
Findings of the Association for Computational Linguistics: EACL 2024, pages 3790–3805
November 12-16, 2024 ©2024 Association for Computational Linguistics

Sanitizing Large Language Models in Bug Detection with Data-Flow

Chengpeng Wang1, Wuqi Zhang2, Zian Su1, Xiangzhe Xu1, Xiangyu Zhang1

1 Purdue University 2 Hong Kong University of Science and Technology
{wang6590, su284, xu1415, xyzhang}@purdue.edu

wuqi.zhang@connect.ust.hk

Abstract

Large language models (LLMs) show poten-
tial in code reasoning tasks, facilitating the
customization of detecting bugs in software
development. However, the hallucination ef-
fect can significantly compromise the reliabil-
ity of bug reports. This work formulates a new
schema of bug detection and presents a novel
sanitization technique that detects false posi-
tives for hallucination mitigation. Our key idea
is to enforce LLMs to emit data-flow paths in
few-shot chain-of-thought prompting and vali-
date them via the program-property decompo-
sition. Specifically, we dissect data-flow paths
into basic properties upon concise code snip-
pets and leverage parsing-based analysis and
LLMs for validation. Our approach averagely
achieves 91.03% precision and 74.00% recall
upon synthetic benchmarks, and boosts the pre-
cision by 21.99% with the sanitization. The
evaluation upon real-world Android malware
applications also demonstrates the superiority
over an industrial analyzer, surpassing the pre-
cision and recall by 15.36% and 3.61%, respec-
tively. LLMSAN is open-sourced at https:
//github.com/chengpeng-wang/LLMSAN.

1 Introduction

The advancement of generative AI has significantly
improved software development efficiency (Wang
et al., 2021; Rozière et al., 2023). Many even
believe that AIs can become proficient program-
mers. However, just like human developers, AIs
can make mistakes that potentially lead to program
bugs, which necessitates bug detection in the new
development paradigm. Classic approaches pre-
dominantly apply program analysis in the produc-
tion line before software release (Shi et al., 2018;
Arzt et al., 2014). In Figure 1, for example, devel-
opers can diagnose and fix a divide-by-zero (DBZ)
bug when the program analyzer determines that the
potential zero value of parseInt(arg) at line 13 is
finally used as the divisor at line 5. However, these

1 public static void bar(int x, int y){
2 if (x != 0)
3 return (y * 1.0 / x);
4 else
5 return (x * 1.0 / y); //bug
6 }
7 public static void main(){
8 int a = 0; //zero
9 int b = parseInt(“123”);

10 System.out.println(bar(b, a));
11 String arg = args[0];
12 int c = parseInt(arg); //potential zero
13 System.out.println(bar(a, c));
14 c = b;
15 System.out.println(bar(a, c));
16 }

Figure 1: A program with a divide-by-zero bug at line 5

techniques demand the implementation of complex
semantic analyses and compilation of the examined
code, which restrains the construction and applica-
tion of bug detectors, especially during the early
development stage, when programs are incomplete
and cannot be compiled (Do et al., 2022).

Recent advancements in Large Language Mod-
els (LLMs) offer exciting opportunities, allowing
non-experts of program analysis to construct bug
detectors and handle incomplete programs. Ideally,
developers can easily build a custom bug detec-
tor via few-shot chain-of-thought (CoT) prompt-
ing (Wei et al., 2022), where they only need to
provide several buggy programs with explanations
as examples. However, the non-alignment between
LLMs and program semantics often leads to sub-
stantial hallucinations (Zhang et al., 2023), sig-
nificantly compromising the validity of detection
results. For example, LLMs may report a DBZ
bug at line 3 because they cannot understand the
semantic correlation between the division at line 3
and the zero-value check at line 2. Our preliminary
experiment also shows that gpt-3.5-turbo-0125
produces 184 false positives in 239 reports when de-
tecting null pointer dereference (NPD) in Juliet Test
Suite (Juliet Test Suite, 2024). The substantial false
positives diminish user confidence in the detection
results, thereby preventing the practical adoption
of the detector (Christakis and Bird, 2016).

3790

https://github.com/chengpeng-wang/LLMSAN
https://github.com/chengpeng-wang/LLMSAN

Data Sanitizer

Flow Sanitizer
parser LLM

LLM Bug reports with
data-flow paths

program

bug examples

Type Sanitizer

Order Sanitizer

Functionality Sanitizer

Reachability Sanitizer

bug definition

𝑝!

𝑝!

𝑝"

𝑝#

𝑝! 𝑝"

𝑝"
𝑝#

few-shot

CoT

Figure 2: The workflow of LLMSAN. In the output, valid data-flow paths in green reveal true bugs, whereas
spurious data-flow paths in red represent false positives. In the DBZ detection upon the program in Figure 1, the
four sanitizers identify undesired start/end values in the data sanitization and incorrect intermediate data-flow facts
in the flow sanitization, eventually labeling the paths p2 and p3 as spurious data-flow paths.

(𝑐, ℓ!") (𝑐, ℓ!#) (𝑦, ℓ!) (𝑦, ℓ$)

(𝑐, ℓ!%) (𝑐, ℓ!#) (𝑦, ℓ!) (𝑦, ℓ$)

(𝑏, ℓ&) (𝑏, ℓ!') (𝑥, ℓ!) (𝑥, ℓ#)

valid

spurious

spurious

𝑝!:

𝑝":

𝑝#:

(𝑒!", ℓ!")

(𝑒&, ℓ&)

Figure 3: The examples of data-flow paths in Figure 1.
e9 and e12 are the function call expressions at lines 9
and 12, respectively. ℓn indicates the line n.

This work facilitates few-shot CoT prompting-
based bug detection by mitigating the hallucina-
tions. The overarching idea is to enforce LLMs to
emit a data-flow path as the bug proof and examine
its validity. Intuitively, data-flow paths illustrate
how faulty values are produced, propagated, and
utilized by risky operations, leading to observable
failures. For example, p1 in Figure 3 depicts the
zero-value propagation from the return value of
parseInt at line 12 to the divisor at line 5 in Fig-
ure 1. Analogous to how CoT helps NLP appli-
cations, instructing the model to emit a data-flow
path forces it to consider causality intrinsic to the
examined program. Unlike a natural language ex-
planation, which tends to be flexible and informal,
a data-flow path serves as a rigorous certificate of
a bug report and can hence be further validated.
For instance, a valid data-flow path revealing a
DBZ bug should start from a (potential) zero value
and end at a divisor. If a data-flow path violates
the property, such as p2 and p3 in Figure 3, the
bug report would be a false positive. Meanwhile,
any contradiction between intermediate data-flow
facts and program semantics refutes the validity of
the whole path. For example, the data-flow fact
(c, ℓ14) → (c, ℓ13) of p2 violates the control-flow
order, while (x, ℓ1) → (x, ℓ3) in p3 is unreachable
due to the zero-value check at line 2.

As shown in Figure 2, we present LLMSAN, a
novel bug detection methodology that incorporates
a sanitization technique for hallucination mitiga-
tion. By offering several examples in the form
shown in Figure 4, we obtain the data-flow paths in

Program: [Example Program with a DBZ bug]
Explanation: v is assigned with 0 at line 3. Then u is initialized
with v at line 7 and used as a divisor at line 9, causing a DBZ bug.
Dataflow path: [(v, ℓ!), (u, ℓ"), (u, ℓ#)]

Figure 4: An example used in few-shot CoT prompting

the few-shot CoT prompting and then validate them
via program-property decomposition. Concretely,
LLMSAN performs data and flow sanitizations,
which examine start/end values and intermediate
data-flow facts, respectively. For each sanitization,
we further decouple syntactic properties from se-
mantic ones, with the former verified by parsing-
based sanitizers (i.e., type and order sanitizers) and
the latter examined by LLM-powered sanitizers
(i.e., functionality and reachability sanitizers). In
the flow sanitization, for example, the order sani-
tizer checks if any intermediate data-flow fact vio-
lates the control-flow order, while the reachability
sanitizer checks if a faulty value can be propagated
between different lines. Notably, each sanitizer val-
idates a basic property upon local snippets, which
is more manageable than prompting LLMs with the
whole program for data-flow path validation. Also,
multiple sanitizers check correlated properties and
hence achieve a cross-checking effect.

