
Findings of the Association for Computational Linguistics: EACL 2024, pages 3830–3842
November 12-16, 2024 ©2024 Association for Computational Linguistics

Enhancing Incremental Summarization with Structured Representations

Eunjeong Hwang†

University of British Columbia
ejhwang@cs.ubc.ca

Yichao Zhou, James Bradley Wendt, Beliz Gunel, Nguyen Vo, Jing Xie, Sandeep Tata
Google Deepmind

{yichaojoey, jwendt, bgunel, nguyenvo, lucyxie, tata}@google.com

Abstract

Large language models (LLMs) often struggle
with processing extensive input contexts, which
can lead to redundant, inaccurate, or incoherent
summaries. Recent methods have used unstruc-
tured memory to incrementally process these
contexts, but they still suffer from information
overload due to the volume of unstructured data
handled. In our study, we introduce structured
knowledge representations (GUjson), which sig-
nificantly improve summarization performance
by 40% and 14% across two public datasets.
Most notably, we propose the Chain-of-Key
strategy (CoKjson) that dynamically updates or
augments these representations with new infor-
mation, rather than recreating the structured
memory for each new source. This method fur-
ther enhances performance by 7% and 4% on
the datasets.

1 Introduction

Individuals commonly use large language models
(LLMs) to summarize content from sources like
webpages, books, and articles (Jin et al., 2024;
Kryscinski et al., 2022; Agarwal et al., 2011;
Gunel et al., 2024). This aids in efficiently pro-
cessing large volumes of information, influencing
daily decision-making tasks. Despite their poten-
tial, LLMs often struggle with processing exten-
sive contexts, leading to redundancy or inaccu-
racies (Hwang et al., 2024). Recent research in-
tegrates unstructured memory systems (Madaan
et al., 2022; Zhang et al., 2024) and fine-tunes mod-
els for larger context windows (Xiong et al., 2024).
However, unstructured memory formats often re-
sult in oversized memories that overload the model,
impairing its processing and summarization abili-
ties. Zhang et al. (2024) proposes a self-controlled
memory architecture to manage information via
heuristics, yet unstructured memory complicates

†This work was completed while the author was working
as an intern at Google Deepmind.

Figure 1: Example summaries generated based on a
text memory representation and a structured memory
representation, respectively, given the N paragraphs in
the original texts. Red color marks the values that are
not included in plain text summary.

retrieval, and Li et al. (2024) finds that larger con-
text windows still struggle to process documents
comprehensively.

To address summarization tasks over extensive
input contexts, we introduce CoK, the Chain-of-
Key update based on JSON structured memory
representations. On one hand, this approach lever-
ages two key aspects: (1) JSON’s capability to
organize information into distinct, easily acces-
sible segments, facilitating efficient updates and
retrievals–offering superior expansion and nest-
ing capabilities compared to markdown tables or
graphs (Dagdelen et al., 2024); (2) The prevalence
of JSON in LLM pretraining data enhances LLMs’
ability to understand and generate structured JSON
content (Ouyang et al., 2022; Xia et al., 2024)1.
Consequently, as shown in Figure 1, JSON-based
representations produce more well-structured sum-
maries than plain text, avoiding verbosity and re-
taining critical content across all sections.

On the other hand, instead of requiring LLMs to

1Our method uses the JSON format, though YAML or
XML could also serve as structured formats.

3830

Figure 2: Overall incremental summarization process
with a structured memory representation based on user-
defined schema. The questions under “LLM thoughts”
are for Chain-of-Key Updating process.

recreate complete structured representations for all
previously encountered knowledge upon encoun-
tering a new information source, our method dy-
namically identifies which new information needs
to be added or updated within the existing struc-
tures. This reduces the cognitive load on LLMs,
enabling them to maintain and process complex
information more effectively and produce more ac-
curate and comprehensive summaries, as illustrated
in Figure 1, where summaries using the CoK strat-
egy effectively retain essential knowledge, unlike
unstructured summaries that often miss key details
(highlighted in red).

Contributions:

• We demonstrate that structured knowledge
representations significantly enhances LLMs’
summarization capabilities, improving perfor-
mance by 40% and 14% on two public sum-
marization benchmarks.

• We introduce CoK, the Chain-of-Key update
strategy, which dynamically updates or aug-
ments structured representations with new in-
formation, boosting performance further by
7% and 4% on the benchmarks, without need-
ing to recreate the JSON structure for each
new source.

• We offer an analysis demonstrating that struc-
tured representations enable models to retain
more relevant contexts and historical infor-
mation than plain-text memory, particularly
when token availability for storing informa-
tion is limited.

2 Methodology

Overview. The goal of the summarization task is
to generate a summary St from a sequence of doc-
uments D = D0, D1, . . . , Dt that encapsulates the
essential contents of all documents up to time t. We
primarily approach the task within an incremental
framework: Incremental Summarization. This
process involves continuously refining the sum-
mary by integrating new information from each
subsequent document. Each document Di may
contain new, relevant information that contributes
to an ongoing topic. The task requires producing a
summary St at each time step t, encompassing all
critical information accumulated, thereby reflect-
ing the key insights from the document sequence.
Our methodology utilizes a structured representa-
tion to efficiently manage and update the summary
dynamically with each new document.

