Tripterygium wil-
fordii and Tripterygium hypoglau-
cum.

The molecule is an abietane
diterpenoid isolated from
the stem bark of Fraxinus
sieboldiana.

Table 1: The accuracy of the state-of-the-art mol2text model
in describing the given molecule is assessed using BioT5-base
(Pei et al., 2023) inference results. The generated content is
plausible and fluent, but comparison with the ground truth
reveals several factual errors highlighted in red.

Although molecular LLMs are capable of gener-
ating task-relevant content, they often suffer from
generating illusory statements. In the widely stud-
ied molecule captioning (mol2text) task, users ex-
pect the model to generate a comprehensive and
detailed description of a given compound. In this
task, existing benchmarks (Edwards et al., 2022;
Liu et al., 2023b) typically employ metrics such
as BLEU (Papineni et al., 2001) and ROUGE (Lin,
2004) to evaluate the performance of molecular
LLMs. However, without examining the factual
accuracy of these models, it is vague to justify
how reliable they are. In Table 1, we provide sev-
eral examples from the CheEBI-20 (Edwards et al.,
2021) test dataset to illustrate this issue. Despite
the plausible and fluent appearance of the generated
content, there are numerous unnoticed inaccurate
statements, which remain difficult to detect under
the current lexical-based benchmarking approach.
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Counterfactual molecular generation content can
lead to the following adverse consequences: 1) Mis-
use of deployed models can deceive and mislead
ordinary users, reducing productivity. 2) Profes-
sionals may lower their expectations of deployed
models when they recognize significant factual er-
rorness, thus hindering positive applications. To
avoid these repercussions, quantifying the level
of comprehension that models have of molecule
knowledge is valuable. However, expertise and
professional knowledge are required for human to
detect hallucinations in generated molecular text,
which is extremely difficult with high cost.

To alleviate the absence of fine-grained factual
correctness evaluation for molecular LLMs, we pro-
pose MoleculeQA, a comprehensive benchmark
based on question-answer pairs covering various
aspects including molecular property, source, struc-
ture, and application. MoleculeQA endeavors to
provide reliable assessments of knowledge compre-
hension for molecular LLMs, and to offer potential
solutions for mitigating model hallucinations.

Construction of MoleculeQA involves two main
stages. 1) Molecular Taxonomy Construction.
We utilize authoritative molecule description cor-
pus as the source. Using a hybrid approach of
rule-based and automated methods, we extract top-
ics based on properties, sources, and other relevant
aspects. After clustering and manual normalization,
we gather the topics to build a hierarchical domain
taxonomy that has broad coverage and strong exper-
tise. 2) Taxonomy-guided QA construction. By
converting each molecular description into several
pairs of QA that align with the topics at different
levels of taxonomy, we can create a QA bench-
mark that guarantees both granularity, breadth, and
quality. MoleculeQA is not only the first factual
evaluation benchmark in the molecular domain, but
also the largest molecular QA dataset.

Based on MoleculeQA, we perform accuracy
tests on various molecular LLMs. Our experimen-
tal results indicate that existing methods remain at
a discernible remove from achieving a precise com-
prehension of molecules, and undercover several
vital factors for molecule modeling. Furthermore,
we utilize MoleculeQA to provide feedback for
molecular LLMs’ reinforcement learning, aiming
to enhance the factual correctness of the models.
Our contributions are summarized as follows:

• We reveal the factual inaccuracies in the con-
tent generated by existing LLMs in the molecule

or chemistry domain, which have not been ade-
quately detected by existing benchmarks.

• For comprehensive factual accuracy evaluation,
we develop a domain taxonomy for molecule
corpus and use it to create a high-quality question
answering benchmark called MoleculeQA.

• Using MoleculeQA, we test a series of mod-
els. Based on our experimental outcomes, we
identify specific deficiencies in molecular LLMs
and summarize several critical factors for molec-
ular understanding. We also attempt to use
MoleculeQA as feedback for reinforcement
learning to reduce model hallucinations.

2 Related Work

2.1 Molecule Understanding LLMs

Advancements in language models pre-trained with
scientific corpora (Lee et al., 2019; Luo et al., 2022;
Beltagy et al., 2019) have shown considerable suc-
cess in molecular research. Recently, cross-modal
models have emerged (Edwards et al., 2021; Luo
et al., 2023a; Liu et al., 2023a), aiming to bridge
the gap between molecular language (bio-sequence
or structure) and natural language. Evaluation tasks
for these models include seq2seq generation-based
tasks (e.g., molecule captioning and text-based de
novo molecule generation) and contrastive-based
tasks (e.g., cross-modal retrieval). The correspond-
ing models can be classified as generative models
(e.g., MolT5 (Edwards et al., 2022), BioT5 (Pei
et al., 2023)) and contrastive models (e.g., MoMu
(Su et al., 2022), MoleculeSTM (Liu et al., 2022)).

Seq2seq tasks assess the model’s translation abil-
ity between modalities. For text-to-molecule gen-
eration, metrics include molecule fingerprint simi-
larity (e.g. Morgan-FTS (Schneider et al., 2015)),
sequence-based metrics like BLEU (Papineni et al.,
2001) and validity. Molecule captioning tasks rely
on n-gram precision (BLEU), recall (ROUGE (Lin,
2004)), or both (METEOR (Banerjee and Lavie,
2005)) to measure lexical similarity but lack chem-
ical knowledge comparison and factual correctness
detection. Retrieval-type tasks align molecules
with descriptions, but overlook fine-grained align-
ment between text snippets and substructures.

2.2 Domain-Specific QA

The Question Answering (QA) task serves as a
quantitative measure for evaluating the reasoning
and inference capabilities of intelligent systems.
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In the general domain, a large number of QA
datasets have been constructed (Rajpurkar et al.,
2016; Lai et al., 2017; Yang et al., 2018). In
addition, specific domains such as medical (Jin
et al., 2019, 2020; Pal et al., 2022), news (Nalla-
pati et al., 2016; Trischler et al., 2016), and legal
(Zheng et al., 2021; Zhong et al., 2019) have also
developed standard QA datasets that are widely
used by the community. QA datasets in specific do-
mains can be classified into extraction-based (Pap-
pas et al., 2018), generation-based (Savery et al.,
2020), multi-choice (Pal et al., 2022) and Yes / No
formats (Jin et al., 2019). QA pairs are constructed
from various sources, including scientific articles
(Jin et al., 2019), examination problems (Pal et al.,
2022; Zaki et al., 2023), professional databases
(Liang et al., 2023), and crowd-sourcing data (Wei
et al., 2020; Hendrycks et al., 2020).

However, in the molecular domain, there is
a scarcity of comprehensive, diverse, and high-
quality QA datasets. Existing datasets like
DrugChat (Liang et al., 2023) have limitations
in terms of molecule features and simplistic an-
swers. BioMedGPT (Luo et al., 2023b) transforms
molecule caption task datasets into QA format,
inheriting current evaluation issues like domain
knowledge deficiency and excessive reliance on
lexical similarity. Conversely, MoleculeQA con-
structs a domain taxonomy and derives QA pairs
from descriptive texts, ensuring comprehensive, di-
verse, high-quality, and credible coverage.

3 MoleculeQA Dataset

3.1 Exposure of Factual Correctness Issue

In this subsection, we analyze the extent of factual
correctness in the generated content of the molecule
captioning (mol2text) models.
Setup. To evaluate the reliability of compound
descriptions generated by these models, we cate-
gorize them into four different aspects: Structure,
Property, Application, and Source. The aspects
are derived from descriptions in PubChem (Kim
et al., 2022), the largest molecule caption dataset
currently available. PubChem includes specific
sources for each molecule’s description, such as
Lotus (Mun et al., 2016) for source information,
DrugBank (Wishart et al., 2017) for application
details, CAMEO Chemicals (cam) for property de-
scriptions, and multiple data repositories for struc-
ture information. The definitions of these main
aspects are summarized in the Table 2 below.