Our contributions include: (1) We introduce a
new method of LLM based bug detection, named
LLMSAN, which supports non-experts in cus-
tomizing the analysis without compilation by spec-
ifying several buggy code snippets as few-shot ex-
amples. (2) We propose a novel sanitization tech-
nique that effectively mitigates hallucination in bug
detection by validating the emitted data-flow paths.
(3) We evaluate LLMSAN and demonstrate that it
improves the precision of few-shot CoT prompting-
based bug detection upon benchmark programs
from 69.04% to 91.03% with little sacrifice of its
recall. Also, LLMSAN surpasses the precision
and recall of an industrial analyzer upon real-world
programs by 15.36% and 3.61%, respectively.

3791

2 Related Work

A considerable body of literature demonstrates
great successes of LLMs in program synthesis (Lee
et al., 2023; Ye et al., 2021), testing (Meng et al.,
2024), and repair (Olausson et al., 2023; Jimenez
et al., 2023). However, only a limited number of
works have focused on complex code reasoning
tasks, such as program verification (Wen et al.,
2024; Wu et al., 2023) and static bug detection (Li
et al., 2023). Several approaches employ CoT
prompting to generate program invariants (Pei et al.,
2023; Wen et al., 2024), which can then be verified
by a model checker for program verification. Sim-
ilarly, LLIFT generates specifications of library
functions using prompting to aid in bug detec-
tion (Li et al., 2023). Several other studies en-
hance the performance of LLMs in specific code
reasoning tasks with trained small models (Steen-
hoek et al., 2024; Yadavally et al., 2024). This
work targets LLM-powered bug detection with the
support of customization and compilation-free anal-
ysis, which is not investigated by previous studies.

Hallucinations are a common issue of LLMs
in many generative tasks, such as question-
answering (Lin et al., 2021) and open-domain text
generation (Mündler et al., 2023). In addition
to general methods like self-consistency (Wang
et al., 2022), self-check (Manakul et al., 2023),
and CoT (Kojima et al., 2022), researchers have
proposed domain-specific methods to address hal-
lucinations. A recent study targets detecting self-
contradictions to reduce hallucinations (Mündler
et al., 2023). Other studies focus on hallucinations
in various reasoning tasks, such as applying tech-
niques like formal methods to mathematical word
problems (Ye et al., 2024). Our study resolves the
hallucinations in the bug detection, which involves
the validation of sophisticated program properties.

3 Data-Flow Paths as Bug Proofs

Our work introduces a novel bug detection method-
ology named LLMSAN that mitigates the halluci-
nation. As shown in Figure 2, the bug detection is
achieved by (1) enforcing the LLMs to emit data-
flow paths via few-shot CoT prompting and (2)
designing a sanitization pipeline that further vali-
dates the emitted data-flow paths for hallucination
mitigation. In this section, we introduce the con-
cept of data-flow paths and formalize bug detection
that emits data-flow paths as bug proofs.

Definition 1. (Data-flow Path) A data-flow path

p is a sequence of k value-location pairs (vi, ℓni).
Each value vi is a program variable or expression
defined or used at line ni. A data-flow fact is a pair
of adjacent pairs indicating that the value vi at line
ni directly affects the value vi+1 at line ni+1.

Intuitively, a data-flow path demonstrates the
value propagation within a program compactly. In
the context of bug detection, a data-flow path from
the origin and exposition point of a faulty value
signifies the presence of a certain type of bug in the
program. As proof of the bug, it can further help
developers understand and repair the bug.

Example 1. In Figure 1, parseInt(arg) may eval-
uate to 0 as arg can be initialized to “0” by external
input. The potential zero value is assigned to c at
line 12 and eventually reach the divisor at line 5
as c is passed as the argument of the function bar
at line 13. Hence, p1 in Figure 3 is the proof of a
potential DBZ bug in Figure 1.

Noting the power of LLMs in the code reasoning,
we can customize a LLM-powered program ana-
lyzer using few-shot CoT prompting to explore and
report data-flow paths for bug detection. Formally,
we frame the problem of bug detection as follows.

Definition 2. (Bug Detection) Given a program P ,
a bug definition τ , and a set of few-shot examples
E , generate a set of data-flow paths P such that
each p ∈ P indicates a bug τ in P . Here e :=
(Pe, Ee, pe) ∈ E consists of the buggy program
Pe, an explanation Ee, and a data-flow path pe
indicating a bug τ in Pe.

Example 2. To detect DBZ bugs in Figure 1, we
offer examples in the format shown in Figure 4 to
showcase how DBZ bugs arise. Specifically, zero
values can be produced by numeric literals, such
as 0 and 0.0, and function calls expressions, such
as the ones invoking parseInt and parseFloat
upon unconstrained strings. DBZ bugs can occur
when the second operand of / or % has zero value.
Finally, we can obtain several data-flow paths as the
proofs of DBZ bugs, such as the ones in Figure 3.

Definition 2 formulates a new paradigm of bug
detection. Few-shot CoT prompting lowers the bar-
rier for developers to customize the analysis and
seamlessly supports analyzing programs in various
forms, including incomplete code during the de-
velopment stage. Different from explanations in
natural language, the data-flow paths offer rigorous
proofs of the bugs, facilitating the post-validation
of bug reports upon the examined program P .

3792

4 LLM Sanitization for Bug Detection

Utilizing data-flow paths as bug proofs, we propose
a novel sanitization technique that validates them
to mitigate the hallucinations in the bug reports.
Specifically, validating data-flow paths entails han-
dling two complexities. First, a data-flow path can
bypass multiple program values in different func-
tions, making it difficult to validate a long path in a
large-sized code snippet. Second, the undecidabil-
ity of the data-flow problem (Reps, 2000) hinders
the full utilization of deterministic algorithms for
validation with a correctness guarantee. To address
the challenges, we introduce program-property
decomposition, which resolves the complexities
above from two orthogonal aspects.

I. Program Decomposition: The data-flow path
for a bug essentially denotes step-by-step propaga-
tion of faulty values. Its validity fundamentally de-
pends on (1) whether the start/end values adhere to
faulty forms and (2) whether the intermediate data-
flow facts align with program semantics. Hence,
we can decompose data-flow path validation into
two sub-problems, in which we separately exam-
ine the start/end values and individual intermediate
data-flow facts upon small-sized snippets.

II. Property Decomposition: Along an orthog-
onal direction, we further separate syntactic prop-
erties from semantic properties. Specifically, the
former focuses on properties that can be verified
by deterministic algorithms based on parsers, such
as checking if the start/end values must have cer-
tain syntactic types, while the latter concentrates
on properties that require in-depth interpretation
of program semantics using LLMs, such as the
behavior of a specific function call.

Technically, we propose data sanitization and
flow sanitization by designing several sanitizers for
syntactic and semantic property validation. The
data-flow paths successfully validated by all the
sanitizers would be finalized as true bug reports.
In what follows, we detail the designs of the two
kinds of sanitizations.

4.1 Data Sanitization
As shown in Section 3, the first and last value-
location pairs, i.e., (v1, ℓn1) and (vk, ℓnk

), should
indicate the origin and exposition point of a faulty
value, respectively. To validate whether they con-
form to expected patterns, we introduce type san-
itizer and functionality sanitizer to examine their
syntactic and semantic properties, respectively.

Task: Analyze the code: [function]. Please check whether
[value] at line [line number] can be zero. Please think step
by step and conclude the answer with Yes or No.

Examples: Here are several examples containing DBZ bugs:
[examples]. Please understand how zero values are produced.

