
Findings of the Association for Computational Linguistics: EACL 2024, pages 3806–3820
November 12-16, 2024 ©2024 Association for Computational Linguistics

Scaling Behavior for Large Language Models regarding Numeral Systems:
An Example using Pythia

Zhejian Zhou♢ Jiayu Wang♠ Dahua Lin♠♡ Kai Chen♠
♢ University of Southern California ♠ Shanghai AI Laboratory

♡ The Chinese University of Hong Kong
zhejianz@usc.edu dhlin@ie.cuhk.edu.hk

{wangjiayu,chenkai}@pjlab.org.cn

Abstract

Though Large Language Models (LLMs) have
shown remarkable abilities in mathematics rea-
soning, they are still struggling with performing
numeric operations accurately, such as addition
and multiplication. Numbers can be tokenized
into tokens in various ways by different LLMs
and affect the numeric operations performance.
Currently, there are two representatives: 1) To-
kenize into 1-digit, and 2) Tokenize into 1 ∼ 3
digit. The difference is roughly equivalent to us-
ing different numeral systems (namely base 10
or base 103). In light of this, we study the scal-
ing behavior of different numeral systems in
the context of transformer-based large language
models. We empirically show that a base 10
system is consistently more data-efficient than
a base 102 or 103 system across training data
scale, model sizes under from-scratch training
settings, while different number systems have
very similar fine-tuning performances. We at-
tribute this to higher token frequencies of a base
10 system. Additionally, we reveal extrapola-
tion behavior patterns on addition and multi-
plication. We identify that base 100 and base
1000 systems struggle on token-level discern-
ment and token-level operations. We also sheds
light on the mechanism learnt by the models.

1 Introduction

Large Language Models (LLMs) have stormed the
world with their amazing reasoning abilities (Ope-
nAI, 2023; Google, 2023; Touvron et al., 2023b).
However, numeric operations remain challenging
for LLMs to comprehend under the architecture of
Transformer (Vaswani et al., 2017; Lee et al., 2023;
Yuan et al., 2023; Zhou et al., 2024; McLeish et al.,
2024). Several techniques have been proposed to
improve the performance of numeric operations in-
cluding improving positional embeddings (Kazem-
nejad et al., 2024; McLeish et al., 2024) and using
scratchpad (Nye et al., 2021; Liu and Low, 2023).
These works mostly focus on a random initialized

Transformer with 1-digit tokenization. However,
pre-trained LLMs have various tokenizers that can
affect the numeric operations performances. Cur-
rently, there are two main tokenization schemes:
1) Tokenize into 1-digit (Touvron et al., 2023a,b;
Jiang et al., 2023; Bai et al., 2023; Team et al.,
2024; Shao et al., 2024), and 2) Tokenize into 1 ∼ 3
digit (Biderman et al., 2023; OpenAI, 2023; Cai
et al., 2024). An example of different tokenization1

is shown in Table 1. Abstracting away practical
details of tokenizers, these two schemes can be
viewed as using a base 10 numeral system versus
a base 103 system. The former aligns better with
human intuition and the prevalent base 10 system
in daily usage. Yet, the latter encodes numbers
into fewer tokens. Our question follows intuitively:
What is the difference between these schemes in
numeric operations?

We resort to data-scaling efficiency to answer
this question. That is, there would be substantial
differences in the scaling behavior of these numeral
systems. Intuitively, a base 10 system has a smaller
set of tokens that could appear at each position.
However, it would take up more context length to
represent the numbers. Out of practical consider-
ations, we choose to restrict our study to the base
10, base 102, and base 103 systems which adhere
to tokenizers of existing large language models.

To design experiments for scaling behavior, we
identify the following critical dimensions: 1) nu-
meral system 2) data scale, and 3) model size.
To further corroborate the generalizability of our
claim, we also test if our conclusion holds for dif-
ferent numeric operations. On the other hand, it
is possible that pre-trained models have a bias to-
wards 2 ∼ 3 digit tokens. To strengthen our claim,
we test if our observed trend holds irrespective of
whether our models are trained from-scratch or
fine-tuned.

We observe that a base 10 system is consistently
more data-efficient when trained from-scratch, and

3806

Type Models Tokenize 31415926535

1-digit Llama1-2/Mistral/QWen/Gemma [’3’, ’1’, ’4’, ’1’, ’5’, ’9’, ’2’, ’6’, ’5’, ’3’, ’5’]

Multiple Pythia/GPT-4o/Llama3/InternLM [’314’, ’159’, ’265’, ’35’]

Table 1: Tokenizing 31415926535 via different large language models.

that fine-tuned models perform comparably. We
attribute this to higher token frequencies in base 10
training data. We believe our observation could
transfer to other tasks. For example, having a
smaller state/action space could be favorable in
terms of data efficiency for a sequential planning
task.

We also study the length extrapolation behaviors
of different numeral systems. We identify that base
100 and base 1000 systems struggle on token-level
discernment, and on learning token-level opera-
tions. We further shed light on the mechanisms
learnt by models.

Our contributions can be summarized as follows:

• We reveal that A base 10 system is consis-
tently more data-efficient than a base 102 or
base 103 system under different data scales,
model sizes, and different operators, espe-
cially training from-scratch.

• We showcase through extrapolation experi-
ments that base 100 and base 1000 systems
struggle on token-level discernment and on
learning token-level operations.

• We identify several calculation patterns in the
extrapolation setting. Such patterns include
truncated addition and extrapolation of base-
10 carry.