Aspect Definition

Structure Details about architecture, composition, and
interaction of atoms within a molecule.

Property Physical, biological or chemical property in
various environments or reactions.

Application The utilization of a molecular compound in
various applications and scenarios.

Source The natural or synthetic origin, as well as
the production context related to a molecule.

Table 2: Evaluation Aspects of description about molecules.

We randomly sample 100 molecule&caption
samples from the ChEBI-20 test set and take
MolT5, MoMu, and BioT5 models to generate de-
scriptions for each molecule. Both ground truth and
generated content are manually classified based on
four aspects. We evaluate the models’ descriptions
in each aspect against the ground truth, with two
trained domain experts judging them as correct (if
the generated content matches the ground truth),
miss (if the ground truth has a corresponding as-
pect description but it was completely missing in
the generated content), or error (if there is a clear
factual inconsistency with the ground truth).

Figure 1: The performance of three representative models
on the traditional metrics for the molecule caption task (e.g.
BLEU etc.) and the factual accuracy metric we defined.

Model Structure Property Application Source

MolT5-base 63/0/34 1/4/3 7/15/8 20/10/30
MoMu-base 63/0/34 1/4/3 5/16/9 19/ 8/33
BioT5-base 62/0/35 2/3/3 9/12/9 16/13/31

Table 3: Human Assessment of Model Generated Molecu-
lar Descriptions based on 4 aspects, with the counts presented
according to error / miss / correct.

Results. In Figure 1, we assess the content gener-
ated by the model using traditional lexical-based
metrics (BLEU, ROUGE, METEOR), as well as
their factual accuracy on the selected subset. We
define factual accuracy as the ratio of correct pre-
dictions to the total number of slots, serving as
an average metric to evaluate the reliability of the
generated content. Despite the progress in training
methodologies, models have exhibited incremental
improvements in lexical similarity metrics (such as
a 17.6% increase in BLEU-2). Nevertheless, there
is no discernible improvement in the dependability
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Figure 2: The process of constructing a molecular domain taxonomy. The procedures involve the selection of the information
source, extraction of topics, normalization and structuralization of topics, and hierarchical clustering by domain experts.

Text: "It has a role as a metabolite 
and an acaricide. It is a diterpenoid.."
Topic: {"acaricide"..,}

Content: "It has a role as an acaricide."

acaricide

Therapeutic Usage

Application

Appropriate Topic: 
Therapeutic Usage

Q: "How can the molecule be 
applied for therapeutic use？"

"It has a role as an acaricide."
"Can be used as vasodilation."
"It can be used as a recreational drug."
"Can be used as sedative."

(a) Extract Content (b) Reassign topic (c) Design question (d) Collect Pos. & Neg. answers

Figure 3: The process of constructing a molecular domain taxonomy. The procedures involve the selection of the information
source, extraction of topics, normalization and structuralization of topics, and hierarchical clustering by domain experts.

of the generated content, with factual accuracy per-
sisting at 0.4. In our detailed factual performance
analysis (Table 3), we observe that models often
omit application-related details and relevant prop-
erties. The generated descriptions about Structure
show a significant discrepancy rate of more than
63% compared to ground truth. This challenges
the credibility of expert model-generated content,
which warrants further scrutiny.

3.2 Domain Taxonomy Construction

Taxonomy frameworks organize concepts or en-
tities within a domain hierarchically, aiding in
the organization of domain-specific queries (Liu
et al., 2012) and ensuring the quality of comprehen-
sion domain knowledge and constructing question-
answering pairs. We adhere to established proce-
dures for the construction of domain taxonomies,
as illustrated in Figure 2.
Information Source. Considering the data quality,
we choose the most widely used ChEBI-20 dataset
as our molecular description corpus. To mitigate
the class imbalance issue in ChEBI-20, primarily
dominated by structural information, we include
additional sources like T3DB (Wishart et al., 2014),
FDA Pharm Classes, and DrugBank. We employ
a pre-trained text classifier to perform an initial
coarse-grained division of the corpus based on the
four aspects we defined above, which serve as the
first-level nodes in our taxonomy.
Topics Extraction. We further employ a hybrid ap-
proach combining rule-based and few-shot prompt-
ing methods to extract topics and their correspond-

ing original text from the corpus, formatting the
(topic, text) pairs. Subsequently, to mitigate lexi-
cal noise and uncontrolled granularity within the
1K topics collected, we utilize GPT-4 (OpenAI,
2023b) with a few-shot prompt-based approach to
accomplish an initial semantic aggregation.
Topics Normalization & Structuralization. Next,
domain experts intervene to perform rule-based
topic merging and concept splitting manually. Fi-
nally, the remaining 587 topics are hierarchically
clustered by human experts, resulting in a three-
level molecular domain taxonomy. An overview of
this taxonomy can be found in the Appendix. The
leaf nodes represent specific molecule characteris-
tics and are the narrowest topics/concepts, while
non-leaf nodes represent broader concepts.

3.3 MoleculeQA Construction

Based on the taxonomy in 3.2, we develop a 4-step
procedure to extract questions and answers from
molecular descriptions to construct MoleculeQA.
The whole workflow is displayed in Fig 3.
Content Extraction & Reassign Topic. With
(topic, text) pairs annotated in 3.2, a reasonable
notion is to query molecules by topic, but con-
tent related to a specific topic can be over-brief
to be queried. For example, for the molecule
CID:5479113, the content of topic acaricide

is It has a role as an acaricide. Without
enough information, it is difficult to justify which
species of mites this molecule is effective. How-
ever, it can be queried from a coarser granular-
ity like Therapeutic Usage, the parent topic of
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Taxonomy Reference Description Extracted Question Positive Answer Negative Answer

Property→
Antiviral
activity

It has been shown to exhibit inhibitory ef-
fects on the viral neuraminidases from two
influenza viral strains, H1N1 and H9N2.

Which kind of antivi-
ral activity does this
molecule have/exhibit?

It exhibits inhibitory effects on the
viral neuraminidases from two in-
fluenza viral strains, H1N1 and
H9N2.

It is used for the treatment of cy-
tomegalovirus (CMV) retinitis in
AIDS patients.

Structure→
Backbone

The molecule is a heparan sulfate com-
posed of a backbone of repeating beta-
D-glucuronosyl-(1->4)- N-sulfonyl-alpha-D-
glucosamine units joined by (1->4)-linkages.

Which kind of backbone
does this molecule have?

It has a backbone of repeating
beta-D-glucuronosyl-(1->4)-N-
sulfonyl-alpha-D-glucosamine units
joined by (1->4)-linkages

It has a backbone of repeating
alpha-L-iduronosyl-(1->4)-N-
sulfonyl-alpha-D-glucosamine
units joined by (1->4)-linkages.

