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Abstract

Recent advancements in general-purpose or
domain-specific multimodal large language
models (LLMs) have witnessed remark-
able progress for medical decision-making.
However, they are designated for specific
classification or generative tasks, and require
model training or finetuning on large-scale
datasets with sizeable parameters and tremen-
dous computing, hindering their clinical
utility across diverse resource-constrained
scenarios in practice. In this paper, we
propose a novel and lightweight framework
Med-MoE (Mixture-of-Experts) that tackles
both discriminative and generative multimodal
medical tasks. The learning of Med-MoE
consists of three steps: multimodal medical
alignment, instruction tuning and routing, and
domain-specific MoE tuning. After aligning
multimodal medical images with LLM
tokens, we then enable the model for different
multimodal medical tasks with instruction
tuning, together with a trainable router tailored
for expert selection across input modalities.
Finally, the model is tuned by integrating the
router with multiple domain-specific experts,
which are selectively activated and further
empowered by meta expert. Comprehensive
experiments on both open- and close-end
medical question answering (Med-VQA) and
image classification tasks across datasets
such as VQA-RAD, SLAKE and Path-VQA
demonstrate that our model can achieve
performance superior to or on par with
state-of-the-art baselines, while only requiring
approximately 30%-50% of activated model
parameters. Extensive analysis and ablations
corroborate the effectiveness and practical
utility of our method. Our code is released at
https://github.com/jiangsongtao/Med-MoE.
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1 Introduction

Creating systems with human-level multimodal
understanding is essential for medical decision-
making (Miao et al., 2022; Goyal et al., 2016;
de Faria et al., 2023; Antol et al., 2015). Re-
cent progress on Multimodal Large Language
Models (MLLMs) such as LLaVA (Liu et al.,
2024a), MiniGPT4-V2 (Chen et al., 2023),
CogVLM (Wang et al., 2023) have demonstrated
great performance across multimodal tasks, how-
ever, they are less effective in the medical domain
as they are usually trained with web contents which
differ significantly from the medical data. Domain-
specific models such as Med-Flamingo (Moor et al.,
2023), Med-PaLM M (Singhal et al., 2023), and
LLaVA-Med (Li et al., 2024a) exhibit promising re-
sults across various medical tasks, such as medical
visual question-answering (Med-VQA), by training
with medical domain data. However, these models
are usually tailed for certain kinds of tasks, such as
close- or open-end VQA, while in practice, medi-
cal MLLMs need to handle both discriminative and
generative tasks to provide more reliable and inter-
pretable decisions. Moreover, existing models are
usually obtained with heavy LLMs with sizeable
parameters, such as LLama(7B) in LLaVA-Med,
leading to high training and inference costs and
hindering its practical utility to broad clinical prac-
titioners.

It is appealing but challenging to build
lightweight yet effective medical MLLMs for mul-
timodal decision-making (Petersson et al., 2022;
Kelly et al., 2019; Liao et al., 2024). Recent re-
search shows that scaling up the quantity or qual-
ity of training data, as well as increasing the size
of the model, can result in enhanced performance
(Gao et al., 2024; Shi et al., 2024; Xue et al., 2024;
Shen et al., 2023; Lu et al., 2023). However, train-
ing and deploying these models also demand sub-
stantial computational resources, rendering them
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Figure 1: Upper: This figure showcases our model’s
capability in addressing three primary types of Medical
VQA challenges and image classification tasks. Lower:
Comparison between Med-MoE and LLaVA-Med, em-
phasizing Med-MoE’s advantages in inference speed,
model size, and its superior performance.

less appealing for numerous clinical practitioners
who may lack sufficient computing power (Lu
et al., 2023; Crawford, 2021; Thompson et al.,
2020). For instance, many institutions may not pos-
sess powerful GPUs such as NVIDIA A100 cards
to tune LLama-7B model family, e.g., LLaVA-
Med. Moreover, the medical data differs drastically
from web contents, and its inherent multi-modality,
such as imaging from CT, MRI, X-ray and pathol-
ogy, presents additional challenges to develop ef-
fective yet lightweight medical MLLMs (Acosta
et al., 2022; Xu et al., 2024b). This task becomes
even more difficult when considering the require-
ments for reliability and interpretability in decision-
making (Salahuddin et al., 2022; Vellido, 2020).

Recent work explores cost-effective training of
light-weight LLMs by architecture design, training
procedure or hardware optimization etc (Dubiel
et al., 2024; Zhao et al., 2024; Hu et al., 2024; Zhou
et al., 2024). Among these techniques, the Mixture-
of-Expert (MoE) strategy has shown great potential
for general-purpose training (Chen et al., 2022; He
et al., 2021; Jacobs et al., 1991; Eigen et al., 2013),
e.g., the Mixtral family employs sparse MoEs to
achieve competing performance with LLama-70B
with only 12.9B active parameters (Jiang et al.,
2024); the MoE-LLaVA propose a MoE-based
sparse large VLM framework with novel training
strategies (Lin et al., 2024). By combining multiple
small-scale sub-modules, i.e., experts, and activat-
ing only the top-k relevant experts for each task,

the MoE model can achieve good performance with
much less computing cost. Despite these successes
in general domains, current MoEs often overlook
the specialization and synergy of experts required
in medical contexts, and their applicability in the
medical domain remains unexplored.