2 Related Work

Numeral System A numeral system represents a
number by a sequence of tokens within pre-defined
sets. In order to perform numeric operations, the
model would have learned to discern between the
tokens precisely. Numeral systems are closely re-
lated to tokenizers. We first review prevalent tok-
enization conventions. Llama1/2 (Touvron et al.,
2023a,b) tokenize numbers into 1-digit, enforcing
a base-10 system. This design is also adopted by
other general-domain LLMs (Jiang et al., 2023;

1We provide a discussion on tokenization schemes in Ap-
pendix A.

Bai et al., 2023; Team et al., 2024) and math-
specialized model Deepseek-Math (Shao et al.,
2024). On the other hand, the most capable model
to date, GPT-4o, tokenizes numbers into 1 ∼ 3
digit, which is roughly equivalent to using a base
103 system. To the best of our knowledge, no one
has systematically studied how the numeral system
affects the transformers’ arithmetic ability.
Arithmetic Operations in Transformers To
improve the arithmetic abilities of the transformer
(Wang et al., 2021; Nogueira et al., 2021), people
have designed positional embeddings (Kazemnejad
et al., 2024; McLeish et al., 2024), scratchpad (Nye
et al., 2021), and special training procedures (Liu
and Low, 2023; Deng et al., 2023). In this paper,
we do not improve the performance of arithmetic
operations, but aim to understand the scaling im-
pact of choices of numeral systems. We focus on
using decoder-only transformers to generate the re-
sults of arithmetic operations directly (i.e. without
a scratchpad).
Scaling Laws in Large Language Models Scal-
ing laws2 have been widely studied in the context of
LLMs (Kaplan et al., 2020; Hernandez et al., 2021;
Gao et al., 2023; Bi et al., 2024) which aims to
predict model losses based on different data scales
and model parameters. Different from this line
of research, we do not aim to accurately predict
performances when we scale up computing. We
leverage scaling behavior as a proxy to study the
impact of numeral systems selection.

3 Scaling Behavior Experiment Designs

To understand how the numeral systems affect nu-
meric operation in LLMs, we identify the following
dimensions of interest for our experiments when
training an LLM with numerical operation: 1) nu-
meral system 2) training data scale 3) model size 4)
from-scratch or fine-tuning 5) different operations.

For 1) and 2), we generate synthetic inputs ac-
cording to the process explained in section 3.1. For
3), we make use of the Pythia scaling suite (Bider-
man et al., 2023) for ranging over different model

2We discuss the connections between our work and scaling
laws in Appendix C.

3807

sizes. For 4), we replicate experiments for both
settings to the best of our effort. For 5), we choose
to include results of addition and multiplication.

We list the complete configurations for our ex-
periments. 1) numeral system: base 10, base 102,
base 103 2) training data scale: 213∼19 training
samples 3) model size: 70M, 410M, 1.4B, 6.9B,
12B from Pythia 4) random-initialized or fine-tuned
from Pythia (i.e. from-scratch or fine-tune) 5) op-
erations3: addition, multiplication. After choos-
ing a configuration, we train our model using our
generated data and evaluate the model on a non-
overlapping evaluation set. The training procedure
is the same as instruction-tuning a language model
which masks the prompt (for example 12 + 23 =)
and only calculates the losses on the outputs (35).

3.1 Synthetic Data Generation
We generate synthetic data of scales 213∼19 for nu-
meral systems base 10, base 102, and base 103. We
abstract away the nitty-gritty details involved in
practical tokenization schemes and generate syn-
thetic input ids and labels directly.

We first illustrate our training distribution gener-
ation process using addition as an example. Let a
and b be two operands, each row would be in the
form of a+b = c. Let la and lb be the digit lengths
of a and b in base 10. We fix la, lb ∈ [1, 10], and
we attempt to evenly distribute generated data over
la × lb. If the total number of pairs for la × lb is
smaller than we request, we take all possible pairs.
No pairs are repeated during our generation.

Based on our generated training distribution, we
convert each number into the corresponding base
10, base 102, and base 103 representations. Note
that this could be easily done by grouping digits
in the original base 10 representation. We then
map the digit numbers onto their corresponding
token ids. Intuitively, base 10 would have 10 ids
(corresponding to 0 ∼ 9), base 102 would have 100
ids, and base 103 would have 1000 ids. In Figure 1,
we demonstrate the answer token distribution for
each numeral system.

Importantly, token frequencies of a base 10 sys-
tem are at least an order of magnitude larger than
those of a base 100 or base 1000 system. We be-
lieve that higher token frequencies lead to better
trained models. This is the reason to the superior
performances of a base 10 model.

We obtain the distribution by converting all an-
swers into ids. We normalize the token values from
each numeral system by dividing against the base.

0.0 0.2 0.4 0.6 0.8 1.0
Token Value / Base

101

102

103

104

To
ke

n
Fr

eq
ue

nc
y

Token Distribution of Multiplication
Base 10
Base 100
Base 1000

Figure 1: Answer Token Distribution for Multiplica-
tion. We sample 213 addition samples to illustrate the
distribution. Token values are normalized to [0, 1].

As our sampling result shows, the probability den-
sity gets more imbalanced as the base gets larger.
For example, tokens 0 ∼ 9 are one magnitude more
likely to appear, followed by two-digit tokens, then
three digit tokens. Such a phenomenon could have
deeper roots in number theory. In this paper, we
accept this experiment fact and continue with our
exploration.

3.2 Evaluation Setup

We sample non-overlapping operand pairs for eval-
uation. We attempt to evenly sample 1000 pairs
for each la × lb. If half of the total number of
pairs is smaller than 1000, then we reserve half for
evaluation. Overall, we strive to make sure that
the training and evaluation sets are from the same
distribution and have no overlap.