Initial Structured Summary Generation. As
depicted in Figure 2, we initiate the process by
establishing a schema tailored to the task. This
schema is then provided to the LLM along with
any newly available information and, if applica-
ble, any pre-existing data in memory. The LLM is
tasked with generating outputs that align with the
key elements specified in the schema.

Chain-of-Key: Structured Summary Updates.
We propose the Chain-of-Key (CoK) updating
method to merge existing memory data with new
input in a structured summary. First, the LLM cre-
ates a structured summary from a new document.
This new summary, together with any existing struc-
tured memories, is then processed by the model.
The method uses two main operations, Update and
Add, to effectively combine the summaries.

The Update operation modifies existing sum-
mary to incorporate new data. It progresses
through three steps: (1) identifying keys in
the existing summary, such as [“Amenities”,
“Food & Beverage”], (2) matching these keys
with relevant ones in the existing memory, like
“Amenities”, and (3) generating a JSON path
to integrate the new key information, such as
$.attributes.Amenities. This path is then used
to programmatically update the summary.

The Add operation focuses on incorporating new
keys from the new information that are absent in
the existing summary. It also follows three steps:
(1) identifying new keys in the summary, such as
[“Noise Level”], (2) detecting which of these are

3831

not in the existing summary, like “Noise Level”,
and (3) generating a JSON path for adding the new
key, such as $.attributes.Noise Level. Using
the generated path, new values are programmati-
cally added to the summary.

Breaking down the updating process into sub
tasks employs the LLM’s reasoning capabilities to
tackle complex and multifaceted reasoning prob-
lems in the incremental summarization task. See
Appendix B and G for the schemas and prompts.

Final Summary Generation. Once the iterative
summary update process at each step is completed,
the LLM receives the aggregated memory from
D0, D1, ..., Dt and generates the final summary St.
This summary can be presented in various formats,
such as JSON or plain text.

3 Experimental Setup

Dataset. We evaluate our methods using two
datasets: SUMIE (Hwang et al., 2024) and
BooookScore (Chang et al., 2024). The SUMIE
dataset is designed to assess the incremental en-
tity summarization capabilities of LLMs. The
BooookScore dataset is aimed at long document
summarization and includes 100 recently published
books, with some books exceeding 100k tokens.
Due to our models’ 6K token context window size,
each book is segmented into 2K-token chunks. For
additional dataset details, see Appendix C.

Baseline. We compare our method against three
setups: Generate-Once (GO), Generate-Update
(GU), and Generate-Merge (GM), using two data
formats—JSON and plain text—with two state-
of-the-art LLMs: Gemini-Ultra and Gemini-Pro2.
In GO, the LLM generates a comprehensive sum-
mary from all related paragraphs in a single step.
In GU, the LLM incrementally generates updated
summaries by integrating each new paragraph. In
GM, the LLM merges summaries from each new
paragraph incrementally, utilizing JSON for its key-
matching capability to facilitate merging. Program-
matic merging in JSON may retain redundant key-
values, which are removed by directing the LLM to
filter out such redundancies. Details on the prompts
for these methods are in Appendix H and I.

Evaluation Metrics. For SUMIE, we employ its
LLM-assisted evaluation method to measure preci-
sion, recall, and F1 scores of the final summary. For

2https://deepmind.google/technologies/gemini/
Model temperatures are all set to 0.8 by default.

Ultra Pro
Turn P R F1 P R F1

GOtext last 86.2 42.7 56.4 85.8 40.4 54.1
GOjson last 91.2 58.9 70.9 85.1 61.0 70.1

GUtext start 77.3 70.0 72.6 74.7 66.9 69.7
last 76.6 45.2 55.8 73.3 26.8 38.4

Avg. 76.1 54.3 62.2 73.0 41.8 51.2

GUjson start 88.6 81.6 84.3 85.1 80.7 82.2
last 80.2 76.7 78.1 81.7 69.4 74.7

Avg. 80.9 78.9 79.4 83.4 74.0 77.9

GMjson start 88.6 82.9 85.0 84.2 82.6 82.6
last 86.8 63.2 72.7 84.6 74.3 78.6

Avg. 86.5 70.9 77.3 84.7 78.7 80.9

CoKjson start 89.1 77.8 82.8 81.1 80.5 79.9
last 92.6 78.0 84.5 84.6 83.6 83.9

Avg. 91.8 80.5 85.5 83.7 83.9 83.5

Table 1: Overall performance of Ultra and Pro models
on the SUMIE dataset. "start" indicates performance at
the first paragraph, and "last" represents performance at
the last paragraph aggregating all attribute-value pairs.
P, R, and F1 refer to the average precision, average
recall, and macro F1 scores, respectively.

the BookScore dataset, we utilize its LLM-based
metric to assess summary coherence, evaluating
across eight predefined error dimensions: entity
omission, event omission, causal omission, discon-
tinuity, salience, language inconsistency, and dupli-
cation. See Appendix D for more setup details.

Limited Token Scenario. To evaluate how much
information JSON and text formats retain in in-
context memory, we established a scenario with a
constrained in-context memory token limit of K
tokens. This constraint is crucial for handling long
documents, like books, that exceed the model’s
context window. For the SUMIE dataset, K is set
to 200 and 300 tokens, while for the BooookScore
dataset, it’s set to 1000 tokens. See Appendix F
for more details about compression criteria and the
associated prompts.