Table 4: Examples of automatically generated QA instances. blue stands for reference locations, red for factual errors.

acaricide.
To select a suitable topic for querying, we first

use an agent to extract content related to the topic
from text. A rule-based program is employed to
verify the content, and, in cases where specific de-
tails about a given topic are unavailable, we replace
the topic with its parent topic until the level of
granularity is appropriate for querying purposes.
Question Design. We invite two annotators
to design questions for topics based on the
extracted contents. For example, contents
for topic inhibitor include It is a protein

synthesis inhibitor and It is a mitotic

inhibitor, annotators may design Which kind

of inhibitor is this molecule?. For each
topic, annotators discuss choosing the better design
as its final question and make sure each question
can be answered using the molecular descriptions.
Pos. Options Collection. For the positive op-
tions, since formal extracted contents may be rigid
and can’t be directly used as answers, we lever-
age the in-context learning capability of ChatGPT
(OpenAI, 2023a) to generate appropriate positive
options via few-shot prompting.
Neg. Options Collection. For the same question,
we take positive options from other molecules as
negative candidates for each molecule. To elimi-
nate illegal negatives, we merge synonymous op-
tions and remove overlapping options. Then we
adopt BioT5 (Pei et al., 2023) to encode all candi-
dates and choose candidates with similar semantics
to the positive option as negatives. Several gener-
ated QA instances are shown in Table 4.
Data Split. We split molecules in MoleculeQA into
train/dev/test sets by scaffolds to divide molecules
with similar structures into the same sets as sug-
gested in (Hu et al., 2019), making the QA task
more challenging yet realistic.
Quality Control. To provide reliable factual eval-
uation, LLM and human efforts are combined to
ensure MoleculeQA’s quality. We convert each QA
instance into natural language using templates and
assess its logical and semantic consistency with the

original description using ChatGPT. This process
is repeated 3 times to minimize variations. With
taxonomy guidance, the number of disqualified
samples is minimal and can be manually resolved.
Human Evaluation. We assign one annotator 2 to
evaluate the reliability of the test split and receive
error rate lower than 1%. Finally, we randomly
sample 100 cases and assign two annotators to eval-
uate the quality of QA samples. The annotators
assess the Consistency between the question and
the correct option with the reference caption text,
as well as Discrimination between the positive and
negative options. Human evaluation results can be
found in Table 5. The high consistency and discrim-
ination metrics, along with a satisfactory level of
agreement (Cohen kappa) among annotators, vali-
date the quality and reliability of our MoleculeQA.

Metric Annotator 1 Annotator 2 Agreement (κ)

Consistency 99.0 99.0 1.0
Discrimination 97.0 96.0 0.85

Table 5: Evaluation for the generated QAs quality.

3.4 Data Analysis
Data Statistics. In Table 6, we present the num-
ber of QA samples and the coverage of topics in
MoleculeQA in comparison to several popular bio-
molecular and chemistry-related benchmarks (Wei
et al., 2020; Yue et al., 2023; Hendrycks et al., 2020;
Lu et al., 2022). We observe that MoleculeQA
is both the first benchmark focused on evaluating
molecular factual knowledge and the largest scale
QA dataset in the molecular field.

Benchmarks # QA Sophistication

MMLU(Chem) 534 College, High school, Medicine
MMMU(Chem) 638 Inorganic, Organic, Physical
ScienceQA 867 Solution, Reaction, Molecule
ChemistryQA 4,500 Reaction, Molecule, Physics

MoleculeQA 61,574 Structure, Source, Property, Application

Table 6: Number of samples and topics coverage compared
to popular related benchmarks.

The train, development, and test split consists of
49,993, 5,795 & 5,786 QA samples. The general

2All annotators are doctoral students engaged in molecule
research, with at least six months of professional experience.
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statistics of the dataset are summarized in Table 7.
Aspects Structure Property Application Source Total

# Train 32,176 4,838 1,917 11,062 49,993
# Dev 3,314 698 558 1,225 5,795
# Test 3,113 731 599 1,343 5,786
Avg. Q Tokens 7.96 9.02 7.90 7.00 7.74
Avg. A Tokens 9.50 10.98 11.93 7.96 9.42

Table 7: MoleculeQA dataset statistics, where Q and A rep-
resent the Question and Answer respectively.

Data Distribution. Fig 4 provides the visualized
distribution of MoleculeQA. All topics in our tax-
onomy are queried in MoleculeQA for a compre-
hensive, fine-grained factual evaluation. Inherited
from ChEBI-20, QA pairs in the Structure aspect
account for approximately two-thirds of the whole
MoleculeQA. While topics within each aspect have
relatively balanced sample numbers.
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Figure 4: An overview of MoleculeQA topics distribution.
Four coarse-grained aspects occupy the inner circle, and in the
outer circle we list finer-grained non-leaf topics.

4 Experiment

4.1 Baseline Models
The main purpose of baseline experiments is to
investigate current models’ performance in answer-
ing multiple-choice questions related to molecu-
lar knowledge. We categorize models based on
whether their base LLMs are adequately trained on
a large-scale biomolecular corpus as follows:
Molecular LLM, represented by MolT5 (Edwards
et al., 2022), MoMu (Su et al., 2022), BioT5
(Pei et al., 2023), MolCA (Liu et al., 2023b) and
BioMedGPT-LM-7B (Luo et al., 2023b). These
models undergo incremental training stages with
extensive molecular modality data (e.g. SMILES
or SELFIES strings), biomedical academic papers,
and molecule-description pairs.
General LLM, represented by T5 (Raffel et al.,
2019), OPT (Zhang et al., 2022), GALACTICA

(Taylor et al., 2022), BLOOM (Scao, 2022), Pythia
(Biderman et al., 2023), LLama-2 (Touvron et al.,
2023b), along with its instruction fine-tuned deriva-
tives, such as Vicuna (Chiang et al., 2023) and
Mol-Instruction-7B (Fang et al., 2023).
Large-scale Universal Models. We evaluate the
large-scale, state-of-the-art LLMs in few-shot set-
tings, including open-access models such as Mix-
tral 8×7B (Jiang et al., 2024), and OpenAI’s GPT
family, specifically GPT-3.5 (OpenAI, 2023a) and
GPT-4 (OpenAI, 2023b) accessed via API 3.

4.2 Evaluation Setups

We follow training approaches and hyper-
parameters in the original papers for respective
methods. Details about training configuration and
few-shot examples are provided in Appendix A.3.
Training approaches in our evaluation include:
Full Fine-tuning: All model parameters are up-
dated, including the base LLMs, structure encoders,
and projectors for molecule-language alignment.
LoRA-based Fine-tuning: The base LLMs are
tuned by low-rank adaptation (Hu et al., 2021), and
structure encoders are also trainable.
Few-shot Setting: We sample 10 QA examples
from four aspects respectively to prompt LLMs
with task definition and contextual information.

The main metric of MoleculeQA is the accuracy,
which is defined as the ratio of correctly answered
samples among all test samples. We present the ac-
curacy in four aspects as well as the total accuracy.

4.3 Main Results

We summarize the benchmarking results in Table 8:
• Comparison over four aspects. Achieving the

highest accuracy on Source is generally more fea-
sible for each model, whereas addressing Prop-
erty and Application presents notable difficulties,
with no method surpassing a 50% accuracy rate.
This phenomenon may be ascribed to the compar-
atively smaller data scale within these domains.

• Molecular LLMs v.s. General LLMs. Molecu-
lar LLMs demonstrate better performance, with
a minimum total accuracy over 51%. By contrast,
other than T5s, decoder-only General LLMs
fail to achieve a total accuracy exceeding 50%,
whether fully fine-tuned or tuned with LoRA.