To observe a clear trend, we report the following
metrics 1) relative error 2) exact match accu-
racy 3) normalized edit similarity. Of these three
metrics, exact match accuracy is the most intuitive,
which is a hard match between model-generated to-
kens and ground truth tokens. Based on our initial
experiments, this metric is not informative enough
for a range of settings. We thus design two more
metrics to reveal the underlying dynamics of our
models.

Relative Error To generate a metric that is mean-
ingful to practical settings, we calculate relative
error as

∣∣∣log o
g

∣∣∣, where g is the ground truth answer
and o is the model output. We then compute the
mean of the magnitude difference over all evalu-

3We provide a more detailed discussion on task selection
in Appendix B.

3808

14 16 18
Pythia 70M

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

14 16 18
Pythia 410M

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

Relative Error for from_scratch Addition

14 16 18
Pythia 70M

10 5

10 4

10 3

10 2

10 1

100 base 10
base 100
base 1000

14 16 18
Pythia 410M

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 5

10 4

10 3

10 2

10 1

100

base 10
base 100
base 1000

Relative Error for sft Addition

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Normalized Edit Similarity for from_scratch Addition

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Normalized Edit Similarity for sft Addition

Figure 2: Relative Error (lower is better) and Normalized Edit Similarity (higher is better) for addition operation
with different data scales, model parameter sizes, from-scratch or fine-tune, and numeral systems.

ation pairs. This metric is more informative than
exact match accuracy since it captures the relative
error made by the model.

Note that this metric has two inductive biases.
First, this metric gives more weight to the length
differences between model outputs and ground
truth answers. Even if the output has a long com-
mon sub-sequence with the ground truth, it will
still be penalized for not getting the output length
right.

Second, this metric biases towards the accuracy
of leading digits. If we make a connection between
the numeral system and signal processing, this is
equivalent to putting more weight on low frequency
component of the number (trailing digits change

rapidly while leading digits change slowly).

Normalized Edit Similarity Since numbers in a
numeral system are sequences of tokens, we intro-
duce a generalized and Normalized Edit Similarity
metric, which would give credit to partially correct
answers based on string similarity. Edit Distance is
a powerful metric that can capture substring simi-
larities. We extend this metric to our scenario using
the following setup:

Each number could be represented as a sequence
of chars, with each char representing a single digit
from 0 ∼ 9. We define the generalized edit dis-
tance as the minimum number of insertions, dele-
tions, and substitutions needed to transform one
sequence into another. Suppose that the two se-

3809

quences are A = a1a2...an and B = b1b2...bm.
Let ed be the edit distance between A and B. We
define the normalized edit similarity as ned =
max(m,n)−ed

max(m,n) . This metric is normalized into [0, 1].

Compared with the Relative Error metric, this
metric connects more closely to human perception.
It prioritizes answers that would have the longest
sub-sequences with the ground truth. Since human
perception is largely visual for numbers, this metric
aligns more with the visual similarity between the
answer and the ground truth.

Note that Relative Error can be somewhat
viewed as a revised version of the Normalized Edit
Similarity we used, where insert and delete opera-
tions are penalized harder, and replace operation is
reweighted by the magnitude of the difference.

4 Experiments and Results

In this section, we present the main results of our
experiments that demonstrate the scaling efficiency
of a base 10 system. 4

4.1 Overall Trends

For each scenario, our main metrics of interest
are Relative Error and Normalized Edit Similarity.
For the addition operation, we also report Exact
Match Accuracy. However, for multiplication, ex-
act match accuracy is too low such that no informa-
tion could be gained.

Overall, a base 10 system is consistently more
data-efficient than a base 102 or a base 103 system
when trained from scratch, as shown in Figure 2
and Figure 4. That is, to obtain a certain perfor-
mance, a base 10 system would need data of a
smaller scale to achieve it.

We highlight the fact that fine-tuning scenar-
ios do not instead favor base 100 and base 1000.
During pre-training, most tokenizers lean towards
combining consecutive digits, which would have
favored base 102 and base 103 over base 10. Con-
sidering this, the decent performances of base 10
fine-tuned models further corroborate the superior-
ity of the base 10 system.

It is worth noting that the differences in data
efficiency do not diminish just as we scale up model
size. We do observe a saturation trend for addition
when we put in more training data. However, for

4We provide full hyperparameters in Appendix F. We also
provide small-scale evaluations in real-world scenarios in Ap-
pendix G.

multiplication, the superiority of a base 10 system
gets more pronounced as data scales up.

4.2 In-domain Interpolation Evaluation

First, we test whether our trained models could
interpolate between the points identically sampled
from the same training distribution (i.e. whether
our models could generalize in-domain).

4.2.1 Addition

In Figure 2, we showcase the scaling behavior for
addition. We first focus on from-scratch scenario.
We can observe a clear trend that base 10 is consis-
tently better than base 102 and base 103 for both
metrics, which is a strong affirmation of our claim.
A base 10 system is at least of a constant magni-
tude more data efficient than base 102 and base 103

systems, and this trend does not diminish as the
model size gets larger.

For fine-tuning experiments, the difference be-
tween numeral systems is less profound. Pythia is
pre-trained on tokenization with base 103, which
weakens the advantages of base 10. A base 10 sys-
tem is at least on par with base 102 or base 103,
as we do not observe an exaggerated performance
difference as we scale up data.

4.2.2 Multiplication

We plot the Normalized Edit Similarity for multipli-
cation in Figure 4. We can also conclude that the
base 10 number system is consistently more data-
efficient than base 102 and base 103. The trend
is consistent for both from-scratch and supervised
fine-tuning settings.