4 Results

Text vs. JSON, Table 1, 2. Table 1 shows that
the JSON format outperforms plain text in the in-
cremental summarization tasks using the Ultra and
Pro models, with notable differences in both the
GO and GU methods. Specifically, GOjson aver-
ages a 28% F1 score improvement over its text
equivalent, while GUjson sees a 40% improvement.
This discrepancy primarily stems from the low re-
call with the text format, suggesting that plain text
leads to information loss over iterations. The JSON
format, however, supports better information reten-
tion. This is evident in later iterations and the book

3832

https://deepmind.google/technologies/gemini/

Model GUtext GUjson GMjson CoKjson

Pro 53.1 58.5 61.5 62.2
Ultra 51.9 61.7 60.1 63.1

Table 2: BookScore performance on GU, GM, and CoK,
where the token size for existing information was lim-
ited to 1000 tokens.

summarization task shown in Table 2. Here, GUjson
posts a 14% gain, enhancing the model’s ability to
maintain key details about characters and events.

We conducted a human evaluation of the final
summaries for 20 randomly sampled entities from
the SUMIE dataset, assessing two criteria: Informa-
tiveness (Is the summary informative?) and Rele-
vance (Does the summary contain all the key points
related to the given entity?). We compared sum-
maries generated by GUjson and GUtext, asking two
human annotators to indicate their preference for
each criterion. GUjson summaries were preferred
in 81% of cases for both informativeness and rele-
vance, with an 87% agreement rate between annota-
tors. These results align with the findings presented
in the table.

Effectiveness of Chain-of-Key Update, Table
1, 2. Table 1 illustrates the effectiveness of the
Chain-of-Key (CoK) method, which significantly
outperforms all baseline models. Specifically, the
CoK method, when applied with the Pro model,
surpasses the best JSON baseline (GMjson) of the
larger Ultra model on the SUMIE task by 10% in
F1 score. Additionally, CoK achieves a 7% F1 im-
provement over the GUjson and GMjson methods,
averaged over Pro and Utrla models.

The analysis also highlights a notable decrease
in recall for the GM method after removing dupli-
cates over turns. This is more pronounced in the
Ultra model, which removes more attribute-value
pairs than the Pro model, leading to lower recall.
In contrast, the CoK approach enhances both pre-
cision and recall across turns in both models, im-
proving the F1 score by 3% in the final turn. This
improvement suggests that CoK’s step-by-step pro-
cessing allows the model to more accurately select
and update information, maintaining relevance as
iterations progress.

Further validation comes from Table 2, where
CoK shows 3% and 4% improvements in book
scores over GM and GU. This indicates CoK’s
effectiveness in preserving detailed explanations of
complex entities and events within books, crucial

for the narrative. Although current metrics do not
measure recall in book scores, this highlights an
area for future research.

Limited in-context token size for existing in-
formation, Figure 3, Appendix A. The CoK
method uses significantly more tokens (an average
of 604 tokens) for in-context memory compared to
text baselines (an average of 269 tokens), raising
the question of whether JSON can hold more infor-
mation than text within the same token constraints.
As shown in Figure 3 and detailed in Appendix A,
both the average F1 scores and the number of to-
kens used as existing information are tracked across
all turns when token size is limited. The GUjson
method substantially surpasses baseline methods
even with restricted token counts, achieving a 30%
average F1 score improvement over textual coun-
terparts. CoK shows an extra 8% F1 score improve-
ment, suggesting that JSON format maintains more
precise and distinct information in summaries.

Error Case Study. We observe that structured
memory methods often add excessive details to
book summaries. Here are sentences from two
different summaries generated by CoK:

1. ... The family received support from extended family members and
healthcare professionals, including Katie, Angela, Rachel, and Mira.
Lola, a therapy dog, brought joy during Henry’s illness. ...
2. ...Eleanor Bennett’s children, Benny, Byron, and Marble, are grap-
pling with their complex family history and personal struggles....

The red text highlights unnecessary details, like mi-
nor character names, retained for broader coverage.
This discrepancy underscores a gap in the LLM’s
approach to what constitutes a comprehensive sum-
mary versus an effective book summary. While
structured representations help retain more details,
this excess negatively affects two evaluation met-
rics of book score: entity omission (mentioning en-
tities without desciptions) and salience (including
trivial details irrelevant to the storyline). Managing
the level of detail in structured summaries poses a
significant challenge for future research.

5 Conclusion and Discussion

In this paper, we introduce the Chain-of-Key
method, which uses structured memory represen-
tations and leverages LLM’s step-by-step reason-
ing to dramatically improve performance on two
summarization tasks, surpassing strong baselines.
JSON demonstrates its superiority in organizing
knowledge for incremental summarization3. Chal-

3See Appendix E for a comparison between JSON and
Markdown tables, discussing the unique capabilities of JSON.

3833

Figure 3: Average F1 score across all turns with limited
memory token size on SUMIE.

lenges remain in filtering out trivial details and
focusing on crucial information within structured
summaries. Developing heuristics based on struc-
tured properties to better highlight key information
is an area for future research.

Limitations

Our approach capitalizes on the inherent capabili-
ties of LLMs to generate structured JSON formats.
However, while most recent LLMs manage this
well, smaller models such as Llama3-8B, Mistral-
7B, and Gemini Nano often produce structured
outputs with errors.
In terms of evaluation, we adhere to the methods
outlined in SUMIE and BookScore, which rely on
LLM-based metrics. These evaluations are both
computationally intensive and time-consuming.
Additionally, although our method improves re-
call in final summaries, the book summarization
task currently lacks a specific metric for measuring
recall. We also did not evaluate the redundancy
and accuracy of the information produced by the
LLMs.