Figure 5: The prompt template of functionality sanitizer

Type Sanitizer. This sanitizer leverages the ob-
servation that the start/end points of a reported valid
data-flow path must have the same syntactic types
as those in the provided few-shot examples. There-
fore, we can leverage parsing techniques to iden-
tify syntactic types and verify the type consistency,
which is formulated as follows.
Definition 3. (Type Consistency) αh and αl map
a pair of program P and data-flow path p to the
syntactic types for the start and the values of the
data-flow path, respectively. Given a bug report, its
data-flow path p being valid implies that it satisfies

α̂(P, p) ∩ A(E , α̂) ̸= ∅, α̂ ∈ {αh, αl} (1)

where A(E , α̂) is defined as follows:

A(E , α̂) =
⋃

(Pe, Ee, pe)∈E
α̂(Pe, pe) (2)

Example 3. As shown in Example 2, the start
values in the provided few-shot examples are nu-
meric literals and function calls, i.e., A(E , α̂) =
{numeric literal, function call}. We no-
tice that the data-flow path p2 starts from an iden-
tifier, i.e., αh(P, p2) = {identifier}, implying
that αh(P, p2) ∩ A(E , α̂) = ∅. Hence, p2 violates
the type consistency, indicating that p2 is spurious.

Functionality Sanitizer. In addition to type con-
sistency, the start and end values of valid data-flow
paths should also exhibit consistent functionalities
with those in the few-shot examples. For instance,
the data-flow paths revealing DBZ bugs should start
with the variables or expressions that (potentially)
evaluate to zero. Due to the undecidability of se-
mantic analysis, the functionality sanitizer achieves
the validation by prompting LLMs as follows.

Prompt Design: Following the prompt template
in Figure 5, the functionality sanitizer validates the
first value-location pair (v1, ℓn1) by checking if it
can introduce a zero value. Formally speaking, it
autoregressively samples response tokens from the
conditional distribution pθ denoting the LLM:

rh ∼ pθ(· | E , F1, v1, ℓn1) (3)

Here F1 is the function containing v1. Similarly,
we can apply functionality sanitizer for the value-
location pair (vk, ℓnk

).

3793

Example 4. When comparing the start value of p3
in Figure 1(c) with the few-shot examples sketched
in Example 2, we obtain the answer “NO” via
prompting, as the argument of the function call
is a string literal “123”. Hence, there is no zero
value produced at line 10 in Figure 1.

4.2 Flow Sanitization
As stated in Definition 1, the validity of a data-flow
path hinges on not just its start and end values but
also its intermediate data-flow facts. Essentially, in-
termediate data-flow facts depict value propagation
in detail and thus should align with program se-
mantics. Hence, in addition to the data sanitization,
we introduce the flow sanitization to examine inter-
mediate data-flow facts, which is accomplished via
order sanitizer and reachability sanitizer.

Order Sanitizer. Valid data-flow facts should
adhere to the order dictated by runtime execution,
i.e., the control-flow order. Intuitively, a faulty
value can only be propagated from a program loca-
tion to its next when the statement at the preceding
one can be executed before the latter. Formally, we
formulate the order consistency as follows.

Definition 4. (Order Consistency) A valid data-
flow path p : (v1, ℓn1) → · · · → (vk, ℓnk

) satisfies

∀1 ≤ i ≤ (k − 1), ℓni ⪯ ℓni+1 (4)

Here, the partial order ⪯ over program locations
denotes the control-flow order.

Technically, the order sanitizer derives program
structures with a parser, such as branches, loops,
and function calls, from which it determines the
control-flow order for the order-consistency check-
ing. We elide the details of determining the control-
flow order, as it is not our contribution.

Example 5. In Figure 1, the statement at line 13
must be executed before the one at line 14, i.e.,
ℓ13 ⪯ ℓ14. The data-flow fact (c, ℓ14) → (c, ℓ13)
violates the order consistency, and thus, p2 in Fig-
ure 3 is spurious.

Reachability Sanitizer. A data-flow fact satisfy-
ing the order consistency may still be invalid if the
faulty value cannot be propagated along the data-
flow path because of some check by a conditional
statement. In such case, we say the data-flow fact is
unreachable. Since examining the reachability re-
quires understanding program semantics, we follow
the design of functionality sanitizer and leverage
an LLM to instantiate the reachability sanitizer.

Task: Analyze [function 1], [function 2]. Please check whether
[value 1] at line [line number 1] can be propagated to [value 2] at
line [line number 2]. Please think step by step and conclude the
answer with Yes or No.

Examples: There are examples containing DBZ bugs: [examples].
Please understand how program values are propagated.

Figure 6: The prompt template of reachability sanitizer

Prompt Design: For a bug report with the data-
flow path p : (v1, ℓn1) → · · · → (vk, ℓnk

),
the reachability sanitizer examines the adjacent
variable-location pairs with (k − 1) rounds of
prompting, in which it instantiates the prompt tem-
plate in Figure 6. Consider 1 ≤ i ≤ (k − 1),
the reachability of (vi, ℓni) → (vi+1, ℓni+1) is de-
termined by the sampling results according to the
following conditional distribution:

ri ∼ pθ(· | E , Fi, Fi+1, vi, ℓni , vi+1, ℓni+1) (5)

Here Fi and Fi+1 are the functions that contain vi
and vi+1, respectively.

Example 6. Consider the data-flow fact (x, ℓ1) →
(x, ℓ3) within the data-flow path p3 in Figure 3. We
prompt the LLM with the function bar in Figure 1
and examine whether the value of x at line 1, which
has a zero value, can propagate to the value of x
at line 3. The answer “No” offered by the LLM
enables us to refute the validity of p3.

4.3 Summary

The data and flow sanitizations offer two key advan-
tages. First, they separate the analysis of the syn-
tactic property from the semantic one. This allows
us to deterministically identify undesired start/end
values and inconsistent control-flow order using a
parsing technique without compilation, ensuring
the soundness of type and order sanitizers. Sec-
ond, the functionality and reachability sanitizers
solely focus on the functions containing start/end
values and individual intermediate data-flow facts,
which makes the validation more manageable than
directly prompting the LLM with the whole pro-
gram. Therefore, we can effectively avoid addi-
tional hallucination during sanitization.

5 Evaluation

We implement a prototype of LLMSAN for Java
bug detection, which has been released online. Uti-
lizing the parsing library tree-sitter (Brunsfeld,
2018), we implement a light-weight compilation-
free static analysis core to support the type sanitizer
and order sanitizer.

3794

Table 1: The selected bug types and their CWE IDs

Bug Type CWE ID

Absolute Path Traversal (APT) CWE-23
Cross-Site Scripting (XSS) CWE-79

OS Command Injection (OSCI) CWE-78
Divide-by-Zero (DBZ) CWE-369

Null Pointer Dereference (NPD) CWE-476

Table 2: The list of baselines
Name Approach No Compile Custom

Pinpoint (Shi et al., 2018) ✗ ✗

CodeFuseQuery (Xie et al., 2024) ✓ ✗

FSCoT (Ullah et al., 2024) ✓ ✓

Ask-Check (Mündler et al., 2023) ✓ ✓

CoT-Check (Kojima et al., 2022) ✓ ✓

SC-CoT-Check (Wang et al., 2022) ✓ ✓

Datasets. We choose two benchmarks for eval-
uation: Juliet Test Suite (Juliet Test Suite, 2024)
and TaintBench (Luo et al., 2022). First, Juliet
Test Suite is a synthetic benchmark, covering typi-
cal bug types in Common Weakness Enumeration.
Considering the resource constraint, we choose five
popular bug types shown in Table 1 and randomly
select 100 programs for each bug type. Notably,
these five bug types have been extensively studied
in previous research on program analysis due to
their popularity. Second, TaintBench comprises 39
Android malware applications with 203 taint flows
that potentially lead to the leakage of sensitive in-
formation (Arzt et al., 2014). Detecting these taint
flows necessitates customization to define how sen-
sitive data is generated and leaked. Both datasets
provide the ground truth.