The superiority of a base 10 system is more pro-
nounced and more consistent under the multipli-
cation setting. First, for Relative Error of models
trained from scratch, the advantage of a base 10
system is more perceivable than the addition set-
ting. For the Normalized Edit Similarity metric,
we observe a trend where the data efficiency of a
base 10 system gains more advantage at large data
scales. We relate this phenomenon to the differ-
ences between Figure 7 and Figure 6 in the Ap-
pendix. As shown, addition is a much simpler task
when compared with multiplication. For a large
range of operand length pairs, the exact match ac-
curacy remains zero. Our hypothesis is that the
sample efficiency of a base 10 system against base
100 and base 1000 systems is magnified by the
difficulty of the task.

3810

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Eval Acc for from_scratch Addition

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Eval Acc for sft Addition

Figure 3: Exact match accuracy for addition operation with different data scales, model parameter sizes, from-scratch
or fine-tune, and numeral systems.

4.3 Out-of-domain Extrapolation Evaluation

We have tested whether our models could general-
ize in-domain. An equally important question is
whether our models could extrapolate to unseen
data points, especially in terms of length.

During training distribution generation, we only
consider numbers that are less than 1011. Therefore,
we generate cases where one operand lies in the
range of 1011 ∼ 1016 − 1, and the other operand
ranges from 1 ∼ 1016−1. To this end, we perform
12 sets of case study experiments. Here we list
the complete configurations: 1) numeral system:
base 10, 102, 103 2) data scale: 219 3) model size:
6.9B 4) if from-scratch: True, False 5) operations:
addition, multiplication. We discover intriguing
extrapolation behavior that could shed light on the
mechanisms that the models have learned.

4.3.1 Addition

Note that although addition is an easy task to train,
the models have only seen numbers less than 1011.
We leverage addition pairs of length la and lb,
where at least one of la or lb is greater than 10.
To illustrate how the performance of our model de-
cays, we plot the Relative Error matrices where one
operand length is in [1, 5] and the other in [11, 15]
in Figure 5. The results are obtained using a 1.4B
fine-tuned model trained on 219 training samples.
For each pair of la× lb, we randomly generate 100
samples, which results in a total of 5000 samples.
Of all such samples, the extrapolation exact match

accuracy is 0.0.

Yet, the models do not collapse completely on
out-of-domain length distribution. We conduct case
studies in Table 2. Our first discovery is that there is
a consistent behavior of Truncated Addition across
all numeral systems of fine-tuned models. Our sec-
ond observation is that fine-tuned models are much
better at aligning the tokens involved in extrapo-
lated addition, as compared with models trained
from-scratch.
Truncated Addition Extrapolates While we
are manually inspecting the extrapolation behavior
of fine-tuned models, we discover consistently that
models would try to perform the addition truncat-
ing the tokens that exceed training length it has
seen. We elaborate on this behavior under two
configurations.

For illustrative purposes, we add a comma to
denote the max training length position the models
have seen. First, take for example a model trained
on a base 10 system, a fine-tuned model is given in-
put a = 8318686348, 0 and b = 3, where the token
representation of a is 11. Only the first 10 digits of
a would participate in addition, yielding a result of
8318686348 + 3 = 8318686351. A fine-tuned
model trained on the base 102 system displays
very similar results. Given a = 734766443, 03
and b = 3, the model performs 734766643 + 3 =
734766446, ignoring two trailing digits, which is
equivalent to ignoring the last token under base 102.
The phenomenon of truncated addition is hardly ob-

3811

14 16 18
Pythia 70M

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 410M

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

Relative Error for from_scratch Multiplication

14 16 18
Pythia 70M

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 410M

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 3

10 2

10 1

100

101

base 10
base 100
base 1000

Relative Error for sft Multiplication

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Normalized Edit Similarity for from_scratch Multiplication

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Normalized Edit Similarity for sft Multiplication

Figure 4: Relative Error and Normalized Edit Similarity for multiplication operation with different data scales,
model parameter sizes, from-scratch or fine-tune, and numeral systems.

served on models trained from-scratch. The main
obstacle could arise from the inability to align cor-
responding tokens with unseen token lengths. For
example, a base 10 model trained from-scratch
would calculate 2635078980, 7+1 = 2635079091,
where the 1 seems to have been added to multiple
positions. This could also indicate that fine-tuned
models have learned to utilize positional informa-
tion better.
Base 10 Carry Extrapolates While we at-
tempted to explain extrapolation behavior us-
ing truncated addition, we noticed some outliers
where the answer is only 1 absolute value larger
than the truncated addition result. Manual in-
spection quickly reveals that the models gener-

ate carry for out-of-distribution positions. For a
base 10 fine-tuned model, 3968299531, 8 + 2 =
3968299534 (= 3968299531 + 2 + 1), where a
carry has been generated because 8+2 = 10. Note
that the carry is not generated by aligning the ones
digit since 1 + 2 = 3 < 10, which is an ablation
showcasing that calculating carry exhibits extrapo-
lation behavior.

Tokens Generalize, Length Does Not For a
base 103 system, two kinds of behavior have been
observed. Before we describe the behaviors, we
restate our experiment settings. Our training distri-
bution only contains numbers that are less than 1011

under the base 10 system. This creates two scenar-
ios for extrapolation experiments of a model trained

3812

Model Pattern a b a+ b Model Output

SFT-Base 10 w/o carry 8318686348,0 3 8318686348,3 8318686351
carry success 3968299531,8 2 3968299532,0 3968299534

SFT-Base 102 w/o carry 7 34 76 64 43, 03 3 7 34 76 64 43, 06 7 34 76 64 46
misaligned 1 63 47 53 10, 81 2 1 63 47 53 10, 83 1 63 47 53 12, 83
carry failure 7 28 37 46 59, 47 94 7 28 37 46 60, 41 7 28 37 47 53

SFT-Base 103 w/o carry 2 929 747 175, 022 9 2 929 747 175, 031 2 929 747 184
misaligned 8 748 392 297, 087 2 8 748 392 297, 089 8 748 392 299, 089
carry failure 8 172 938 472, 837 494 8 172 938 473, 331 8 172 938 966

Table 2: Representative Cases for Addition Extrapolation. We add a comma to denote the maximum token length of
a single number that the model has seen during training.