Ethics Statement

The LLMs we used to evaluate are trained on a
large-scale web corpus and may also bring some
bias when generating sentences (or structured data)
or when evaluating final summries of entities or
books. We evaluated our method on publicly avail-
able datasets.

References
Nitin Agarwal, Ravi Shankar Reddy, Kiran G. V. R., and

Carolyn Penstein Rosé. 2011. Scisumm: A multi-
document summarization system for scientific arti-
cles. In ACL (System Demonstrations), pages 115–
120. The Association for Computer Linguistics.

Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer.
2024. Booookscore: A systematic exploration of
book-length summarization in the era of LLMs. In
The Twelfth International Conference on Learning
Representations.

John Dagdelen, Alexander Dunn, Sanghoon Lee,
Nicholas Walker, Andrew S. Rosen, Gerbrand Ceder,
Kristin A. Persson, and Anubhav Jain. 2024. Struc-
tured information extraction from scientific text with
large language models. Nature Communications,
15(1):1418.

Beliz Gunel, James B. Wendt, Jing Xie, Yichao Zhou,
Nguyen Vo, Zachary Fisher, and Sandeep Tata. 2024.
Strum-llm: Attributed and structured contrastive sum-
marization. arXiv preprint, abs/2403.19710.

Eunjeong Hwang, Yichao Zhou, Beliz Gunel,
James Bradley Wendt, and Sandeep Tata. 2024.
Sumie: A synthetic benchmark for incremental entity
summarization. arXiv preprint, abs/2406.05079.

Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang,
and Jinghua Tan. 2024. A comprehensive survey
on process-oriented automatic text summarization
with exploration of llm-based methods. CoRR,
abs/2403.02901.

Wojciech Kryscinski, Nazneen Rajani, Divyansh Agar-
wal, Caiming Xiong, and Dragomir Radev. 2022.
BOOKSUM: A collection of datasets for long-form
narrative summarization. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2022,
pages 6536–6558, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and
Wenhu Chen. 2024. Long-context llms struggle with
long in-context learning. CoRR, abs/2404.02060.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing
to improve GPT-3 after deployment. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 2833–2861,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang,
Yihao Feng, Ran Xu, Wenpeng Yin, and Caiming
Xiong. 2024. FOFO: A benchmark to evaluate LLMs’
format-following capability. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages

3834

http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
http://dblp.uni-trier.de/db/conf/acl/acl2011d.html#AgarwalRRR11
https://openreview.net/forum?id=7Ttk3RzDeu
https://openreview.net/forum?id=7Ttk3RzDeu
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
https://doi.org/10.1038/s41467-024-45563-x
https://arxiv.org/abs/2403.19710
https://arxiv.org/abs/2403.19710
https://arxiv.org/abs/2406.05079
https://arxiv.org/abs/2406.05079
https://doi.org/10.48550/ARXIV.2403.02901
https://doi.org/10.48550/ARXIV.2403.02901
https://doi.org/10.48550/ARXIV.2403.02901
https://aclanthology.org/2022.findings-emnlp.488
https://aclanthology.org/2022.findings-emnlp.488
https://doi.org/10.48550/arXiv.2404.02060
https://doi.org/10.48550/arXiv.2404.02060
https://aclanthology.org/2022.emnlp-main.183
https://aclanthology.org/2022.emnlp-main.183
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/2024.acl-long.40
https://doi.org/10.18653/v1/2024.acl-long.40

680–699, Bangkok, Thailand. Association for Com-
putational Linguistics.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale,
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao
Ma. 2024. Effective long-context scaling of founda-
tion models. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 4643–4663,
Mexico City, Mexico. Association for Computational
Linguistics.

Kai Zhang, Yangyang Kang, Fubang Zhao, and Xi-
aozhong Liu. 2024. LLM-based medical assistant
personalization with short- and long-term memory
coordination. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 2386–2398,
Mexico City, Mexico. Association for Computational
Linguistics.

Figure 4: Average number of tokens used as an existing
information across all turns with limited memory token
size on SUMIE.

A Number of tokens under limited token
size scenario

Figure 4 shows the average number of tokens used
for existing information in prompts across all turns.
We observe that the models effectively compress
tokens across all methods. Specifically, when the
token limit is set to 200 tokens, the models com-
press the information to fewer than 130 tokens, and
when the limit is set to 300 tokens, they compress
it to fewer than 180 tokens.

B Predefined schema for entity
summarization and book
summarization tasks

For entity summarization, we define the schema as
follows:

Summary: {
attributes: {

name: str,
values: list[str]

}
}

To construct structured representations of book
contexts, we define the schema as follows:

Summary: {
characters: {

name: str,
explanations: list[str]

},
events: {

name: str,
explanations: list[str]

},
background: {

name: str,
explanations: list[str]

},

3835

https://doi.org/10.18653/v1/2024.naacl-long.260
https://doi.org/10.18653/v1/2024.naacl-long.260
https://doi.org/10.18653/v1/2024.naacl-long.132
https://doi.org/10.18653/v1/2024.naacl-long.132
https://doi.org/10.18653/v1/2024.naacl-long.132

motivations: {
name: str,
explanations: list[str]

},
objectives: {

name: str,
explanations: list[str]

},
other: {

name: str,
explanations: list[str]

}
}

C Details about Dataset

SUMIE contains 200 entities and each entity is as-
sociated with 7 paragraphs. Each paragraph has
aggregated a summary, which includes aggregated
attribute-value pairs from the 1st paragraph to N -th
paragraph (e.g. 7th paragraph contains aggregated
attribute-value pairs from all 7 paragraphs). Each
summary contains attribute-value pairs that are rel-
evant to the specific entity. BookScore dataset con-
tains mostly fiction or comtemporary books. Refer
to Chang et al. (2024) for the full book list.