Settings. We run the four sanitizers inde-
pendently to quantify their effectiveness. To
reduce randomness, we set the temperature to
0 in CoT prompting so that we enforce the
LLMs to adopt greedy encoding. To show the
effectiveness across diverse LLM architectures,
we assess LLMSAN with gpt-3.5-turbo-0125,
gpt-4-turbo-preview, gemini-1.0-pro, and
claude-3-haiku, respectively. For brevity, we de-
note them with gpt-3.5, gpt-4, gemini-1.0, and
claude-3 in the rest of the paper.

Baselines. We consider two kinds of baselines
shown in Table 2. First, we choose three exist-
ing bug detectors, including Pinpoint, CodeFuse-
Query, and FSCoT. Pinpoint analyzes the inter-
mediate representations generated by compilers to
find bugs and does not support customization (Shi
et al., 2018). CodeFuseQuery supports bug detec-
tion without requiring any compilation infrastruc-
ture and does not support non-expert customization

Table 3: The performance of LLMSAN using gpt-4.
The columns P and R indicate the precision and recall,
respectively. |∆V | (|∆S|) and |∆V |

|V | (|∆S|
|S|) indicate the

number and proportion of pruned valid (spurious) data-
flow paths in the sanitization, respectively.

Bug Type P (%) R (%) |∆V | |∆S| |∆V |
|V | (%) |∆S|

|S| (%)

APT 98.18 54.00 0 45 0.00 97.83
XSS 89.77 79.00 0 12 0.00 57.14
OSCI 98.94 93.00 0 6 0.00 85.71
DBZ 92.68 76.00 0 29 0.00 82.86
NPD 75.56 68.00 2 46 2.86 67.65

Average 91.03 74.00 0.40 27.60 0.57 78.24

either (Xie et al., 2024). FSCoT is one of the eval-
uated techniques in (Ullah et al., 2024), detecting
bugs via few-shot CoT prompting. Second, we fol-
low existing studies (Mündler et al., 2023) and eval-
uate three hallucination mitigation techniques by
utilizing them for the data-flow path validation af-
ter the few-shot CoT prompting. Specifically, Ask-
Check directly asks the LLMs to validate data-flow
paths (Mündler et al., 2023). CoT-Check enforces
LLMs to think step by step via CoT prompting (Ko-
jima et al., 2022). To enhance the certainty, we set
the temperatures to 0 in Ask-Check and CoT-Check.
Additionally, we introduce self-consistency (Wang
et al., 2022) to the CoT prompting under the tem-
perature of 0.5 for the validation, leading to the
SC-CoT-Check baseline. Because lengthy prompts
induced by large programs significantly increase
the resource cost, we avoid a large value for the
sampling number and set it to five. Notably, FSCoT,
Ask-Check, CoT-Check, and SC-CoT-Check are all
compilation-free and customizable for non-experts.

Metrics. We compare the data-flow paths with
the ground-truth offered by Juliet Test Suite and
TaintBench to measure the precision and recall. Be-
sides, we count the number of pruned valid and
spurious data-flow paths during the sanitization.
We also quantify the token cost of LLMSAN and
the baseline FSCoT. Lastly, we introduce a group
of ablation studies targeting various combinations
of the four sanitizers, in which we count the num-
bers of identified spurious data-flow paths when
multiple analyses are enabled simultaneously.

5.1 Performance of LLMSAN

Table 3 shows the precision and recall of LLM-
SAN in detecting the five types of bugs upon Juliet
Test Suite. Specifically, LLMSAN achieves a pre-
cision of 91.03% and a recall of 74.00% on aver-
age. Benefiting from the sanitization, LLMSAN
identifies 45, 12, 6, 29, and 46 spurious data-flow

3795

Table 4: The performance of Ask-Check, CoT-Check, and SC-CoT-Check using gpt-4. The columns |∆V |, |∆S|,
|∆V |
|V | , and |∆S|

|S| indicate the same quantities as the ones in Table 3.

Bug Type Ask-Check CoT-Check SC-CoT-Check
|∆V | |∆S| |∆V |

|V | (%) |∆S|
|S| (%) |∆V | |∆S| |∆V |

|V | (%) |∆S|
|S| (%) |∆V | |∆S| |∆V |

|V | (%) |∆S|
|S| (%)

APT 6 3 11.11 6.52 19 14 35.19 30.43 18 12 33.33 26.09
XSS 0 0 0.00 0.00 4 3 5.06 14.29 0 0 0.00 0.00
OSCI 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
DBZ 45 20 59.21 57.14 0 11 0.00 31.43 0 9 0.00 25.71
NPD 2 33 2.86 48.53 0 40 0.00 58.82 0 37 0.00 54.41

Average 10.60 11.20 14.64 22.44 4.60 13.60 8.05 36.28 3.60 11.60 6.67 21.24

Table 5: The performance of Pinpoint, CodeFuseQuery,
and FSCoT using gpt-4. The columns P and R indicate
precision and recall, respectively.

Bug Type Pinpoint CodeFuseQuery FSCoT
P (%) R (%) P (%) R (%) P (%) R (%)

APT 100.00 81.00 84.21 64.00 54.00 54.00
XSS 100.00 47.00 91.86 79.00 79.00 79.00
OSCI 100.00 31.00 87.10 54.00 93.00 93.00
DBZ 92.65 63.00 29.45 81.00 68.47 76.00
NPD 87.36 76.00 35.78 73.00 50.72 70.00

Average 96.00 59.60 65.68 70.20 69.04 74.40

paths associated with APT, XSS, OSCI, DBZ, and
NPD bugs, respectively. Notably, the majority of
the spurious data-flow paths are pruned by saniti-
zation, accounting for 97.83%, 57.14%, 85.71%,
82.86%, and 67.65% of the spurious paths asso-
ciated with the five bug types, respectively. On
average, 78.24% spurious data-flow paths can be
successfully identified in the sanitization. Mean-
while, LLMSAN only misidentifies two valid data-
flow paths associated with NPD bugs as spurious
ones, which decreases the recall by 2.00% in the
NPD detection. The statistics in Appendix A.1 fur-
ther demonstrate that when powered with diverse
LLMs, LLMSAN can detect an average of 84.82%
of spurious data-flow paths while minimizing the
sacrifice of valid ones, prompting the precision of
the bug detection without losing the recall.

5.2 Comparison with Existing Bug Detectors
As shown in Table 5, Pinpoint achieves a high pre-
cision in detecting five types of bugs. However, its
recall is not satisfactory in the detection of XSS and
OSCI bugs, only obtaining 47.00% and 31.00%,
respectively. The lack of customization support
makes it fail to identify several forms of sensitive
data that may introduce the XSS and OSCI bugs.
CodeFuseQuery produces many false positives due
to its inability of reasoning path conditions, es-
pecially in the detection of DBZ and NPD bugs.
LLMSAN achieves a comparable and even better
performance than the two analyzers, while it does
not demand compilation or expert customization,
ensuring better applicability and usability.

FSCoT achieves 0.40% higher recall than LLM-
SAN, while its average precision is 21.99% lower
than that of LLMSAN. Without sanitization, the
insufficient alignment between LLMs and program
semantics causes the proliferation of false positives.
We also quantify the token costs of LLMSAN and
FSCoT. On average, the input and output token
costs of LLMSAN are 1.82 and 3.37 times the
ones of FSCoT, respectively, implying that LLM-
SAN only spends 92% more financial resources
than FSCoT. Owing to the program-property de-
composition, the prompts utilized in the two san-
itizers consist of concise code snippets, ensuring
that LLMSAN remains cost-effective while miti-
gating hallucination. More details of token costs
are presented in Appendix A.4.