Model a b a× b Model Output

SFT-Base 10 9298574444, 7 6 5579144666,82 5579144666,82
SFT-Base 102 3 44 97 17 48, 09 8 27 59 77 39 84, 72 27 59 77 39 84, 72
SFT-Base 103 18 419 335, 384 4 73 677 341, 536 73 677 341, 536

Scratch-Base 10 44527557923 8 356220463384 358888899984
Scratch-Base 102 2 45 57 14 10, 66 8 19 64 57 12 85, 28 20 10 88 12 12, 48
Scratch-Base 103 17 709 751, 495 5 88 548 757, 475 87 229 700, 075

Table 3: Representative Cases for Multiplication Extrapolation. We list successful cases for fine-tuned models (i.e.
SFT) and showcase the failure of from-scratch models.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lb

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

la

0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.8 2.9 3.9 5.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.5 2.8 3.9 5.0
1.0 1.0 1.0 1.0 0.9 0.7 0.7 0.8 0.8 0.7 0.7 1.4 2.5 3.6 4.8
2.0 2.0 2.0 1.8 1.4 1.3 1.5 1.5 1.5 1.5 1.6 1.9 2.7 3.8 4.9
3.0 3.0 2.7 2.5 2.2 2.3 2.3 2.4 2.6 2.6 2.7 2.7 3.1 3.9 4.9
3.9 3.9 3.6 3.3 3.2 3.2 3.2 3.5 3.8 3.7 3.7 3.7 3.9 4.3 5.0
4.9 4.7 4.3 4.3 4.2 4.1 4.3 4.8 4.9 4.9 4.9 4.9 5.0 5.0 5.3

Relative Error a + b with Extrapolation

0

1

2

3

4

5

Relative Error

Figure 5: Relative Error Matrix for Extrapolation Be-
havior Analysis. The results are obtained using a 1.4B
model fine-tuned on 219 training samples.

with base 103. 1) both operands are less than 1013

2) at least one of the operands is no smaller than
1013. For 1), although the model has not seen any
data points within the range of 1011 ∼ 1013−1, the
length of both operands does not exceed 4, which
has been trained. For 2), the length of at least one
operand has not been seen during training at all.

Out of a sample size of 100 for each la× lb pair,
a base 103 fine-tuned model could achieve 90%
exact match accuracy with la = 11, lb ∈ [1, 8].
However, accuracy quickly drops to 0 if one of the
operands has a token length greater than 4 under

the base 103 system.

4.3.2 Multiplication

Different from addition, there is at least one suc-
cessful example of extrapolation of operand length
for fine-tuned models of all number systems shown
in Table 3. Yet, the exact match accuracy on the
extrapolation set of models tuned from-scratch is
consistently zero. Moreover, a closer look at the
generated results showcases that the model is only
able to correctly generate the starting tokens and
ending tokens of the answer, with gibberish and
repetitive tokens in the middle.

5 Conclusion

In this paper, we study the selection of a numeral
system for large language models. We compare the
data-scaling efficiencies of base 10, 100, and 1000
systems. Through carefully designed experiments,
we showcase the superiority of the base 10 system.

We offer an analysis of the extrapolation behav-
ior of trained models on addition and multiplication.
We reveal calculation patterns that successfully ex-
trapolate, such as carry generation in addition and
magnitude estimation in multiplication. Our work
sheds light on tokenization designs and the mecha-
nisms that models have learnt for arithmetic tasks.

3813

Limitations

Scaling behavior analysis requires a huge amount
of computational resources. Limited by this fac-
tor, we have not performed a thorough grid search
for hyperparameters of every setting. It is possi-
ble that for every configuration that is of interest,
we should use a unique set of hyperparameters to
achieve optimal performance. In our experiments,
we have witnessed instability issues regarding some
data points where the training loss seemingly col-
lapses. It is possible that such issues arose because
of suboptimal hyperparameter choices. Research
on numerical operation has few potential risks.

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,

Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-
ing open-source language models with longtermism.
arXiv preprint arXiv:2401.02954.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. 2024. Internlm2 technical re-
port. arXiv preprint arXiv:2403.17297.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul
Smolensky, Vishrav Chaudhary, and Stuart Shieber.
2023. Implicit chain of thought reasoning via knowl-
edge distillation. ArXiv, abs/2311.01460.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, pages
10835–10866. PMLR.

Google. 2023. Gemini: A family of highly capable
multimodal models. Preprint, arXiv:2312.11805.

Danny Hernandez, Jared Kaplan, Tom Henighan, and
Sam McCandlish. 2021. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego

de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. Preprint,
arXiv:2001.08361.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2024. The impact of positional encoding on length
generalization in transformers. Advances in Neural
Information Processing Systems, 36.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. 2023. Teach-
ing arithmetic to small transformers. arXiv preprint
arXiv:2307.03381.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned llama outperforms gpt-4 on arithmetic
tasks. arXiv preprint arXiv:2305.14201.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain,
John Kirchenbauer, Brian R Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi
Schwarzschild, et al. 2024. Transformers can do
arithmetic with the right embeddings. arXiv preprint
arXiv:2405.17399.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin.
2021. Investigating the limitations of transform-
ers with simple arithmetic tasks. arXiv preprint
arXiv:2102.13019.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. Preprint, arXiv:2402.03300.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

3814

https://api.semanticscholar.org/CorpusID:264935229
https://api.semanticscholar.org/CorpusID:264935229
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Cunxiang Wang, Boyuan Zheng, Yuchen Niu, and Yue
Zhang. 2021. Exploring generalization ability of
pretrained language models on arithmetic and logi-
cal reasoning. In Natural Language Processing and
Chinese Computing: 10th CCF International Con-
ference, NLPCC 2021, Qingdao, China, October 13–
17, 2021, Proceedings, Part I 10, pages 758–769.
Springer.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
and Songfang Huang. 2023. How well do large lan-
guage models perform in arithmetic tasks? Preprint,
arXiv:2304.02015.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Josh Susskind, Samy Bengio, and Pree-
tum Nakkiran. 2024. What algorithms can transform-
ers learn? a study in length generalization.