• T5 series comparison. Among T5-based meth-
ods, T5 demonstrates superior performance
compared to MolT5 (e.g., T5-base surpasses

3https://api.openai.com/v1/chat/completions
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Model # Trainable
Params Implementation Structure Source Property Application Total

Random – – 24.41 22.30 23.04 24.57 24.03

Molecular LLM

MolT5-small 80M full ft 49.59 64.18 46.51 40.90 51.69
MolT5-base 250M full ft 58.01 65.85 45.14 42.24 55.39
MoMu-small 82M full ft 52.71 63.44 44.87 40.57 52.96
MoMu-base 252M full ft 61.58 65.30 43.78 43.07 57.43
BioT5-base 252M full ft 65.98 69.24 49.11 40.73 62.03
MolCA-125M 100M LoRA ft 65.54 67.34 45.77 40.33 60.30
MolCA-1.3B 110M LoRA ft 71.12 70.98 47.81 43.17 64.79
BioMedGPT-LM-7B 40M LoRA ft 54.19 60.01 38.85 40.90 52.23

General LLM

T5-small 60M full ft 55.51 64.41 45.42 38.56 54.55
T5-base 220M full ft 60.42 66.42 45.83 43.74 58.24
OPT-125M 125M full ft 38.58 55.92 41.04 28.73 42.93
OPT-350M 331M full ft 44.39 60.83 46.24 40.57 48.05
GALACTICA-6.7B 12.5M LoRA ft 32.35 41.92 31.05 28.21 33.96
BLOOM-7.1B 27.5M LoRA ft 35.01 47.51 31.46 33.56 37.31
Pythia-6.9B 29.4M LoRA ft 42.79 58.90 38.58 39.07 45.61
Mol-Instruction-7B 40M LoRA ft 37.46 47.36 32.69 29.88 38.37
Llama-2-7B-chat 40M LoRA ft 28.75 39.84 31.33 27.71 31.54
Llama-2-13B-chat 63M LoRA ft 34.37 43.86 31.05 29.72 35.67
Vicuna-v1.5-7B 40M LoRA ft 34.89 44.15 34.20 31.55 36.61
Vicuna-v1.5-13B 63M LoRA ft 37.01 43.19 30.64 31.55 37.07

Large-scale Universal Models
Mixtral-8×7B-Instruct-v0.1 – 10-shot 23.32 31.87 32.89 29.96 27.79
GPT-3.5-1106-turbo – 10-shot 25.60 37.60 28.04 32.22 29.29
GPT-4-1106-preview – 10-shot 60.94 50.19 35.57 43.91 53.47

Table 8: We report the accuracy (%) results on MoleculeQA test set under different aspects (Best for model-wise).

MolT5-base in total accuracy by 5.1%) contra-
dicting their performance on molecule caption
tasks. BioT5 combines bio-molecular texts and
databases for molecular pretraining, achieving
higher total accuracy than T5 (+ 6.5%).

• Decoder-only LLMs comparison. Among
Llama-based models, BioMedGPT-7B achieves
the best performance with incremental pre-
training, while Mol-Instruction fine-tuned by in-
structions has slight improvement than Llama
and Vicuna. With the similar size of the base
model (7B) and LoRA parameters, the perfor-
mance ranking among different models is as
follows: Pythia > BLOOM > GALACTICA >
Llama, which may provide a reference for molec-
ular base model selection. Increasing model size
(e.g. 7B→13B) also receives mild accuracy gain.

• Single v.s. Multiple modalities. Both MoMu
and MolCA are models that jointly incorporate
molecular 2D graph modality and textual infor-
mation. They demonstrate improvements over
their base models (MolT5 and GALACTICA re-
spectively) that solely rely on 1D-text modality.

• Large-scale Universal Models. The utilization
of highly advanced models, such as GPT-4, has
potential in the field of molecular research. In a
10-shot scenario, GPT-4 demonstrates accuracy
comparable to certain specialized models. How-
ever, the performance of smaller models declined

sharply, which may be attributed to the lack of
their emergent abilities((Wei et al., 2022)).

5 Analysis

We propose the following research questions (RQs)
for the molecular domain to guide our analysis:
• RQ1: Are existing LLMs powerful enough for

application in practical molecular scenarios?
• RQ2: What factors are crucial for enhancing

LLMs’ ability for molecule comprehension?
• RQ3: Can MoleculeQA be adopted to alleviate

the hallucinations in molecular LLMs?

5.1 In-depth Performance Analysis (RQ1)

We draw a preliminary conclusion from Table 8
that existing LLMs’ comprehension of molecules
is far from satisfactory: When confronted with
aspects of Property and Application, pivotal for
real-world applications, evaluated models consis-
tently fail to achieve commendable accuracy. To
more thoroughly assess the methods’ level of com-
prehension across various molecular aspects, we
plot T5-base and BioT5’s accuracy over each sub-
category in our taxonomy in Fig. 5. We find that in
aspects of Source and Structure, two models exhibit
consistent performance, with accuracy exceeding
40% across all categories. But on sub-topics like
Agricultural Chemical and Approval status, two
models perform notably sub-optimal. Various ac-
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Figure 5: Accuracy of different finer topics under 4 coarse-grained aspects on the MoleculeQA test set. We select BioT5- and
T5-base as representatives of Molecular LLM and General LLM, respectively, represented by solid and dashed bars.

curacy on different topics can serve as a confidence
coefficient for related model applications.

5.2 Crucial Factor Attribution (RQ2)

We summarize the following crucial factors for
improving molecular comprehension ability:
Molecular Corpora. The two T5 variants, MolT5
and BioT5, displays divergent outcomes. MolT5
performs worse compared to T5, while BioT5
demonstrates improved performance. This di-
vergence can be attributed to the differences in
their training corpora, specifically in terms of
scale and diversity. Similarly, decoder-only mod-
els also exhibit this phenomenon: BioMedGPT
(4.2M bio-molecular papers) > Mol-Instruction
(1M molecular-oriented instruction samples) > Vi-
cuna (70K general instruction samples) > Llama
(General corpus). The above findings emphasize
the importance of large, diverse, and high-quality
molecular corpus for improving performance.
Modality Modeling Strategy. We investigate
which modality modeling strategies can more ef-
fectively facilitate molecular modeling. (1) Modal-
ity learning: There is a significant performance
gap between LoRA-based methods and methods
employing multi-modal fusion or full fine-tuning,
which underscores that an adequate scale of train-
able parameters is necessary to master the molecule
modalities. (2) Multi-modal fusion: MolCA and
MoMu demonstrate that fusing molecular graphs
into the semantic space of LLMs is viable. How-
ever, although they both deploy GIN as graph en-
coder, in comparison to MoMu’s linear adaptation,
MolCA’s Q-Former (Li et al., 2022) graph adapter
achieves a much more significant improvement.

5.3 Hallucination Alleviation (RQ3)

Reinforcement Learning (RL) from feedback has
widespread applications for mitigating hallucina-
tions (Yu et al., 2024; Gunjal et al., 2024). However,
this method is rarely applied to molecule caption
(Gkoumas and Liakata, 2024). To verify the fea-

sibility of this approach, we adopt MoleculeQA
to provide feedback to optimize the fine-tuned
molecule caption models: Given a QA pair of
molecule x, we designate the positive option as
the preferred output yw and one negative option as
the dis-preferred output yl, and employ Direct Pref-
erence Optimization (Rafailov et al., 2023) (DPO)
as the RL strategy to optimize the model π:

LDPO(πθ;πref) =− E(x,yw,yl)∼D

[
log σ

(

β log

(
πθ(yw | x)
πref(yw | x)

)

− β log

(
πθ(yl | x)
πref(yl | x)

))]

where πθ is the policy model parameterised by θ
, πref is the fine-tuned model as the reference, β is
a hyper-parameter and σ is the Sigmoid function.

We convert QA instances into mol2text format
and remove molecules in ChEBI-20’s test set, af-
ter optimizing MolT5 and BioT5 on this corpus
with DPO, we evaluate their factual correctness
like Section 3.1 and report the result in Table 9.