5.3 Comparison with Hallucination
Mitigation Techniques

Table 4 shows the performance of Ask-Check, CoT-
Check, and SC-CoT-Check using gpt-4. On one
hand, they sacrifice several valid data-flow paths.
For example, the three baselines misidentify 6, 19,
and 18 valid data-flow paths associated with APT
bugs as spurious ones, respectively. 59.21% valid
data-flow paths re misidentified by Ask-Check in
the DBZ detection. However, LLMSAN does not
sacrifice any valid data-flow paths except for two
valid ones in the NPD detection. On the other hand,
LLMSAN has the overwhelming superiority in
detecting spurious data-flow paths. While the base-
lines detect several spurious data-flow paths associ-
ated with specific bug types, their performance sig-
nificantly differs across different bug types. Specif-
ically, Ask-Check identifies 57.14% and 48.53%
spurious data-flow paths associated with the DBZ
and NPD bugs, respectively, whereas it detects few
spurious data-flow paths for the other bug types.
Similar observations can be derived for CoT-Check
and SC-CoT-Check. Appendix A.2 presents the
results when using other LLMs, from which we
can derive the same findings.

3796

(a) APT (b) XSS (c) OSCI (d) DBZ (e) NPD

Figure 7: The numbers of spurious data-flow paths detected by different combinations of sanitizers using gpt-4

Lastly, CoT prompting and self-consistency do
not consistently mitigate hallucinations. For in-
stance, Ask-Check identifies more spurious data-
flow paths than CoT-Check and SC-CoT-Check in
the DBZ detection. SC-CoT-Check identifies fewer
spurious data-flow paths for the APT, XSS, DBZ,
and NPD bugs compared to CoT-Check. The poor
performance of CoT-Check and SC-CoT-Check
may be attributed to the ineffective alignments with
program semantics, leading to erroneous reason-
ing steps in CoT prompting and thereby preventing
exploring correct reasoning paths.

5.4 Ablation Study

Figure 7 shows that all four sanitizers identify spuri-
ous data-flow paths when LLMSAN is powered by
gpt-4. Take the NPD detection as an example. The
type sanitizer (TS) and order sanitizer (OS) detect
16 and 8 spurious data-flow paths out of the total
46 identified spurious data-flow paths, respectively.
The functionality sanitizer (FS) and reachability
sanitizer (RS) uncover 32 and 26 spurious data-flow
paths, respectively, indicating that they play signif-
icant roles in resolving the majority of spurious
data-flow paths associated with NPD bugs. While
the sets of spurious data-flow paths identified by
different sanitizers can overlap, each sanitizer can
contribute to mitigating hallucinations by uniquely
identifying specific spurious data-flow paths for a
specific bug type, which is further demonstrated by
the results of ablations powered by other LLMs in
Appendix A.3. We also demonstrate several cases
of spurious data-flow paths identified by different
sanitizers in Appendix B.1.

5.5 Experiments on Real-world Programs

As shown in Table 6, when analyzing real-world
Android malware applications, all the four sanitiz-
ers can identify spurious data-flow paths effectively.
Only the functionality sanitizer and reachability
sanitizer introduce the loss of two and one valid
data-flow paths, respectively, when LLMSAN is
powered by gemini-1.0. The proportion of iden-
tified spurious data-flow paths can reach 86.59%,

Table 6: The statistics of LLMSAN upon TaintBench.
(↓ a), (↓ b), and (↓ c) indicate a data-flow paths, b valid
data-flow paths, and c spurious data-flow paths are not
reported due to the sanitization.

LLM # Pruned # Reported
TS FS OS RS Total Valid Spurious

gemini-1.0 25 74 57 103 40(↓ 145) 18(↓ 3) 22(↓ 142)
gpt-3.5 24 139 41 120 34(↓ 173) 11(↓ 0) 23(↓ 173)
gpt-4 34 51 54 85 89(↓ 129) 48(↓ 0) 41(↓ 129)

claude-3 123 516 147 335 52(↓ 536) 19(↓ 0) 33(↓ 536)

88.27%, 75.88%, and 94.20% when using the four
LLMs, respectively. Powered with gpt-4, LLM-
SAN reports 89 data-flow paths in total, of which
48 are valid, achieving the precision of 44.04% (=
48/89). Due to the old Gradle version, the applica-
tions are not compilable in our environment, mak-
ing Pinpoint inapplicable in such scenarios. Hence,
we only evaluate CodeFuseQuery and find that it
reports 136 taint bugs while only 39 of them are
valid, obtaining the precision of 28.68%. The re-
sults reveal the impressive potential of LLMSAN
in real-world bug detection. Powered with gpt-4,
LLMSAN surpasses the precision and recall of
CodeFuseQuery by 15.36% and 3.61%, respec-
tively, while the latter requires substantial expertise
and implementation efforts for customization.

6 Conclusion

This paper introduces LLMSAN, an innovative
bug detection methodology that employs a sanitiza-
tion technique to mitigate hallucination. Based on
the program-property decomposition, LLMSAN
utilizes parsing-based sanitizers and LLM-powered
sanitizers to verify multiple basic syntactic and se-
mantic properties upon small code snippets, ulti-
mately identifying spurious data-flow paths emit-
ted in the few-shot CoT prompting. Our evaluation
shows its promising performance in detecting bugs
upon both synthetic benchmark programs and real-
world Android malware applications. Our work
lays the foundation for more reliable LLM-driven
program analysis techniques, encompassing areas
such as bug detection, automatic debugging, and
program repair.

3797

7 Limitations

Although LLMSAN has shown effectiveness in
the evaluation subjects, several limitations necessi-
tate further enhancements in the future. First, the
functionality sanitizer and reachability sanitizer in
LLMSAN may erroneously flag valid data-flow
paths as spurious. Due to the usage of LLMs, they
can potentially introduce hallucinations in the sani-
tization. To enhance the soundness, we can incor-
porate existing strategies, such as self-consistency,
into the prompting process. Second, LLMSAN
can fail to identify specific spurious data-flow paths,
hindering precision enhancement in bug detection.
In Appendix B.2, we list an example of a spurious
data-flow path that cannot be identified. Our work
borrows insights from compiler design to alleviate
hallucinations via program-property decomposi-
tion. Similar to the optimizations that can be added
independently into a compiler pipeline, additional
sanitizers can be easily integrated into our pipeline,
further suppressing hallucination. New sanitizers
should follow the same design principles, focus-
ing on validating basic and local properties upon
small code snippets. Third, LLMSAN only vali-
dates data-flow paths as a post-processing step and
does not contribute to increasing valid data-flow
paths. In the future, it is promising to assist the self-
reflection with the sanitization, which can guide
the LLMs to sample more valid paths iteratively.

Acknowledgments

We are grateful to the Center for AI Safety
for providing computational resources. This
work was funded in part by the National Sci-
ence Foundation (NSF) Awards SHF-1901242,
SHF-1910300, IIS-2416835, DARPA VSPELLS
- HR001120S0058, IARPA TrojAI W911NF-19-
S0012, ONR N000141712045, N000141410468
and N000141712947. Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the authors and do not neces-
sarily reflect the views of the sponsors.

References
Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric

Bodden, Alexandre Bartel, Jacques Klein, Yves Le
Traon, Damien Octeau, and Patrick D. McDaniel.
2014. Flowdroid: precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for an-
droid apps. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation,

PLDI ’14, Edinburgh, United Kingdom - June 09
- 11, 2014, pages 259–269. ACM.

Max Brunsfeld. 2018. Tree-sitter-a new parsing sys-
tem for programming tools. In Strange Loop
Conference,. Accessed–. URL: https://www. thes-
trangeloop. com//tree-sitter—a-new-parsing-system-
for-programming-tools. html.

Maria Christakis and Christian Bird. 2016. What devel-
opers want and need from program analysis: an em-
pirical study. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7,
2016, pages 332–343. ACM.

Lisa Nguyen Quang Do, James R. Wright, and Karim
Ali. 2022. Why do software developers use static
analysis tools? A user-centered study of developer
needs and motivations. IEEE Trans. Software Eng.,
48(3):835–847.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Juliet Test Suite. 2024. Juliet Test Suite for
Java. https://github.com/find-sec-bugs/
juliet-test-suite. [Online; accessed 21-Apr-
2024].