3815

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2310.16028
https://arxiv.org/abs/2310.16028

A Discussion on Multi-digit Tokenization

In this paper, we showcase the superior data effi-
ciency of a base 10 system. Yet, in Table 1, popular
models such as Llama3 and GPT-4o still adhere to
multi-digit tokenization for numbers. We provide a
discussion about this phenomenon here.

From our perspective, this design choice relates
to user experience and cost management. During
inference, using a larger numeral system reduces
the total number of tokens, leading to shorter input
and output lengths. This reduction boosts token
throughput (due to smaller kv cache size) and in-
creases the number of queries per second (because
output is shorter), significantly improving user ex-
perience and reducing training/inference costs.

One plausible assumption is that for a base 100
or base 1000 system, one can devote more com-
puter into training to trade-off for better inference
experience. It is likely that the efficiency for train-
ing and inference could not be improved simulta-
neously.

B Discussion on Task Selection

We provide a detailed reasoning for choosing di-
rect addition and multiplication as our tasks (or
arithmetic operations) to investigate.

First, we strengthen that our setting targets di-
rect calculation of addition and multiplication. For
example, the model is directly prompted with
13 + 5 =, (or 13× 5 =). The model is expected to
directly output 18, (or 65).

We noticed that the accuracy of direct calculation
upper bounds model’s ability to carry out calcula-
tions in context. Under such settings, the model
need to perform calculations mixing natural lan-
guage and numbers. For example, the model might
output "To solve the problem, we need to calculate
the product of 13× 5, which is 65". This motivates
us to investigate direct calculations first.

Second, we address why we only presented re-
sults on addition and multiplication. In our initial
small-scale experiments, we found out two things.
First, for division, pre-trained models have trouble
ending their outputs. Second, for subtraction, we
found trends that are similar to addition. We also
argue that arithmetic tasks have shared attributes
with addition and multiplication: 1) For each task, a
token-level operation should be learned (eg. adding
single-digit numbers). 2) For each task, the model
would need to discern between the tokens.

We would like to state that our work has a po-
tentially broader impact. Our generalized finding
is that having fewer states could enhance sequen-
tial modeling. For other planning tasks, such as
robotics or theorem proving, this conclusion may
also hold true.

C Connection with Scaling Law

We intentionally avoid using the term Scaling Law.
Generally, researchers fit a law to predict the perfor-
mance of models when scaling up compute. How-
ever, for addition, we already observe saturation in
Figure 2. It is hard to accurately fit a law for this
curve.

Moreover, we are not interested in predicting
performances. We are inspecting the difference in
data efficiency as we scale up compute. Therefore,
observing that a base 10 system is more efficient is
eloquent enough for our purpose.

We also find that our performances do not im-
prove significantly with model sizes. We have
noticed that the 70M and 410M versions of Pythia
models are particularly hard to train. We do not
dive into this technical detail.

D Metric Matrices for Length Pairs

We take a 1.4B model trained from-scratch on ad-
dition and multiplication as an exemplar and plot
matrices for both Exact Match Accuracy and Nor-
malized Edit Similarity with respect to each pair of
input lengths in Figure 6 and Figure 7.

E Overfitting Analysis

Alongside our main results, we also perform abla-
tion studies on overfitting under addition settings,
since the accuracy quickly saturates to 100.0%.
First of all, we subsample a portion of our train-
ing set to forward through the model. We attempt
to sample 1000 examples for each la × lb pair in
10 × 10. If the total number of training pairs is
smaller, we take all training pairs for la× lb.

Generally, for all the metrics of interest, we ob-
serve nearly identical performance on our training
and evaluation set. One example of accuracy on ad-
dition is shown in Figure 8. Furthermore, since our
evaluation set is non-overlapping with the training
set, it would be safe to conclude that no overfitting
phenomenon has been observed.

3816

Model Version From Scratch Learning Rate Max Epochs Log10 Data Scale

pythia_70m True 2e-4 10 1-3 13-19
pythia_70m False 2e-5 2 1-3 13-19
pythia_410m True 2e-4 10 1-3 13-19
pythia_410m False 3e-5 2 1-3 13-19
pythia_1_4b True 2e-5 10 1-3 13-19
pythia_1_4b False 2e-5 2 1-3 13-19
pythia_6_9b True 2e-5 10 1-3 13-19
pythia_6_9b False 2e-5 2 1-3 13-19
pythia_12b True 2e-5 10 1-3 13-19
pythia_12b False 2e-5 2 1-3 13-19

Table 4: Hyperparameters for Multiplication

F Hyper-parameters

We briefly discuss the hyperparameter search pro-
cess that we have gone through for each configu-
ration. Based on our initial experiments, models
exhibit nearly identical behavior in both the train-
ing set and the evaluation set. We therefore use
training set metrics for hyperparameter selection.