Model Structure Property Application Source

MolT5-base 63/0/34 1/4/3 7/15/8 20/10/30
MolT5-base-DPO 59/0/38 0/2/6 10/13/7 17/ 8/35
BioT5-base 62/0/35 2/3/3 9/12/9 16/13/31
BioT5-base-DPO 57/1/39 1/2/5 11/10/9 14/14/33

Table 9: Comparison about Factual Correctness. We
manually evaluate two optimized models on the same 100
cases. An intuitive comparison is provided in Table 12.

The result indicates that, two models are guided
by counterfactual negative options to discern cor-
rect/incorrect fine-grained molecular facts, and to
generate descriptions that align better with ground
truth across most aspects, except for Application.
We attribute this to the small scale of Application.
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6 Conclusion and Future Work

In conclusion, this paper addresses the absence
of evaluation for factual correctness in Large Lan-
guage Models (LLMs) within the molecular do-
main. By organizing molecular descriptions into a
taxonomy and constructing QA pairs through hu-
man and LLM efforts, we introduce MoleculeQA,
a novel dataset for molecular factual question an-
swering. Our evaluation reveals shortcomings of
existing models, emphasizing critical factors for
molecular comprehension and providing guidance
for molecular LLMs’ development. We also make
preliminary attempt to alleviate the hallucinations
in molecular LLMs based on MoleculeQA. Look-
ing forward, we propose three future directions: (1)
Design a powerful molecular model based on our
analysis. (2) Investigate more and better methods to
apply MoleculeQA for the optimization of molecu-
lar LLMs. (3) Incorporate additional data sources
to enrich MoleculeQA’s comprehensiveness.

7 Limitations

We conclude our limitations into the following as-
pects: (1) Imbalanced data distribution across dif-
ferent aspects, notably with Structure and Source
data dominating the majority. This skew results
from the overall prevalence of structural and source-
related information in the data sources. To address
this, future efforts will focus on introducing more
data related to properties and applications while ex-
panding topic coverage and diversity, all while safe-
guarding against data leakage. (2) Absence of full
fine-tuning for large models: Under the constraint
of computational resources, we fail to fully fine-
tune LLMs with 7B parameters and above, leading
us to opt for adaptation-based fine-tuning methods.
(3) We only conduct a preliminary attempt to allevi-
ate the issue of model hallucinations, the potential
of MoleculeQA is left for further exploration.

8 Potential Risks

Although MoleculeQA offers a viable approach
for factual assessment in the molecular domain
with reliable data quality, there remains a risk of
misuse. Evaluations on this dataset may not accu-
rately represent a model’s comprehension over all
molecules. MoleculeQA could potentially be lever-
aged to furnish a veneer of reliability for models
with underlying risks.
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A Appendix

A.1 Data Sources and License
As depicted in Table 11, we elaborate on the ori-
gins and legal permissions associated with each
data component utilized in the development of the
MoleculeQA. This encompasses both biomolecular
data and textual descriptions. Thorough scrutiny
was conducted on all data origins to confirm com-
patibility with our research objectives and sub-
sequent utilization. Proper and accurate citation
of these data sources is consistently maintained
throughout the paper.

A.2 Details about Taxonomy
We present the overall hierarchical structure of the
taxonomy upon which MoleculeQA is based in
Figure 6. Additionally, Table 10 provides details
regarding the subtopics and part of leaf topics en-
compassed within each of the four aspects: Struc-
ture, Source, Property, and Application.

A.3 Experimental Setup Details
A.3.1 Baselines
The following parts will individually introduce
the models we evaluated in this study and the ap-
proaches used for implementation.
T5 (Raffel et al., 2019) is an encoder-decoder
model pre-trained on a multi-task mixture of un-
supervised and supervised tasks for which each
task is converted into a text-to-text format. We di-
rectly fine-tuned it on MoleculeQA dataset from
public checkpoints 4 with three different model
sizes: small, base and large. It’s important to note
that the original T5 pre-training does not incorpo-
rate any specific knowledge related to the domain
of molecules.
MolT5 (Edwards et al., 2022) undergoes joint
training on molecule SMILES from the ZINC-15
dataset (Sterling and Irwin, 2015) and a general
corpus from the C4 dataset (Raffel et al., 2019),
enabling MolT5 to acquire prior knowledge in

4https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md#t511

both of these domains. It contains three different
sizes: small, base, and large. In the experiment, we
utilized pre-trained model checkpoints of various
sizes 5 released by the authors. Subsequently, we
conducted full fine-tuning on the MoleculeQA train
set, followed by evaluating on the test set.
MoMu (Su et al., 2022) is pre-trained using molec-
ular 2D graphs and their semantically related tex-
tual data (crawled from published Scientific Cita-
tion Index papers) via contrastive learning. We
adopted MoMu-K pre-trained checkpoints 6 where
the text encoder is initialized with the weights of
KV-PLM (Zeng et al., 2022). Following the origi-
nal methodology, we injected encoded graph fea-
tures into MolT5-base & large and conducted fine-
tuning on MoleculeQA.
BioT5 (Pei et al., 2023) as a comprehensive pre-
training framework, builds upon the methodology
of MolT5 while enhancing cross-modal integration
into biology through chemical knowledge and nat-
ural language associations. It leverages SELFIES
for robust molecular representations and extracts
knowledge from the surrounding context of bio-
entities in unstructured biological literature. We
utilized the official base version pre-trained check-
point 7 and converted the MoleculeQA data into
the corresponding format for fine-tuning.
MolCA (Liu et al., 2023b) facilitates a language
model (LM), such as Galactica, in comprehend-
ing both text- and graph-based molecular contents
through its cross-modal projector. This projector,
implemented as a Q-Former, serves to bridge the
representation space of a graph encoder with the
text space of an LM. Additionally, MolCA employs
a uni-modal adapter to enable efficient adaptation
of the LM to downstream tasks. We conducted pre-
training, including both stage 1 and stage 2, on the
125M and 1.3B versions, based on the official code
and cleaned data 8. Subsequently, we performed
finetuning on MoleculeQA.
BioMedGPT-LM-7B (Luo et al., 2023b) It is a
large generative language model based on Llama2
in the biomedical domain. It was fully fine-tuned
from the Llama2-7B-Chat with millions of biomed-

5https://huggingface.co/laituan245/
molt5-small, https://huggingface.
co/laituan245/molt5-base/, https:
//huggingface.co/laituan245/molt5-large/

6https://github.com/ddz16/MoMu?tab=
readme-ov-file#pretrain

7https://huggingface.co/QizhiPei/
biot5-base

8https://github.com/acharkq/MolCA
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 MoleculeQA

 Property

 Types of Reactions
37

 Biological and Pharmacological Activities
19

 Chemical Interaction and Mechanism
13

 Chemical Properties
6

 Drug and Substance Classification
12

 Environmental and Safety Concerns
7

 Medical and Therapeutic Efficacy
8

 Physical and Sensory Properties
17

 Structure

 Biochemical and Biological Terms

 Proteins and Enzymes
4

 Nucleic Acids and Bases
3

 Carbohydrates and Sugars
5

 Peptides and Amino Acids
3

 Other Biochemical Entities
9

 Chemical Bonding and Interactions
 Types of Bonds

6

 Bonding Concepts
3

 Chemical Compounds and Classes

 Acids and Bases
3

 Organic Compounds
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 Lipids, Steroids and Fatty Acids
7

 Salts
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 Ions
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 Chemical States
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 Chemical Species
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 Chemical Reactions and Processes
 Types of Reactions
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 Derivatives and Substitutes
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 Functional Groups and Chemical Entities

 Functional Groups and Moieties
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 Types of Molecules and Components
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 Specific Atoms and Atom-related Terms
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 Molecular Structure and Configuration

 Basic Structure, Backbone and Configurations
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 Conjugate Relationship
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 Source
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 derives from

 isolated from

 found in

 Application

 Agricultural Chemicals
10

 Biological Agents
8

 Chemical Applications and Techniques
10

 Pharmacodynamics and 
 Pharmacokinetics

9

 Regulatory Status and Approval
3

 Research and Development
5

 Therapeutic Use
40

Figure 6: The overarching structure of the MoleculeQA taxonomy comprises multiple aspects and subtopics arranged
hierarchically to categorize various facets of molecular factual knowledge. Due to space constraints, we did not elaborate on all
leaf topics.
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ASPECT SUB TOPICS LEAF TOPICS

Property

Biological and Pharmacologi-
cal Activities

"antimicrobial activity", "anti-neoplastic activity", "antioxidant activity",
"enzyme inhibition", "ion channel activity", "receptor activity"...