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Celine Lee, Abdulrahman Mahmoud, Michal Kurek,
Simone Campanoni, David Brooks, Stephen Chong,
Gu-Yeon Wei, and Alexander M Rush. 2023. Guess
& sketch: Language model guided transpilation.
arXiv preprint arXiv:2309.14396.

Haonan Li, Yu Hao, Yizhuo Zhai, and Zhiyun Qian.
2023. The hitchhiker’s guide to program analy-
sis: A journey with large language models. CoRR,
abs/2308.00245.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Linghui Luo, Felix Pauck, Goran Piskachev, Manuel
Benz, Ivan Pashchenko, Martin Mory, Eric Bodden,
Ben Hermann, and Fabio Massacci. 2022. Taint-
bench: Automatic real-world malware benchmark-
ing of android taint analyses. Empir. Softw. Eng.,
27(1):16.

Potsawee Manakul, Adian Liusie, and Mark JF Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. arXiv preprint arXiv:2303.08896.

3798

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1109/TSE.2020.3004525
https://github.com/find-sec-bugs/juliet-test-suite
https://github.com/find-sec-bugs/juliet-test-suite
https://doi.org/10.48550/ARXIV.2308.00245
https://doi.org/10.48550/ARXIV.2308.00245
https://doi.org/10.1007/S10664-021-10013-5
https://doi.org/10.1007/S10664-021-10013-5
https://doi.org/10.1007/S10664-021-10013-5

Ruijie Meng, Martin Mirchev, Marcel Böhme, and Ab-
hik Roychoudhury. 2024. Large language model
guided protocol fuzzing. NDSS.

Niels Mündler, Jingxuan He, Slobodan Jenko, and Mar-
tin Vechev. 2023. Self-contradictory hallucinations
of large language models: Evaluation, detection and
mitigation. arXiv preprint arXiv:2305.15852.

Theo X Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2023. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton,
and Pengcheng Yin. 2023. Can large language mod-
els reason about program invariants? In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
27496–27520. PMLR.

Thomas Reps. 2000. Undecidability of context-
sensitive data-dependence analysis. ACM Trans-
actions on Programming Languages and Systems
(TOPLAS), 22(1):162–186.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou,
Gang Fan, and Charles Zhang. 2018. Pinpoint: fast
and precise sparse value flow analysis for million
lines of code. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language De-
sign and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, pages 693–706. ACM.

Benjamin Steenhoek, Hongyang Gao, and Wei Le. 2024.
Dataflow analysis-inspired deep learning for efficient
vulnerability detection. In Proceedings of the 46th
IEEE/ACM International Conference on Software
Engineering, ICSE 2024, Lisbon, Portugal, April 14-
20, 2024, pages 16:1–16:13. ACM.

Saad Ullah, Mingji Han, Saurabh Pujar, Hammond
Pearce, Ayse Coskun, and Gianluca Stringhini. 2024.
Llms cannot reliably identify and reason about secu-
rity vulnerabilities (yet?): A comprehensive evalu-
ation, framework, and benchmarks. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 199–
199. IEEE Computer Society.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS.

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao
Qin, Mengda He, Haokun Li, Shing-Chi Cheung,
and Cong Tian. 2024. Enchanting program specifica-
tion synthesis by large language models using static
analysis and program verification. arXiv preprint
arXiv:2404.00762.

Haoze Wu, Clark Barrett, and Nina Narodytska. 2023.
Lemur: Integrating large language models in auto-
mated program verification. In The Twelfth Interna-
tional Conference on Learning Representations.

Xiaoheng Xie, Gang Fan, Xiaojun Lin, Ang Zhou,
Shijie Li, Xunjin Zheng, Yinan Liang, Yu Zhang,
Na Yu, Haokun Li, Xinyu Chen, Yingzhuang Chen,
Yi Zhen, Dejun Dong, Xianjin Fu, Jinzhou Su, Fux-
iong Pan, Pengshuai Luo, Youzheng Feng, Ruoxiang
Hu, Jing Fan, Jinguo Zhou, Xiao Xiao, and Peng Di.
2024. Codefuse-query: A data-centric static code
analysis system for large-scale organizations. CoRR,
abs/2401.01571.

Aashish Yadavally, Yi Li, Shaohua Wang, and Tien N
Nguyen. 2024. A learning-based approach to static
program slicing. Proceedings of the ACM on Pro-
gramming Languages, 8(OOPSLA1):83–109.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2021. Optimal neural program synthesis from multi-
modal specifications. In Findings of the Association
for Computational Linguistics: EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 16-20
November, 2021, pages 1691–1704. Association for
Computational Linguistics.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2024. Satlm: Satisfiability-aided language models
using declarative prompting. Advances in Neural
Information Processing Systems, 36.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the AI ocean: A survey on hallucination in large
language models. CoRR, abs/2309.01219.

3799

https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3597503.3623345
https://doi.org/10.1145/3597503.3623345
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.48550/ARXIV.2401.01571
https://doi.org/10.48550/ARXIV.2401.01571
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.146
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.146
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219
https://doi.org/10.48550/ARXIV.2309.01219

Table 7: The performance of LLMSAN using different
LLMs. The columns P and R indicate the precision
and recall, respectively. |∆V | (|∆S|) and |∆V |

|V | (|∆S|
|S|)

indicate the number and proportion of pruned valid (spu-
rious) data-flow paths, respectively.

Model Bug Type P (%) R (%) |∆V | |∆S| |∆V |
|V | (%) |∆S|

|S| (%)

APT 82.98 39.00 0 69 0.00 89.61
XSS 94.52 69.00 0 52 0.00 92.86

gpt-3.5 OSCI 96.43 81.00 0 117 0.00 97.50
DBZ 0.00 0.00 0 164 0.00 82.00
NPD 56.70 55.00 0 142 0.00 77.17

APT 98.18 54.00 0 45 0.00 97.83
XSS 89.77 79.00 0 12 0.00 57.14

gpt-4 OSCI 98.94 93.00 0 6 0.00 85.71
DBZ 92.68 76.00 0 29 0.00 82.86
NPD 75.56 68.00 2 46 2.86 67.65

APT 87.50 14.00 0 84 0.00 97.83
XSS 91.78 67.00 0 27 0.00 81.82

gemini-1.0 OSCI 87.50 42.00 0 52 0.00 89.66
DBZ 12.50 2.00 0 84 0.00 85.71
NPD 97.30 36.00 1 62 2.70 98.41

APT 87.50 14.00 0 84 0.00 97.67
XSS 88.64 78.00 0 86 0.00 89.58

claude-3 OSCI 87.50 42.00 0 52 0.00 89.66
DBZ 33.10 47.00 0 205 0.00 68.33
NPD 39.50 62.00 0 228 0.00 70.59

Appendix

A Additional Experimental Results

To show the effectiveness of the sanitization using
diverse LLM architectures, we conduct the evalua-
tion upon four different LLMs. In the main body of
the paper, we only demonstrate the results of LLM-
SAN, its ablations, and baselines using gpt-4. In
what follows, we demonstrate the complete evalua-
tion results when using all the four models. Also,
we present detailed statistics of the token costs of
LLMSAN and FSCoT when using gpt-4.

A.1 Performance of LLMSAN using
Different LLMs

Figure 7 shows the precision and recall of the bug
detection with sanitization. Generally, LLMSAN
achieves high precision in the APT, XSS, and OSCI
detection. Due to the inherent drawbacks of the
models, the recall of the DBZ detection is not as
good as the one of the detection of other bug types.
After investigating the benchmark programs used
in the DBZ detection, we find that there are many
different assignments from literal values, such as
Integer.MIN_VALUE. On the one hand, such literal
values can make LLMs wrongly identify them as
potential zero values due to the insufficient align-
ment between LLMs and Java semantics, degrading
the precision of the DBZ detection. On the other
hand, a large number of non-zero literals may mis-
lead LLMs to pay less attention to zero literals and
the potential zero values returned by specific func-
tion calls, which eventually causes the low recall

Table 8: The performance of FSCoT using different
LLMs. The rows P and R indicate the precision and
recall, respectively.