D Details about Evaluation

On SUMIE, the evaluation of the final summary
comprises attribute-value pairs related to a specific
entity, measuing precision, recall, and f1 score. We
use Gemini-Pro as an LLM evaluator. The temper-
ature is set to 0.8.

For BookScore dataset, we use their LLM-based
evaluation metric that assess summary coherence
based on 8 predefined error dimensions (entity
omission, event omission, causal omission, discon-
tinuity, salience, language, inconsistency, duplica-
tion). Each error measures the following aspects:

- Entity omission: an entity, real or abstract (person, object,
place, concept, etc.) is mentioned, but key details are
missing or unclear

↪→
↪→
- Event omission: an event is mentioned, but key details are

missing or unclear↪→
- Causal omission: the reason or motivation for something is

missing or unclear↪→
- Salience: inclusion of trivial details that do not contribute

to the main storyline↪→
- Discontinuity: an interruption in the flow of the narrative,

including but not restricted to: sudden jumps between
perspectives, time periods, or settings; poor transition
between sentences or paragraphs; sentences or paragraphs
that seem out of place; illogical sentence order or summary
structure

↪→
↪→
↪→
↪→
↪→
- Duplication: redundant repetition of similar information
- Inconsistency: two parts of the summary contain contradicting

information↪→
- Language: grammar issues; confusing wording or phrasing; etc.

To evaluate the summary, each sentence is bro-
ken down into individual sentences and given to an

Method Turn P R F1

GMmarkdown last 83.1 74.8 78.3
Avg. 80.8 80.8 80.4

GMjson last 84.6 74.3 78.6
Avg. 84.7 78.7 80.9

CoKjson last 84.6 83.6 83.9
Avg. 83.7 83.9 83.5

Table 3: Performance on SUMIE with Gemini-Pro on
Generate-Merge (GM) and Chain-of-Key (CoK) update
with markdown and json formats.

LLM evaluator along with the original summary.
The evaluation prompt includes multiple examples
for each error dimension, and the LLM is asked
to determine whether any errors are present in the
current sentence and summary. If any errors are
found, the sentence is marked as a “confusing sen-
tence”. The final score is calculated by dividing the
total number of confusing sentences identified by
the LLM by the total number of sentences in the
summary.

Since their evaluation requires an advanced abil-
ity of understanding book context to identify 8
predefined error types, we use Gemini-Ultra as
an LLM evaluator and the temperature was set to
0.8. To calculate the token size to create a list of
smaller book chunks, we use tiktoken library4.
We used TPU v5e for evaluating the entity sum-
marization and book summarization tasks, with
each evaluation taking up to 24 hours. In particular,
Gemini-Pro used 8 pods and Gemini-Ultra used 64
pods. All experimental results are based on a single
run using the prompts provided in each section.

E Markdown vs. JSON

In our evaluation, presented in Table 3, we com-
pared the effectiveness of JSON and Markdown in
data structuring for summarization tasks. While
both formats demonstrated comparable abilities in
organizing straightforward data with the Gemini
Pro model, JSON distinguished itself in handling
more complex scenarios. Its capability to support
nested dictionary structures enhances expressibil-
ity and summarization precision, particularly in
lengthy or hierarchically complex documents. This
makes JSON especially valuable for summarizing
detailed datasets like family trees, where its hier-
archical structuring capabilities far outperform the
linear layout of Markdown.

4https://github.com/openai/tiktoken

3836

F Compressing the information

To manage the token size for existing information,
we compress the content using 3 criteria with an
LLM when the token size exceeds K tokens: 1)
Redundancy, 2) Frequency, and 3) Relevance. For
redundancy, we remove repetitive information to
maintain conciseness. For frequency, the model
prioritizes the most frequently mentioned values,
as they are likely the most important. For relevance,
the model emphasizes information most pertinent
to the subject. Figure 13 presents the prompt used
for compressing the information.

G Prompt for Chain-of-Key update

Figure 5 is the prompt used for Chain-of-Key up-
date process. In the case of the book summarization
task, we simply replace the instructions and a ex-
ample given in the prompt:

1. Values have a short and concise information: the values of
the [PARTIAL_SUMMARY] should have a short, concise, and
summarized information.

↪→
↪→
2. No redundant keys: If information from [NEW_SUMMARY] can be

incorporated by updating an existing key in
[PARTIAL_SUMMARY], then do not introduce a new redundant
key. For example, if there's already a field for
'activities' do not introduce a new key for 'other
activities' or 'water activities', 'hiking'. Update the
existing key for 'activities'.