Reaction Types "acetylation", "condensation", "dehydrogenation", "epoxidation", "glycosy-
lation", "hydroxylation", "oxidation", "phosphorylation", "reduction"...

Chemical Interaction and Mech-
anism

"action", "affinity", "binding", "conversion", "decomposition", "duration",
"formation", "mechanism", "reaction/binding", "receptor affinity", "selectiv-
ity"...

Chemical Properties "chemical nature", "sensitivity", "ph value", "stability", "valence", "reactiv-
ity"

Environmental and Safety Con-
cerns

"bio-accumulation", "xenobiotic", "cell permeability", "teratogenic agent",
"environmental contaminant", "resistance", "safety concerns"

Medical and Therapeutic Effi-
cacy

"analgesic activity", "anti-inflammatory activity", "antimalarial activity",
"anti-mycobacterial", "carcinogenicity", "medical effects", "potency"...

Physical and Sensory Properties "abundance", "atomic mass", "boiling point", "color", "half-life", "odor",
"optical activity", "physical state", "solubility", "taste", "volatileness"...

Application

Agricultural Chemicals "fungicide", "herbicide", "insecticide", "disease control", "herbicide safener",
"synthetic auxin", "phytoestrogen"...

Biological Agents "antibiotic", "antifungal drug", "antibacterial drug", "antiprotozoal", "antivi-
ral drug", "nematicide", "acaricide", "antiseptic"...

Chemical Applications and
Techniques

"reagent", "indicator", "detection", "derivatisation agent", "fluorescent dye",
"production", "chromatographic reagent", "tracer", "solvent", "food addi-
tive"...

Pharmacodynamics and Phar-
macokinetics

"inhibitor", "antagonist", "prodrug", "modulator", "sympathomimetic agent",
"allergen", "sodium channel blocker", "ligand", "agonist"...

Regulatory Status and Approval "approval", "withdrawn from market", "registered in"...
Research and Development "experimental", "biomarker", "clinical development", "testing"...
Therapeutic Use "anti-arrhythmia drug", "anti-allergic agent", "anti-asthmatic drug", "an-

ticoronaviral agent", "anti-neoplastic agent", "anti-ulcer drug", "anti-HIV
agent", "orphan drug", "recreational drug", "vasodilator"...

Source

found in "found in"
metabolite "metabolite"
derives from "derives"
isolated from "isolated"

Structure

Biochemical and Biological
Terms

"active metabolite", "alkaloid" "coenzyme a", "enzyme", "epitope", "fatty
acyl coa", "glucoside", "hapten", "nucleobase", "oligosaccharide", "sphin-
goid base", "substrate"...

Chemical Bonding and Interac-
tions

"glycosidic bond", "disulfide bonds", "double bond", "exocyclic double
bond", "peptide bond", "c=c double bond", "bond", "connection", "attach-
ment"...

Chemical Compounds and
Classes

"acid", "alcohol", "amine", "cation", "dimer", "enamide", "hydrochloride",
"ion", "lactam", "polyphenol", "salt", "phosphate", "sulfate", "oxoanion",
"zwitterion"...

Chemical Species and States "anhydrous form", "heptahydrate form", "oxidation state", "hydrate", "major
microspecies", "deoxygenated", "major species", "microspecies"...

Functional Groups and Chemi-
cal Entities

"acyl group", "alcohol group", "alkyl group", "anilino group", "carbamoyl
group", "chloro group", "epoxy group", "ester group", "fatty acyl group",
"hydrazino group", "hydroperoxy group", "isopropyl substituent", "keto
group", "methyl group", "oxo group", "pentyl group", "phosphate group",
"primary hydroxy group", "s-acyl component", "s-methyl group", "sulfo
group", "thiol group"...

Molecular Structure and Config-
uration

"alpha-branch", "alpha-carbon", "backbone", "branch", "bridge", "core",
"composition", "configuration", "linked group", "n-substituent", "oh groups",
"omega-hydroxy", "position", "prenyl units", "terminal", "terminal group",
"glycosyl fragment", "repeating unit", "sequence", "subcomponents", "side
chain", "nucleus", "sugar fragment", "unit"...

Table 10: Taxonomy of Property, Application, Structure and Source aspects in MoleculeQA. Leaf Topics correspond to the
most granular concepts, while Sub Topics aggregate leaf topics further. The table presents only a subset of leaf topics.
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DATA SOURCES LICENSE URL LICENSE NOTE

PubChem https://www.nlm.nih.gov/web_
policies.html

Works produced by the U.S. government are not subject to copyright
protection in the United States. Any such works found on National
Library of Medicine (NLM) Web sites may be freely used or reproduced
without permission in the U.S.

FDA Pharm Classes https://www.fda.gov/about-fda/
about-website/website-policies

Unless otherwise noted, the contents of the FDA website (www.fda.gov),
both text and graphics, are not copyrighted. They are in the public domain
and may be republished, reprinted and otherwise used freely by anyone
without the need to obtain permission from FDA. Credit to the U.S. Food
and Drug Administration as the source is appreciated but not required.

Drug Bank https://creativecommons.org/
licenses/by-nc/4.0/legalcode

Subject to the terms and conditions of this Public License, the Licensor
hereby grants You a worldwide, royalty-free, non-sublicensable, non-
exclusive, irrevocable license to exercise the Licensed Rights in the
Licensed Material to: reproduce and Share the Licensed Material, in
whole or in part, for NonCommercial purposes only; and produce, repro-
duce, and Share Adapted Material for NonCommercial purposes only.

ChEBI https://creativecommons.org/
licenses/by/4.0/

You are free to: Share — copy and redistribute the material in any
medium or format. Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

LOTUS https://lotus.nprod.net/ LOTUS is one of the biggest and best-annotated resources for natural
products occurrences available free of charge and without any restriction.

CAMEO Chemicals https://cameochemicals.noaa.
gov/help/reference/terms_and_
conditions.htm?d_f=false

CAMEO Chemicals and all other CAMEO products are available at no
charge to those organizations and individuals (recipients) responsible for
the safe handling of chemicals.

Toxin-Toxin-Target
Database (T3DB)

http://www.t3db.ca/ T3DB is offered to the public as a freely available resource. Use and
re-distribution of the data, in whole or in part, for commercial purposes
requires explicit permission of the authors and explicit acknowledgment
of the source material (T3DB) and the original publication.