APT XSS OSCI DBZ NPD

gpt-3.5
P(%) 33.62 55.20 40.30 0.00 23.01
R(%) 39.00 69.00 81.00 0.00 55.00

gpt-4
P(%) 54.00 79.00 93.00 68.47 50.72
R(%) 54.00 79.00 93.00 76.00 70.00

gemini-1.0
P(%) 14.00 67.00 42.00 2.00 37.00
R(%) 14.00 67.00 42.00 2.00 37.00

claude-3
P(%) 14.00 44.83 42.00 13.54 16.10
R(%) 14.00 78.00 42.00 47.00 62.00

of the DBZ detection. Overall, although the per-
formance of LLMSAN diverse among different
LLMs, the statistics shown in Table 7 demonstrates
the potential of LLMSAN in the bug detection.

Meanwhile, it is worth noting that the sanitiza-
tion technique can identify most of the spurious
data-flow paths, which is shown by the column
|∆S|
|S| . Aside from the loss of one and two valid data-

flow paths when using gemini-1.0 and gpt-4 in
the NPD detection, respectively, no other detection
instances sacrifice valid data-flow paths. Therefore,
we can conclude that the sanitization technique
can effectively address the hallucinations in bug
detection with little loss of true bug reports.

A.2 Comparison with Baselines using
Different LLMs

Table 8 shows the performance of FSCoT using
different LLMs. Compared with the statistics in
the columns P and R of Table 7, we find that LLM-
SAN has the overwhelming superiority over FS-
CoT in terms of the preicions and achieves almost
the same recall as LLMSAN. On average, LLM-
SAN obtains 28.71% higher precision in the detec-
tion of the five types of bugs using the four LLMs.

Table 9 shows the performance of different hal-
lucination mitigation techniques. It is shown that
the sanitization technique in LLMSAN has better
performance than Ask-Check, CoT-Check, and SC-
CoT-Check. Particularly, the three baselines can
hardly resolve any spurious data-flow paths when
they are powered with gemini-1.0. However, as
shown in Table 7, LLMSAN can reduce the num-
ber of spurious data-flow paths dramatically. Addi-
tionally, LLMSAN sacrifices few valid data-flow
paths when using different LLMs. Overall, the eval-
uation findings are consistent with the ones derived
from the statistics obtained using gpt-4, showing
that the sanitization technique surpasses existing
approaches in hallucination mitigation.

3800

Table 9: The performance of Ask-Check, CoT-Check, and SC-CoT-Check using different LLMs. The columns
|∆V |, |∆S|, |∆V |

|V | , and |∆S|
|S| indicate the same quantities as the ones in Table 7.

Model Bug Type Ask-Check CoT-Check SC-CoT-Check
|∆V | |∆S| |∆V |

|V | (%) |∆S|
|S| (%) |∆V | |∆S| |∆V |

|V | (%) |∆S|
|S| (%) |∆V | |∆S| |∆V |

|V | (%) |∆S|
|S| (%)

APT 6 9 15.38 11.69 0 1 0.00 1.30 0 1 0.00 1.30
XSS 1 2 1.45 3.57 0 1 0.00 1.79 0 7 0.00 12.50

gpt-3.5 OSCI 0 0 0.00 0.00 0 16 0.00 13.33 0 5 0.00 4.17
DBZ 0 127 0.00 63.50 0 26 0.00 13.00 0 10 0.00 5.00
NPD 1 2 1.82 1.09 0 9 0.00 4.89 0 3 0.00 1.63

APT 6 3 11.11 6.52 19 14 35.19 30.43 18 12 33.33 26.09
XSS 0 0 0.00 0.00 4 3 5.06 14.29 0 0 0.00 0.00

gpt-4 OSCI 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
DBZ 45 20 59.21 57.14 0 11 0.00 31.43 0 9 0.00 25.71
NPD 2 33 2.86 48.53 0 40 0.00 58.82 0 37 0.00 54.41

APT 0 0 0.00 0.00 2 0 2.33 0.00 0 0 0.00 0.00
XSS 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00

gemini-1.0 OSCI 0 0 0.00 0.00 0 0 0.00 0.00 0 0 0.00 0.00
DBZ 0 0 0.00 0.00 0 1 0.00 1.02 0 3 0.00 3.06
NPD 0 0 0.00 0.00 0 1 0.00 1.59 0 0 0.00 0.00

APT 0 0 0.00 0.00 2 0 2.33 0.00 0 0 0.00 0.00
XSS 0 9 0.00 9.38 0 9 0.00 9.38 0 51 0.00 53.13

claude-3 OSCI 0 0 0.00 0.00 0 10 0.00 17.24 0 0 0.00 0.00
DBZ 0 27 0.00 9.00 0 19 0.00 6.33 0 8 0.00 2.67
NPD 0 80 0.00 24.77 0 44 0.00 13.62 0 16 0.00 4.95

(gpt-3.5, APT) (gpt-3.5, XSS) (gpt-3.5, OSCI) (gpt-3.5, DBZ) (gpt-3.5, NPD)

(gpt-4, APT) (gpt-4, XSS) (gpt-4, OSCI) (gpt-4, DBZ) (gpt-4, NPD)

(gemini-1.0, APT) (gemini-1.0, XSS) (gemini-1.0, OSCI) (gemini-1.0, DBZ) (gemini-1.0, NPD)

(claude-3, APT) (claude-3, XSS) (claude-3, OSCI) (claude-3, DBZ) (claude-3, NPD)

Figure 8: The numbers of spurious data-flow paths detected by various combinations of sanitizers using four LLMs

3801

in
pu

t t
ok

en
 c

os
t

0

5000

10000

15000

20000

APT XSS OSCI DBZ NPD

FSCoT LLMSAN

(a) Input token costs of LLMSAN and FSCoT

ou
tp

ut
 to

ke
n

co
st

0

250

500

750

1000

APT XSS OSCI DBZ NPD

FSCoT LLMSAN

(b) Input token costs of LLMSAN and FSCoT

Figure 9: Comparison between token costs of LLM-
SAN and FSCoT

A.3 Ablation Study using Different LLMs

Figure 8 depicts the numbers of detected spurious
data-flow paths when using diverse combinations
of sanitizers across four different LLMs. As shown
by the sub-figures, each sanitizer is capable of de-
tecting spurious data-flow paths in different cate-
gories of bug detection. Particularly, if we exclude
any sanitizer from the sanitization pipeline, the
count of spurious data-flow paths will increase in
the detection of APT, XSS, and OSCI bugs using
gpt-3.5. Likewise, all four sanitizers are able to
uniquely identify several spurious data-flow paths
during the APT, XSS, DBZ, and NPD detection
when employing claude-3. Overall, the findings
of the ablation study highlight the effectiveness of
each sanitizer in mitigating hallucinations during
bug detection across various bug types and using
different LLMs.

A.4 Token Costs of LLMSAN and FSCoT

Figure 9 presents the token cost comparison be-
tween LLMSAN and FSCoT utilizing gpt-4. Dur-
ing the detection of five types of bugs, LLMSAN
consumes 1.75, 1.66, 1.90, 2.01, and 1.72 times the
input tokens compared to FSCoT, and 3.95, 3.14,
3.37, 3.61, and 2.99 times the output tokens. Ac-
cording to the billing policy, the additional financial
costs incurred by LLMSAN compared to FSCoT
are 0.86, 0.74, 1.00, 1.13, and 0.89, indicating that
investing 95% more in financial costs would result
in a 21.99% precision improvement on average.

B Case Study

According to Section 5 and Appendix A, LLM-
SAN can significantly mitigate the hallucinations
in the bug detection. In what follows, we will
show several typical examples of spurious data-
flow paths identified by the four sanitizers. Besides,
we will present an example spurious data-flow path
that cannot be identified by LLMSAN.