↪→
↪→
↪→
↪→
↪→
↪→
3. No redundant values under the same key: If one value

encompasses most of the details in another value, merge
them together. For instance, "beautiful views of the Eiffel
tower" and "view of the Eiffel tower" should be merged into
a single value like "beautiful views of the Eiffel tower".

↪→
↪→
↪→
↪→
4. Do not include trivial information or redundant information

as a value for its corresponding key.↪→
5. Content Focus: Values should highlight the most important

information relevant to the main story.↪→
6. Exclude Ancillary Content: Disregard sections that are not

directly part of the main narrative, such as: Title,
Acknowledgments, Dedication, Chapter titles, Glossary
entries, Timelines, Forewords, Prologues, Epilogues,
Appendices, Author notes.

↪→
↪→
↪→
↪→

H Prompts used for SUMIE baselines

We used Figure 6 for Generate-Once, Figure 6 and
7 for Generate-Update, and Figure 6 and 8 are
used for Generate-Merge, which includes removing
duplicates. For text baselines, we simply replace
the JSON examples in the prompts to text summary
examples.

I Prompts used for BookScore baselines

For the BookScore dataset, we used the prompt in
Figure 9 along with special instructions from Fig-
ure 10 for JSON format generation and Figure 11
for plain text summary generation during the initial
Generate-Update phase and the Generate-Merge
phase. In subsequent Generate-Update iterations,

we used the prompt in Figure 12. To remove dupli-
cates during the Generate-Merge step, we used the
prompt in Figure 8.

3837

I will provide a JSON format summary in a section called [NEW_SUMMARY], and a class definition [CLASS], which define some fields
that need to be generated, and an instantiation of that class under [PARTIAL_SUMMARY] that is a response to the question in
[QUESTION]. Your task is to propose updates to [PARTIAL_SUMMARY] gathered from the information in [NEW_SUMMARY].

↪→
↪→

There are two types of revisions that you can suggest: ADD and UPDATE.

For UPDATE, follow these instructions:
1. Your proposed updates must be for valid JSONPaths that already exist in [PARTIAL_SUMMARY]. If the JSONPath does not exist, you

should not propose an update for that JSONPath.↪→
2. Updates can be made by modifying an existing value using content from [NEW_SUMMARY].
3. Updates should never reduce the amount of information in [PARTIAL_SUMMARY].
4. Never remove existing information from the [PARTIAL_SUMMARY].
4. Proposed update must be a `dict[str, ProposedUpdate]` where the key is a valid JSONPath in [CLASS] and `ProposedUpdate` is

defined as follows:↪→
```
class ProposedUpdate(TypedDict):

update: Any # The type must be the same type as at the JSONPath in [CLASS].
```

For ADD, follow these instructions:
1. Proposed additions must be for valid JSONPaths that adhere to the definition in [CLASS]. They are allowed to increase the size

of lists in the definition, but they must not define new fields which are not defined in the class definition.↪→
2. It is OK to add partial objects. Leave fields unset if [NEW_SUMMARY] does not contain a value for one of the fields in

[PARTIAL_SUMMARY].↪→
3. Proposed additions must be a `dict[str, ProposedAdd]` where the key is a valid JSONPath in [CLASS] and `ProposedAdd` is defined

as follows:↪→
```
class ProposedAdd(TypedDict):

add: Any # The type must be the same type as at the JSONPath in [CLASS].
```

For both operations, follow these instructions:
1. Values have sufficient context: the values of the [PARTIAL_SUMMARY] should have enough context so a reader can understand what

it means.↪→
2. No redundant keys: If information from [NEW_SUMMARY] can be incorporated by updating an existing key in [PARTIAL_SUMMARY], then

do not introduce a new redundant key.↪→
3. No redundant values under the same key: If one value encompasses most of the details in another value, merge them together.

[QUESTION]
Merge the new summary and existing summary of HOTEL0.

[NEW_SUMMARY]
{

"attributes": {
"Room Amenities": ["pub opens till midnight", "two large pools"],
"Noise Level": ["Notable street noise at night"],

}
}

[CLASS]
class Summary(TypedDict):

attributes: dict[str, list[str]] # Keyed by attribute, with a list of sufficient details about the attribute.

[PARTIAL_SUMMARY]
{

"attributes": {
"Amenities": ["two pools"],
"Food & Beverage": ["limited breakfast options"],

}
}

[THOUGHTS FOR UPDATE]
1. I need to figure out which fields and values to update.
2. [PARTIAL_SUMMARY] contains information about the following: ["Amenities", "Food & Beverage"]
3. [NEW_SUMMARY] contains new content relevant to the following existing content: ["Amenities"]
4. The content should be updated at the following JSONPaths: ["$.'attributes'.'Amenities'"]

[UPDATED_OBJECTS]
{

"$.'attributes'.'Amenities'": {"update": ["pub opens till midnight"]}
}

[THOUGHTS FOR ADD]
1. I need to figure out which fields and values to add.
2. [NEW_SUMMARY] mentions information about the following: ["Amenities", "Noise Level"]
3. [PARTIAL_SUMMARY] does not yet have information about: ["Noise Level"]
3. The content should be added at the following JSONPaths: ["$.'attributes'.'Noise Level'"]

[ADDED_OBJECTS]
{

"$.'attributes'.'Noise Level'": {"add": ["Notable street noise at night"]},
}

Figure 5: Prompt used for chain-of-key update
3838

Task Overview:
Your task involves synthesizing information from detailed descriptive paragraphs about a specific entity into a summary table.
This Json will highlight key attributes of the entity along with their detailed descriptions derived from the given texts.