Then, we first fix the learning rate magnitude
and sweep for training epochs. We observed
that fine-tuned models are insensitive for training
epochs, while the model training from-scratch con-
sistently improves with more epochs. We choose
epochs where the performances of models begin to
plateau. Generally, epoch performance trends only
depend on the training setting (i.e. fine-tuning or
from-scratch). Fixing the training epoch, we per-
form a grid search over learning rate magnitudes
{2e − 3, 2e − 4, 2e − 5, 2e − 6, 2e − 7} for each
configuration. Generally, we found that 70M and
410M models favor a larger learning rate of 2e− 4
while models larger than 1.4B use 2e− 5. There is
no significant difference between fine-tuning learn-
ing rates and from-scratch learning rates. We pro-
vide our full hyperparameters in Table 4. The hy-
perparameters for addition is the same as multipli-
cation, except that we used 2e− 5 for fine-tuning
410M Pythia.

To speed up training, we pack sequences to a
maximum length of 2048, therefore fixing the batch
size. All experiments are trained using 8xA100
Nvidia GPUs.

G Performance Differences in
Real-World Models

One reasonable question to ask is whether our find-
ing is useful in training real-world scenario math

models. We present our results in Figure 9. We test
two versions of models: 1) Multi-Digit Tokeniza-
tion, and 2) Single-Digit Tokenization. We test
our conclusion under three scenarios: 1) directly
calculating a × b, 2) solving an natural language
application problem that involves solving a×b, and
3) solving a variant application problem that also
involves solving a× b. We generate test data using
a program and extract the answer using heuristics.
We report accuracies using hard match.

Two observations could be made. 1) Single-Digit
Tokenization consistently outperforms Multi-Digit
Tokenization, and 2) the accuracy of directly calcu-
lating a× b gives a reasonable upper-bound of the
model’s performance when solving an application
problem that involves multiplication.

H Results for Conventional Relative
Error

One might argue that the Relative Error metric that
we used in the paper diverges from conventional
calculation. Furthermore, it has similarities with
the Normalized Edit Similarity metric that we used.
Here, we plot the results where RE = |o−g|

g in
Figure 10.

For Addition, the advantage of a base 10 sys-
tem is magnified using conventional calculations.
For Multiplication, we witness significant issues of
instability, hindering the discovery of underlying
insights.

3817

1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

70.0 79.3 97.5 99.3 99.3 99.6 98.6 99.4 98.9 99.6

97.8 98.8 96.6 98.1 98.5 98.2 98.9 99.3 98.3 97.9

98.8 98.4 97.8 97.1 97.3 98.6 97.2 97.8 98.3 96.8

99.1 99.0 98.3 96.9 96.4 96.6 96.7 97.4 96.7 97.6

99.5 98.4 97.8 98.0 96.6 95.0 96.0 97.3 96.0 95.0

99.5 98.5 98.2 97.0 95.5 96.4 94.8 96.2 95.5 95.1

99.6 98.2 97.6 96.9 96.0 95.5 95.5 95.6 95.4 93.4

99.4 98.5 97.7 97.4 97.0 97.2 94.6 93.7 94.1 90.8

99.4 99.5 98.6 98.3 96.8 96.6 95.4 95.9 93.6 85.7

98.3 98.3 98.2 97.3 97.1 95.9 94.8 93.2 92.0 90.9

Exact Acc a + b from_scatch

0

20

40

60

80

100

Acc.

1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Normalized Edit Distance a + b from_scratch

0.0

0.2

0.4

0.6

0.8

1.0

NED

Figure 6: Exact Match Accuracy and Normalized Edit
Similarity Matrices for Addition Eval Set. The results
are obtained using a 1.4B model trained from scratch
on 219 samples.

1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

67.5 74.8 35.9 22.9 12.9 11.3 8.7 7.0 6.2 4.5

74.1 32.2 10.4 3.5 1.1 0.8 0.5 0.1 0.1 0.0

40.9 11.0 1.8 0.3 0.0 0.0 0.0 0.0 0.0 0.0

19.8 3.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

8.6 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.8 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Exact Acc a * b from_scratch

0

20

40

60

80

100

Acc.

1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

0.7 0.9 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.5

0.8 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.4

0.7 0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.3

0.7 0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3

0.6 0.5 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3

0.6 0.5 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3

0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3

0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3

0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Normalized Edit Distance a * b from_scratch

0.0

0.2

0.4

0.6

0.8

1.0

NED

Figure 7: Exact Match Accuracy and Normalized Edit
Similarity Matrices for Multiplication Eval Set. The
results are obtained using a 1.4B model trained from
scratch on 219 samples.

3818

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Train Acc for from_scratch Addition

14 16 18
Pythia 70M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 410M

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 1.4B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 6.9B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

14 16 18
Pythia 12B

0.0

0.2

0.4

0.6

0.8

1.0
base 10
base 100
base 1000

Eval Acc for from_scratch Addition

Figure 8: Exact Match Accuracy on the training set versus the eval set for addition operation with different models
trained from scratch, on different data scale and numeral systems.