Table 11: Data resources and licenses utilized in data collection for MoleculeQA.

ical papers from the S2ORC corpus (Lo et al.,
2020). We directly apply the LoRA finetuning
method on the checkpoint 9 provided by the official
source.
OPT (Zhang et al., 2022) is a series of open-
sourced large causal language models which per-
form similar in performance to GPT-3 (Brown et al.,
2020). For comparison with fully fine-tuned T5 se-
ries models, we opted to fully fine-tune OPT-125M,
-350M, and -1.3B size models on MoleculeQA. In
our implementation, we referred to the interfaces
provided by Hugging Face 10.
GALACTICA (Taylor et al., 2022) is a large lan-
guage model (LLM) for Science: trained on over
48 million papers, textbooks, reference material,
compounds, proteins and other sources of scien-
tific knowledge. We selected GALACTICA-125M,
-1.3B, and -7.1B versions of the model 11 and con-
ducted fine-tuning using LoRA on MoleculeQA.
Pythia (Biderman et al., 2023) is an open suite of
large language models, all trained on public data in
the same order. These models vary in size, ranging

9https://huggingface.co/PharMolix/
BioMedGPT-LM-7B

10https://huggingface.co/docs/
transformers/model_doc/opt

11https://huggingface.co/models?other=
galactica

from 70M to 12B parameters. They were trained
on the Pile dataset, which is constructed from 22
diverse high-quality subsets. We opted to conduct
finetuning based on LoRA on the standard versions
of Pythia-410M, -1B, -2.8B, -6.9B, and -12B sizes
models 12.
BLOOM (Scao, 2022) is an autoregressive large
language model, trained to continue text from
a prompt on vast amounts of text data using
industrial-scale computational resources. It was
trained on the ROOTS (Laurenccon et al., 2023)
corpus, a dataset comprising hundreds of sources
in 46 natural and 13 programming languages (59
in total). For model scaling evaluation, we chose to
conduct finetuning based on LoRA on the BLOOM-
560M, -1.1B, -1.7B, -3B, and -7.1B sizes versions
of the model 13. Subsequently, we provided the
results on the MoleculeQA test set.
LLaMA-2 (Touvron et al., 2023b) is a collection
of large language models with parameters ranging
from 7 billion to 70 billion. The model architecture
remains largely unchanged from that of LLaMA-1
models (Touvron et al., 2023a), but 40% more data

12https://huggingface.co/models?other=
pythia

13https://huggingface.co/docs/
transformers/model_doc/bloom
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was used to train the foundational models. Specifi-
cally, Llama 2 includes pre-trained and fine-tuned
models optimized for dialogue applications, termed
Llama 2-Chat. We opted to utilize the LLaMA-
2-Chat 7B and 13B models 14 and transformed
MoleculeQA into instruction samples for LoRA
fine-tuning.
Vicuna-v-1.5 (Chiang et al., 2023) is an open-
source chatbot that has been trained by fine-tuning
LLaMA on over 150K user-shared conversations
collected from ShareGPT.com. Preliminary evalua-
tion, conducted with GPT-4 as the judge, demon-
strates that the Vicuna series achieves competitive
performance when compared to OpenAI ChatGPT,
while also outperforming other models such as
LLaMA. We selected the v1.5 series models and
conducted LoRA Finetuning on both the 7B and
13B versions 15.
Mol-Instructions-7B (Fang et al., 2023) is a low-
rank adapter designed for LLaMA-2 base LLM,
specifically trained on molecule-oriented instruc-
tions sourced from the Mol-Instructions dataset.
We utilize the version tailored for LLaMA-2-Chat
16, merging the adapter back to the base LLM be-
fore proceeding with LoRA fine-tuning.
Mixtral-8×7B (Jiang et al., 2024) is a Sparse Mix-
ture of Experts (SMoE) language model consisting
of a decoder-only architecture. Its feedforward
block selects from a set of 8 distinct groups of
parameters. Notably, it is recognized as the most
robust open-weight model currently available, li-
censed under Apache 2.0. We adopt a locally de-
ployed approach for conducting few-shot prompt-
ing inference.
GPT-3.5-turbo and GPT-4. For closed-source
models such as OpenAI GPT Family GPT-3.5-
turbo (OpenAI, 2023a) and GPT-4 (OpenAI,
2023b), we employ batch inference via APIs for
conducting few-shot prompt inference. This ap-
proach significantly enhances evaluation efficiency
and reduces overhead.

A.3.2 Hyper-parameters
For MolT5, MoMu, T5, and BioT5, we employed
the original codebases and hyper-parameters pro-
vided in the respective papers for full fine-tuning.

14https://huggingface.co/docs/
transformers/model_doc/llama2

15https://huggingface.co/lmsys/
vicuna-7b-v1.5, https://huggingface.co/
lmsys/vicuna-13b-v1.5

16https://huggingface.co/zjunlp/
llama2-molinst-molecule-7b

Specifically, these models were trained on a single
NVIDIA 48GB A6000 GPU. Except for BioT5,
which had a learning rate set to 1e-3, the learning
rates for all other models were set to 1e-4. All
models underwent fine-tuning for 100 epochs on
the training set, and the checkpoint with the best
performance on the development set was selected
for evaluation on the test set.

For MolCA, we utilized the author’s recently
updated dataset (excluding any data leakage con-
cerns) and conducted pre-training stage 1 and stage
2 training on 2 NVIDIA 48GB A6000 GPUs. We
maintained consistency with the training hyper-
parameters provided in the original paper. Sub-
sequently, we fine-tuned pre-trained checkpoints of
different sizes on MoleculeQA, with a total batch
size set to 16. The 125M model was trained on a
single GPU card, while the 1.3B model was trained
on two GPU cards. The fine-tuning total epochs
were set to 100 for all versions.

For full fine-tuning of the OPT series, we con-
ducted training on 4 A6000 GPUs for the 125M and
350M versions and 8 GPUs for the 1.3B version.
The total batch size was set to 256, and the learning
rates were set to 3e-4 and 2e-4 for the respective
versions. All other hyper-parameters were kept
consistent with those specified in the original paper.
We performed full fine-tuning for 60 epochs, as we
observed over-fitting phenomena when exceeding
50 epochs.

For the remaining experiments based on LoRA
tuning, we employed the Alpaca-LoRA codebase
for instruction fine-tuning. Except for the 13B size
model trained on 8 A6000 GPUs, all other models
were trained on 4 GPUs. The total batch size was
set to 400, with gradient accumulation and learning
rate adjusted according to the model size (typically
set to 3e-4). We set the total training epochs to 20.

Regarding the LoRA configuration, we uti-
lized the PEFT 17 library for implementation.
We set LoRA’s rank r as 16, α as 16, dropout
rate as 0.05, and applied LoRA to all mod-
ules of ["q/k/v/o_proj", "gate_proj",
"down/up_proj"] (adjusting module names if
necessary based on actual implementation). Equiv-
alent trainable parameters are reported in Table 8.

We implemented DPO using the alignment-
handbook 18 library and retained all the hyper-
parameters.

17https://github.com/huggingface/peft
18https://github.com/huggingface/
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Figure 7: Model parameter size vs. total accuracy on
MoleculeQA test set. Solid lines denote full fine-tune models,
and dashed lines represent LoRA fine-tune.

A.4 Scaling Law for Molecular LLMs

In Fig. 7 and Fig. 8, we depict the variations in
overall accuracy and aspect-specific accuracy of
several models over increasing model scale.

For fully fine-tuned models, we conduct compar-
isons between T5-based models (T5 and MolT5)
and decoder-only models (represented by OPT). To
validate whether adaptively fine-tuning can adapt
general LLMs to acquire molecular knowledge, we
compared models such as BLOOM, Pythia, and the
LLaMA2-series models using LoRA fine-tuning.

We observe a pronounced scaling effect across
different training methods and model architectures,
with the scale effect being more evident in the full
fine-tuning approaches. This observation is con-
sistent with previous analysis about the scale of
parameters and indicates that scaling up model size
is a promising way to enhance molecular modeling.