Instructions:
* Extract Descriptive Values: Focus on extracting specific, detailed information rather than general or vague adjectives like

"good" or "bad." Ensure that descriptions are precise and informative.↪→
* Present a Balanced View: The table should reflect a balanced perspective, including positive, negative, and neutral attributes.

For attributes with mixed reviews, indicate the sources supporting each viewpoint.↪→
* Attribute Selection:
- Commonly Interested Attributes: Include attributes that are generally of interest for the type of entity being described.
- Unique Attributes: Also identify and include unique attributes that are specifically mentioned in the provided descriptions.

* Do not include irrelevant sentences about the given entity in the summary. Irrelevant sentences include entity names (HOTEL1,
HUMAN) that are different from the given entity (HOTEL0).↪→

Structure of the Summary Table:
* The Json should contain a dictionary format data, where keys are attributes and values are detailed descriptions of their

corresponding attributes.↪→
* List attributes with their corresponding values, indicating the source paragraph and relevant excerpts for substantiation.
* If an attribute has multiple values, include all values as a list of the attribute.
* Each value should contain sufficient evidence extracted from the paragraph related to the entity.

Example:
Entity: HOTEL0

Paragraphs:
P1. Great room and service, but breakfast was lacking. We loved the spacious room and friendly staff, but the breakfast options

were limited. There are two pools.↪→
P2. Poor customer service overshadowed the beautiful location. The beachfront view was amazing, but dealing with unhelpful staff

was frustrating. Room is comfortable.↪→
P3. Exceptional dining and comfortable beds, but noisy at night. The restaurant was five-star, and the beds were very cozy, but

there was a lot of street noise.↪→
P4. HOTEL1 offers great room service and breakfast was amazing. (Irrelevant sentence for the given entity "HOTEL0")
P5. HUMAN's creativity looks like a great room service offered by the hotel. (Irrelevant sentence for the given entity "HOTEL0")

Summary JSON:
{

"Room Quality": ["Spacious and comfortable rooms"],
"Amenities": ["There are two pools"],
"Service": ["Friendly staff", "overshadowed by unhelpful staff"],
"Location": ["Beautiful beachfront view"],
"Food & Beverage": ["Exceptional dining experience", "limited breakfast options"],
"Noise Level": ["Notable street noise at night"]

}

Your Task:
Generate a similar table based on the following descriptions of the specified entity.
Entity: {entity_name}

Paragraphs:
{paragraph}

Proceed to generate the summary Json.

Figure 6: Prompt used for generating initial summary

3839

Task Overview:
You are tasked with refining and expanding an existing summary table based on new descriptive paragraphs about an entity.
This involves updating the table to include new information, modify existing details without removing any, and ensuring all entries

are supported by evidence from the text.↪→

Instructions:
* Update Descriptive Values: Carefully read the new paragraph(s) and identify any information that should be added to the current

table entries or modify them. Focus on specific, descriptive details, avoiding vague adjectives. **Do not remove any existing
attributes or values**, but rather add to or revise them as necessary.

↪→
↪→
* Maintain a Balanced View: Ensure the updated table continues to present a balanced perspective, incorporating positive, negative,

and neutral values. For any attribute with mixed evidence, update the count of sources supporting each view. All original
attributes and values must be preserved in the table, with modifications only to reflect new insights or corrections based on
the latest information.

↪→
↪→
↪→
* Attribute Revision and Addition:
- Commonly Interested Attributes: Update or add attributes that are of general interest for the type of entity being described,

based on the new information.↪→
- Unique Attributes: Identify and incorporate any unique attributes mentioned in the new paragraphs that were not previously

included in the table.↪→

Structure of the Updated Summary Table:
* Retain the two-column format: Attribute and Value.
* For each attribute, list the updated or new evidence indicating the source paragraph and relevant excerpts. Original attributes

and values should remain listed, with additional information appended as necessary.↪→
* If an attribute has multiple values, include all values as a list of the attribute.
* Each value should contain sufficient evidence extracted from the paragraph related to the entity.

Example
Entity: Hotel0
New Paragraph:
P4. The hotel has recently renovated its lobby, which now features a modern design. Guests have also noted improvements in

breakfast variety and quality.↪→
P5. The hotel boasts impeccably designed rooms, featuring luxurious furnishings.

Given Existing Summary Table:
{

"Room Quality": ["Spacious and comfortable rooms"],
"Amenities": ["two pools"],
"Service": ["Friendly staff", "overshadowed by unhelpful staff"],

}

Updated Summary Json:
{

"Room Quality": ["Spacious and comfortable rooms", "Impeccably designed", "luxurious furnishings"],
"Amenities": ["Two pools"],
"Service": ["Friendly staff", "overshadowed by unhelpful staff"],
"Food & Beverage": ["Exceptional dining experience", "limited breakfast options", "improved breakfast variety and quality"],
"Lobby Design": ["Modern design"],

}

Your Task:
Update the summary Json with the given new descriptions of the specified entity.
Entity: {entity_name}
New Paragraph:
{paragraph}

Given Existing Summary Json:
{existing_summary}

Proceed to update the summary Json.

Figure 7: Prompt used for updating a summary with new information and existing summary information.