B.1 Identified Spurious Data-flow paths
Case I: Consider the program in Figure 10.

gemini-1.0 emits the data-flow path starting from
(“”, ℓ53), while the few-shot examples do not con-
tain any string literals as sensitive data. The type
sanitizer detects the inconsistency between the syn-
tactic types of the statement at line 53 and the ones
in the few-shot examples, and thus, detects this
spurious data-flow path.

Case II: Consider the program in Figure 11.
gpt-3.5 emits the data-flow path starting from a
zero value and ending at (data, ℓ178), while the
value of the variable data cannot be zero due to
the branch condition data != 0. The function-
ality sanitizer leverages gpt-3.5 to validate the
semantic property by only focusing on the func-
tion shown in Figure 11, eventually identifying the
spurious data-flow path and mitigating the halluci-
nation. This spurious data-flow path can also be
identified by the reachability sanitizer.

Case III: Consider the program in Figure 12.
gemini-1.0 emits the data-flow path passing from
(data, ℓ69) to (data, ℓ56). The order sanitizer dis-
covers that the statement at line 56 should be exe-
cuted before the statement at line 69 in the control
flow graph, implying that the order consistency is
violated by the data-flow path. Hence, LLMSAN
identifies it as spurious one.

Case IV: Consider the program in Figure 13.
claude-3 emits the data-flow path from (data, ℓ43)
to (data, ℓ77). The order sanitizer discovers that
the statement at line 43 can not be executed before
the one at line 77, implying that the order consis-
tency is violated. Hence, LLMSAN identifies the
data-flow path as spurious one.

Case V: Consider the program in Figure 14.
gpt-4 emits the data-flow path from (data, ℓ34)
to (dataSerialized, ℓ46). By focusing on the two
lines in the single function, the reachability sani-
tizer powered by gpt-4 discovers that the value of
dataSerialized at line 46 cannot be null, and
detects this spurious data-flow path.

3802

48 public void bad() throws Throwable
49 {
50 String data;
51 if (privateReturnsTrue())
52 {
53 data = ""; /* Initialize data */
54 /* Read data using an outbound tcp connection */
55 {
56 Socket socket = null;
57 BufferedReader readerBuffered = null;
58 InputStreamReader readerInputStream = null;
59 try
60 {
61 /* Read data using an outbound tcp connection */
62 socket = new Socket("host.example.org", 39544);
63 /* read input from socket */
64 readerInputStream = new InputStreamReader(socket.getInputStream(), "UTF-8");
65 readerBuffered = new BufferedReader(readerInputStream);
66 /* POTENTIAL FLAW: Read data using an outbound tcp connection */
67 data = readerBuffered.readLine();
68 }

Figure 10: An example of spurious data-flow paths identified by type sanitizer

165 public void CWE369_Divide_by_Zero__int_Environment_modulo_22b_goodB2G1Sink(int data)
166 {
167 if (CWE369_Divide_by_Zero__int_Environment_modulo_22a.goodB2G1PublicStatic)
168 {
169 /* INCIDENTAL: CWE 561 Dead Code, the code below will never run
170 * but ensure data is inititialized before the Sink to avoid compiler errors */
171 data = 0;
172 }
173 else
174 {
175 /* FIX: test for a zero modulus */
176 if (data != 0)
177 {
178 IO.writeLine("100%" + data + " = " + (100 % data) + "\n");
179 }
180 else
181 {
182 IO.writeLine("This would result in a modulo by zero");
183 }
184 }
185 }

Figure 11: An example of spurious data-flow paths identified by functionality sanitizer

50 private String bad_source(HttpServletRequest request, HttpServletResponse response) throws Throwable
51 {
52 String data;
53
54 if (badPrivate)
55 {
56 data = ""; /* Initialize data */
57 /* read input from URLConnection */
58 {
59 URLConnection urlConnection = (new URL("http://www.example.org/")).openConnection();
60 BufferedReader readerBuffered = null;
61 InputStreamReader readerInputStream = null;
62 try
63 {
64 readerInputStream = new InputStreamReader(urlConnection.getInputStream(), "UTF-8");
65 readerBuffered = new BufferedReader(readerInputStream);
66 /* POTENTIAL FLAW: Read data from a web server with URLConnection */
67 /* This will be reading the first "line" of the response body,
68 * which could be very long if there are no newlines in the HTML */
69 data = readerBuffered.readLine();
70 }
71 catch (IOException exceptIO)
72 {
73 IO.logger.log(Level.WARNING, "Error with stream reading", exceptIO);
74 }

Figure 12: An intra-procedural example of spurious data-flow paths identified by order sanitizer

3803

37 public void bad()
38 {
39 StringBuilder data;
40 if (privateReturnsTrue())
41 {
42 /* POTENTIAL FLAW: data is null */
43 data = null;
44 }
45 else
46 {
47 /* INCIDENTAL: CWE 561 Dead Code, the code below will never run
48 * but ensure data is initialized before the Sink to avoid compiler errors */
49 data = null;
50 }
51
52 if (privateReturnsTrue())
53 {
54 /* POTENTIAL FLAW: null dereference will occur if data is null */
55 IO.writeLine("" + data.length());
56 }
57 }

59 private void goodG2B1()
60 {
61 StringBuilder data;
62 if (privateReturnsFalse())
63 {
64 /* INCIDENTAL: CWE 561 Dead Code, the code below will never run
65 * but ensure data is initialized before the Sink to avoid compiler errors */
66 data = null;
67 }
68 else
69 {
70 /* FIX: hardcode data to non-null */
71 data = new StringBuilder();
72 }
73
74 if (privateReturnsTrue())
75 {
76 /* POTENTIAL FLAW: null dereference will occur if data is null */
77 IO.writeLine("" + data.length());
78 }
79 }

Figure 13: An inter-procedural example of spurious data-flow paths identified by order sanitizer

29 public void bad() throws Throwable
30 {
31 StringBuilder data;
32
33 /* POTENTIAL FLAW: data is null */
34 data = null;
35
36 /* serialize data to a byte array */
37 ByteArrayOutputStream streamByteArrayOutput = null;
38 ObjectOutput outputObject = null;
39
40 try
41 {
42 streamByteArrayOutput = new ByteArrayOutputStream() ;
43 outputObject = new ObjectOutputStream(streamByteArrayOutput) ;
44 outputObject.writeObject(data);
45 byte[] dataSerialized = streamByteArrayOutput.toByteArray();
46 CWE476_NULL_Pointer_Dereference__StringBuilder_75b_badSink(dataSerialized);
47 }
48 catch (IOException exceptIO)
49 {
50 IO.logger.log(Level.WARNING, "IOException in serialization", exceptIO);
51 }

Figure 14: An example of spurious data-flow paths identified by reachability sanitizer

3804

27 private boolean privateReturnsTrue()
28 {
29 return true;
30 }
31
32 private boolean privateReturnsFalse()
33 {
34 return false;
35 }
36
37 public void bad() throws Throwable
38 {
39 String data;
40 if (privateReturnsTrue())
41 {
42 /* POTENTIAL FLAW: data is null */
43 data = null;
44 }
45 else
46 {
47 /* INCIDENTAL: CWE 561 Dead Code, the code below will never run
48 * but ensure data is inititialized before the Sink to avoid compiler errors */
49 data = null;
50 }
51
52 if (privateReturnsTrue())
53 {
54 /* POTENTIAL FLAW: null dereference will occur if data is null */
55 IO.writeLine("" + data.length());
56 }
57 }

Figure 15: An example of spurious data-flow paths not identified by LLMSAN

B.2 Unidentified Spurious Data-flow Paths
Consider the program in Figure 15. The model claude-3 infers the data-flow path from (data, ℓ49) to
(data, ℓ55), while the function privateReturnsTrue always returns false, implying that the data-flow
path is spurious. The prompts of the functionality sanitizer and reachability sanitizer do not contain
the function body of privateReturnsTrue, which makes LLMSAN fails to detect the underlying
hallucination.

3805