A.5 Examples of Hallucination Alleviation

Here, we present selected examples (Table 12) com-
paring the originally generated captions with those
refined using the DPO method discussed in Sec-
tion 5.3

A.6 Prompt of Different Tasks for LLM

In the construction process of MoleculeQA, we de-
ploy LLMs to finish the following tasks: (1) Corpus
classification; (2) Topic extraction; (3) Answer gen-
eration; (4) Semantic consistency validation. We
report the definitions and task contexts, which are
components of prompts for LLMs, of these tasks
in Table 13.

alignment-handbook

A.7 Few-Shot Details and Prompt Exhibition
We introduce details about our few-shot setting:
For each aspect, we select a representative and
various samples from different topics as examples
to construct an aspect-specific 10-shot prompt. We
demonstrate selected samples and the format of
prompt in Source aspect in Table 14.
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Figure 8: Model parameter size vs. Accuracy in four aspects.

CID Ground-Truth Original DPO Refined

5280695 The molecule is a monomethoxyflavone
that is the 8-O-methyl derivative of
gossypetin. It is a pentahydrox-
yflavone, a member of flavonols and
a monomethoxyflavone. It derives
from a gossypetin. It is a conju-
gate acid of a 3’,4’,5,7-pentahydroxy-
8-methoxyflavon-3-olate.

The molecule is a monomethoxyflavone
that is quercetin methylated at position
7. It has a role as a metabolite, an antiox-
idant and an anti-inflammatory agent. It
is a monomethoxyflavone, a tetrahydrox-
yflavone and a 7-hydroxyflavonol. It de-
rives from a quercetin.

The molecule is a 7-hydroxyflavonol
that is quercetin substituted by a
methoxy group at position 8. It has a
role as a plant metabolite. It is a tetrahy-
droxyflavone, a 7-hydroxyflavonol, a
monomethoxyflavone and a member of
flavonols. It derives from a quercetin.

91972219 The molecule is an amino disaccharide
that consists of N-acetyl-D-glucosamine
having an N-acetyl-6-O-sulfo-beta-D-
galactosaminyl residue attached at O-
4. It is an amino disaccharide, a glu-
cosamine oligosaccharide and a galac-
tosamine oligosaccharide.

The molecule is a linear amino dis-
accharide that consists of N-acetyl-
beta-D-glucosamine and N-acetyl-D-
galactosamine units connected in se-
quence by (1->4) links. It has a role
as an epitope. It is an oligosaccharide
sulfate, an amino disaccharide and a glu-
cosamine oligosaccharide.

The molecule is an amino disaccharide
consisting of N-acetylglucosamine hav-
ing an O-sulfated N-acetylglucosaminyl
residue attached at the 4-position. It has
a role as an epitope. It is an amino disac-
charide, a glucosamine oligosaccharide
and a galactosamine oligosaccharide.

53239760 The molecule is a fifteen-membered
glycopeptide comprising glycyl,
glutaminyl, alanyl, glycyl, 3-(1,3-
thiazol-4-yl)alanyl, (5R)-5-(beta-D-
galactopyranosyloxy)lysyl, glycyl.
alpha-glutamyl, glutaminyl, glycyl,
prolyl, lysyl, glycyl, alpha-glutamyl and
threonine residues coupled in sequence.

The molecule is a fifteen-membered
glycopeptide comprising glycyl,
glutaminyl, alanyl, glycyl, 3-(1,3)-
alpha-D-glutamyl, (5R)-5-(beta-D-
galactopyranosyloxy)lysyl, (5R)-5-
(beta-D-glucopyranosyloxy)lysyl,
glycyl. alpha-glutamyl, glutaminyl,
glutaminyl, prolyl, lysyl, glycyl, alpha-
glutamyl and threonyl residues coupled
in sequence.

The molecule is a fifteen-membered
glycopeptide comprising glycyl,
glutaminyl, alanyl, glycyl, 3-(1,3-
thiazol-4-yl)alanyl, (5R)-5-(beta-D-
galactopyranosyloxy)lysyl, glycyl.
alpha-glutamyl, glutaminyl, glycyl,
prolyl, lysyl, glycyl, alpha-glutamyl and
threonine residues coupled in sequence.

Table 12: Comparison between the original generated captions of BioT5-base and those generated by DPO-refined BioT5-base
discussed in Section 5.3. Errors relative to the ground truth are highlighted in red. Notably, the model trained using data
transformed by MoleculeQA and the DPO method exhibits fewer factual inaccuracies.
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TASK DEFINITION TASK CONTEXT

Corpus Classification
Classify molecular descriptions
from the data source into one of four
aspects.

You are a research assistant for molecular research.
Please help me to classify some corpus.
Four kinds of content are included in this corpus :
The first is Source, which describes...
The second is...

Topic Extraction
Extract attributes of molecules in
specific aspect from original
descriptions.

You are a chemical research assistant,
you are familiar with description text of molecules,
you need to help me extract molecules’ Source
information, which describes...

Answer Generation Generate answer for given
question with original description

You are a chemistry research assistant, and I need you
to complete the following task: You will be given a
detailed description of a molecule and a question, please
extract specific information from the given description
to answer the question...

Semantic Consistency
Validation

Check if generated answer
has consistent semantic
with original description.

You are a chemistry research assistant, and I need you
to complete the following task: You will be given a
description of a molecule and a sentence transcribed from
it, please justify whether their semantics are consistent...

Table 13: Definition and context for each task. We prompt LLMs to finish these tasks for MoleculeQA construction.
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messages = [ {"role":"system", "content": f"""

You are a chemistry research assistant, and I’d like to test your professional ability on molecule understanding, please
complete the following task:

You are provided with the SMILES representation of a molecule and asked a question about the molecule’s source-
related knowledge (Source means the natural or synthetic origin, as well as the production context related to a
molecule), with four options given. Three of these options do not describe the given molecule, and you must select the
correct option.

Here are several examples to show how to finish the Question Answering task:

###

Example 1:

Molecular SMILES: C1=CC(=CC=C1/C=CC(=O)O[C@@H]([C@H](C(=O)O)O)C(=O)O)O

Question: Which molecule does this molecule derive from?

Choices:

A: It derives from a meso-tartaric acid and a cis-4-coumaric acid.

B: It derives from a meso-tartaric acid and a cis-caffeic acid.

C: It derives from a cyanidin cation and a cis-4-coumaric acid.

D: It derives from a cis-vaccenic acid and an oleic acid.

Answer: A

###

###

Example 2:

Molecular SMILES: COC1=C(C=C(C=C1)C=O)OC

Question: Where this molecule can be found?

Choices:

A: It can be found in leaves and fruit of cowberry Vaccinium vitis-idaea, grape seeds and beer.

B: It can be found in peppermint, ginger, raspberry, and other fruits.

C: It can be found in edible vegetables, grains, and fruits.

D: It can be found in grape seeds, in Hibiscus cannabinus (kenaf) root and bark, in apple and in cacao.

Answer: B

###

...

Notice that here are some rules you need to follow:

1. Your answer for each question should be one of A/B/C/D, which corresponds to the four options.

2. For my convenience, please give me a list of ANSWERs for the given instances in the format ’Answer X: ...’, without
any other information.

"""}

{ "role":"user", "content": f"""

Please give me your choices for these instances in the above examples’ styles. No other information is required.

Instance ID: <Instance ID>

Molecular SMILES: <Instance SMILES>

Question: <Instance Question>

Choices: <Instance Choices>

"""}

]

Table 14: An illustration depicting the process of constructing few-shot in-context-learning prompts for MoleculeQA
test set inference with GPT-4-like large-scale universal models.
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