1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

100.0 99.8 99.1 95.2 91.0 85.7 83.1 74.7 71.4 70.6

100.0 99.0 91.7 80.1 67.3 57.2 52.2 37.7 30.3 23.0

98.5 94.0 79.0 59.4 46.6 37.4 27.7 17.0 11.8 6.0

95.1 82.3 62.6 48.2 32.9 23.6 14.1 6.6 2.6 0.6

91.0 69.4 46.3 33.1 24.7 12.1 8.2 2.1 0.3 0.0

89.0 59.1 36.4 22.4 13.9 6.9 1.4 0.1 0.0 0.0

82.0 47.5 25.9 15.3 8.4 1.9 0.0 0.0 0.0 0.0

77.1 32.1 16.8 6.4 1.8 0.0 0.0 0.0 0.0 0.0

70.3 30.2 14.0 2.2 0.2 0.0 0.0 0.0 0.0 0.0

68.3 23.8 4.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0

Direct a mul b Multi-Digit
1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

100.0 99.8 94.4 80.4 69.7 67.1 60.5 52.2 48.0 41.1

100.0 88.4 44.4 13.1 10.0 8.5 6.2 4.9 4.0 2.9

96.6 42.2 8.1 1.7 0.2 0.9 0.7 0.2 0.9 0.9

84.5 17.1 2.2 0.4 0.0 0.1 0.0 0.0 0.0 0.0

75.2 10.3 0.8 0.1 0.0 0.0 0.1 0.0 0.0 0.1

69.6 6.7 1.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

64.4 6.5 0.5 0.0 0.1 0.0 0.0 0.0 0.0 0.0

55.8 4.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

47.0 4.4 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

49.9 3.6 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Scenario a mul b Multi-Digit
1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

100.0100.0 95.4 83.6 76.8 73.8 71.2 62.1 57.1 51.5

100.0 85.3 42.6 12.7 11.2 8.7 7.4 5.0 5.0 4.3

95.6 40.4 8.5 1.7 0.6 1.4 0.4 0.3 1.0 0.9

79.7 16.4 2.4 0.3 0.1 0.2 0.2 0.0 0.1 0.0

72.9 10.8 1.0 0.2 0.2 0.0 0.1 0.0 0.0 0.1

67.3 7.4 1.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0

65.8 6.4 0.6 0.0 0.2 0.0 0.0 0.0 0.0 0.0

61.8 4.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

54.8 4.8 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

54.5 5.0 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Scenario 1 a mul b Multi-Digit

1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

100.0 98.9 96.8 92.0 88.2 84.8 88.1 87.0 93.5 95.3

100.0 96.7 73.7 47.2 31.5 28.7 32.8 33.8 37.4 34.0

97.5 93.4 30.7 6.2 2.8 3.2 2.8 2.5 2.5 4.4

94.3 88.8 15.3 2.5 0.2 0.2 0.2 0.1 0.4 0.5

96.0 82.2 10.2 1.1 0.3 0.0 0.1 0.1 0.1 0.2

95.4 76.7 8.4 1.4 0.2 0.0 0.0 0.0 0.0 0.0

94.3 71.0 7.0 0.8 0.3 0.1 0.0 0.0 0.0 0.0

93.8 63.5 8.4 0.9 0.0 0.1 0.0 0.0 0.0 0.0

92.1 57.1 7.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0

93.8 54.5 4.4 0.8 0.1 0.0 0.0 0.0 0.0 0.0

Direct a mul b Single-Digit
1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

100.0100.0 99.1 98.8 98.2 96.1 97.0 96.4 96.9 95.8

100.0 94.0 70.6 56.2 51.0 46.5 42.3 38.5 38.7 35.2

99.8 75.8 22.4 8.6 6.0 6.4 5.1 4.8 2.9 4.8

98.6 65.4 8.4 1.8 0.6 0.3 0.4 0.2 0.3 0.4

97.8 58.9 7.5 1.0 0.2 0.0 0.1 0.1 0.0 0.2

98.7 49.5 5.7 0.5 0.1 0.0 0.0 0.0 0.0 0.0

98.9 47.0 5.7 0.2 0.4 0.1 0.0 0.0 0.0 0.0

97.5 40.7 5.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0

96.6 45.2 5.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0

96.3 38.8 3.6 0.6 0.1 0.0 0.0 0.0 0.0 0.0

Scenario a mul b Single-Digit
1 2 3 4 5 6 7 8 9 10

lb

1

2

3

4

5

6

7

8

9

10

la

100.0100.0 99.1 98.7 98.4 97.1 97.8 97.1 97.1 96.7

100.0 93.8 71.8 60.2 57.8 51.3 47.0 41.0 40.6 36.4

99.6 75.3 23.6 9.2 6.6 6.0 5.1 5.2 3.7 5.3

98.7 63.2 8.0 1.5 0.6 0.4 0.3 0.3 0.4 0.4

99.1 58.6 7.7 0.9 0.2 0.0 0.1 0.1 0.0 0.2

98.9 50.8 5.4 0.7 0.1 0.0 0.0 0.0 0.0 0.0

98.7 47.8 4.9 0.4 0.2 0.1 0.0 0.0 0.0 0.0

98.6 41.6 4.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0

96.6 42.3 5.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0

96.2 38.5 3.2 0.5 0.1 0.0 0.0 0.0 0.0 0.0

Scenario 1 a mul b Single-Digit

0

20

40

60

80

100

Figure 9: Performances of difference tokenization schemes in three real-world scenarios: 1) directly calculating
a × b, 2) solving an natural language application problem that involves solving a × b, and 3) solving a variant
application problem that also involves solving a× b.

3819

14 16 18
Pythia 70M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 410M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 4

10 2

100

102

104

base 10
base 100
base 1000

Relative Error for from_scratch Addition

14 16 18
Pythia 70M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 410M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 4

10 2

100

102

104

base 10
base 100
base 1000

Relative Error for sft Addition

14 16 18
Pythia 70M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 410M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 4

10 2

100

102

104

base 10
base 100
base 1000

Relative Error for from_scratch Multiplication

14 16 18
Pythia 70M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 410M

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 1.4B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 6.9B

10 4

10 2

100

102

104

base 10
base 100
base 1000

14 16 18
Pythia 12B

10 4

10 2

100

102

104

base 10
base 100
base 1000

Relative Error for sft Multiplication

Figure 10: Relative Error results computed using conventional re = |o−g|
g . We see significant issues of instability

as shown in the figures.

3820