3840

Task Overview:
Your task involves removing duplicate information from a detailed summary json about a specific entity. This summary will highlight

key attributes of the entity along with their detailed descriptions derived from the given texts.↪→

Instructions:
1. Eliminate repetitive information to ensure the summary is concise.

2. In the given summary json, the keys are attributes of the entity and each attribute has its corresponding values.
3. If one attribute encompasses most of the details in another attribute, merge them together.
4. If one value encompasses most of the details in another value, merge them together.

Here is an example of merging attributes:

Given Existing Summary:
{

"Views": ["beautiful views of the Eiffel tower"],
"views from hotel": ["visible Eiffel tower"],

}

New Summary after removing duplicates and merging:
{

"View": ["beautiful views of the Eiffel tower"]
}

===

Here is an example of merging values:

Given Existing Summary:
{

"Views": ["beautiful views of the Eiffel tower", "view of the Eiffel tower"],
"views from hotel": ["visible Eiffel tower"],

}

New Summary after removing duplicates and merging:
{

"View": ["beautiful views of the Eiffel tower"]
}

===

Figure 8: Prompt used for removing duplicates.

Task Overview:
We are analyzing segments of a story sequentially to progressively build a comprehensive summary of the entire plot. Your task is

to generate a new summary by integrating vital information from the current story segment with the existing summary stored in
memory. The summary can be provided in either text format or JSON format.

↪→
↪→

Instructions:
1. Integrate Key Information: Incorporate new information related to key events, backgrounds, settings, characters, their

objectives, and motivations from the current segment into the existing summary.↪→
2. Introduction of New Elements: Briefly introduce any new characters, places, or major elements mentioned for the first time in

the current segment if they are not already included in the memory.↪→
3. Handling Non-Linear Narratives: Account for non-linear narratives, including flashbacks, and switches between alternate worlds

or viewpoints, ensuring the summary maintains a consistent and chronological narrative.↪→
4. Cohesive Summary: Create a summary that reads as though it was written in one go, despite the step-by-step process of updating

it with each new segment.↪→
5. Exclude Ancillary Content: Disregard sections that are not directly part of the main narrative, such as: Title, Acknowledgments,

Dedication, Chapter titles, Glossary entries, Timelines, Forewords, Prologues, Epilogues, Appendices, Author notes.↪→

{special_instruction}

Your Task:
Generate a summary based on the following segment from a story and the memory of the story up until this point. Ensure the output

follows the specified format.↪→

A segment from a story:

{book_chunk}

Generated summary in {output_format}:

Figure 9: Prompt used for generating book summaries.

3841

Structure of the JSON Summary:
- Fields to Generate: Characters, Events, Backgrounds,

Motivations, Objectives, Other.↪→
- Field Format: Each field should be a dictionary where keys

are the names of elements and values are their short
descriptions.

↪→
↪→
- Each key should include a short and concise information as

values that explain the key.↪→
- Content Focus: Values should highlight the most important

information relevant to the main story.↪→
- Do not include trivial information or redundant information

as a value for its corresponding key.↪→

Here is an example of the JSON Summary:
{

"characters": {
"a character's name": [a list of short and summarized

descriptions]↪→
},
"events": {

"an event's name": [a list of short and summarized
descriptions]↪→

},
"objectives": {

"an objective's name": [a list of short and summarized
descriptions]↪→

},
"motivations": {

"a motivation's name": [a list of short and summarized
descriptions]↪→

},
"background": {

"a background's name": [a list of short and summarized
descriptions]↪→

},
"other": {
"other information's name": [a list of short and summarized

descriptions]↪→
}

}

Figure 10: Instructions used for generating JSON format
summary.

Structure of the Text Summary:
- Key Elements to Include: Incorporate key events, characters,

backgrounds, motivations, objectives, and other relevant
details.

↪→
↪→
- Narrative Flow: Ensure the summary flows seamlessly as a

cohesive and comprehensive narrative.↪→

Here is an example of the Text Summary format:
A summary that reads as though it was written in one go. It can

consist of multiple paragraphs.↪→

Figure 11: Instructions used for generating text format
summary.

Your Task:
Generate a summary based on the following segment from a story

and the memory of the story up until this point. Ensure the
output follows the specified format.

↪→
↪→

A segment from a story:

{book_chunk}

A memory of the story up until this point:

{memory}

Output Type: {output_format}

Updated summary in {output_format}:

Figure 12: Prompt used for updating a summary with a
new information and existing summary.

Task Overview:
Your task involves compressing information from a detailed

summary JSON about a book. This summary will highlight key
details of the book that are important when summarizing the
whole story of the book.

↪→
↪→
↪→

Instructions:
- Compress the summary to the specified number of tokens below.
- The condensed summary should retain key details about

characters, events, backgrounds, motivations, objectives,
and other important information.

↪→
↪→
- If the key has multiple values, merge them into a short

summarized description.↪→

Criteria:
- Redundancy: Eliminate repetitive information to ensure the

summary is concise.↪→
- Frequency: Emphasize the most frequently mentioned attributes

or values, as they are likely the most important.↪→
- Relevance: Focus on the information that is most pertinent to

the main story of the book or the overall context of the
summary.

↪→
↪→
- Remove trivial information that does not frequently appear in

the other contexts or not relevant to the main story of the
book based on the overall context of the summary.

↪→
↪→

Figure 13: Prompt used to compress the information to
fit the existing summary into the limited token size.

3842