In this paper, we propose a lightweight and ef-
fective framework Med-MoE for multimodal gen-
erative or discriminative Med-VQA and classifica-
tion tasks. Our Med-MoE incorporates multiple
domain-specific experts along with global meta ex-
pert, emulating the workflow in hospitals where
various departments collaborate together for dis-
ease diagnosis. In particular, the Med-MoE takes
lightweight LLMs with smaller sizes of parame-
ters as the base model of experts, which are first
trained with medical image and caption pairs to
align visual and textual modalities. Afterward, the
model is trained with medical instruction follow-
ing datasets to better perform multimodal medical
tasks. Meanwhile, a router is trained to identify dif-
ferent medical image modalities, enabling better se-
lection across multiple domain-specific experts dur-
ing decision-making. Inspired by the well-known
ResNet (He et al., 2016) architecture and the Multi-
Disciplinary Team (MDT) diagnosis mechanism
in clinics, we propose to add an additional meta
expert in the shortcut, as shown in Figure 2, which
captures global medical information to assist the
specified expert for better performance. During
inference, only the meta expert and the selected ex-
perts are activated, leading to a lightweight model
with only a small portion of activated parameters.

The Med-MoE consistently demonstrates sig-
nificant performance improvements across diverse
medical datasets, encompassing both open- and
close-end Med-VQA and medical image classifica-
tion tasks in VQA-RAD, SLAKE, PathVQA, Pneu-
moniaMNIST, and OrganCMNIST. Comprehen-
sive experiments show that our Med-MoEs, which
are constructed with two small-scale LLMs, i.e.,
Phi2 (2.7B) (Abdin et al., 2024) and StableLM
(1.7B) (Bellagente et al., 2024), can attain perfor-
mance superior to or on par with the state-of-the-art
LLaVA-Med (7B) model, with only 2.0-3.6B acti-
vated parameters. Extensive ablations and analysis
demonstrate the efficacy of our Med-MoE in ad-
vancing multimodal medical tasks and highlight its
potential to enhance outcomes in resource-limited
healthcare settings.
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Figure 2: The framework of Med-MoE with three phases.

2 Methods

The training of Med-MoE includes three phases,
as illustrated in Figure 2. First, we perform multi-
modal medical alignment to help the LLM to com-
prehend medical images by leveraging the vision
encoder’s image tokens. Next, we conduct instruc-
tion tuning to enable the model to execute various
medical tasks and enhance its instruction-following
ability. Meanwhile, a router is trained with a small
amount of labeled data to characterize the input
modality. Finally, we perform domain-specific
MoE tuning by replacing the model’s FFN with
sparsely activated experts, where a meta-expert is
always activated to capture global information.

2.1 Phase 1: Multimodal Medical Alignment

In this phase, we train only the MLP following the
vision encoder to achieve modality alignment. We
use the same vision encoder as LLaVA-Med, specif-
ically the pretrained CLIP-ViT-Large-Patch14 re-
leased by OpenAI (Radford et al., 2021). We align
visual and textual modalities by curating a dataset
of medical images I paired with corresponding cap-
tions C. The images I are fed into a vision encoder
Ev to produce image tokens Ti (Ti = Ev(Ii)), and
the captions C are tokenized into text tokens Ttext
(Ttext = Tokenizer(Ci)). The concatenated tokens
Tcomb are fed into the LLM, which is trained to gen-
erate the continuation of text tokens, minimizing

the self-supervised loss:

LAlign = −
N∑

i=1

log p
(
T
[P+i]
text | Tcomb, T

[:i−1]
text

)
.

(1)

2.2 Phase 2: Instruction Tuning and Routing
This phase aims to enhance the model’s ability to
follow complex medical instructions to perform var-
ious multimodal tasks and train a router for expert
selection in the next phase. The instruction tokens
Tinstr and image tokens Ti are concatenated into
Tcomb and fed into the LLM. The model is trained
using a dataset of medical queries and responses to
generate accurate responses, minimizing the loss:

LInstr = −
N∑

i=1

log p
(
T

[P+i]
resp | Tcomb, T

[:i−1]
resp

)
. (2)

We also train a router to predict the input modal-
ity using a small subset of data with the loss:

LRouter = −
M∑

i=1

yi log p(yi | Tcomb), (3)

where yi is the true label of the input image modal-
ity, i.e., CT, MRI, Pathology and X-ray, etc. In this
phase, the vision encoder is frozen, while all other
components are trained. Our router uses a single-
layer MLP structure, which has been widely used in
previous research (Jacobs et al., 1991; Fedus et al.,
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2022). To enable the router to activate different
experts based on input modality, we used a small
subset of data, selecting 200 labeled examples from
each modality for router training. After completing
the second stage of training, the router predicts the
modality of the input data and calculates the cross-
entropy loss function with the predicted modality
and the true modality labels.

2.3 Phase 3: Domain-Specific MoE Tuning
Finally, we replace the LLM’s FFN with
MoE(mixture-of-experts) architecture. The router,
trained in phase 2, assigns inputs to specific experts,
while a meta-expert is always activated to capture
global information. The MoE layer’s output is a
weighted combination of the experts’ outputs. The
domain-specific experts and the meta-expert are
initialized with the FFN weights from the model
trained in phase 2. In this phase, the router from
phase 2 is used and frozen, so only the domain-
specific experts and the meta-expert are trained.

OMoE =
K∑

i=1

GiEi + Emeta, (4)

where Gi is the gating function provided by the
router, Ei are the domain-specific experts, and
Emeta is the meta-expert. The training loss is:

LMoE = −
N∑

i=1

log p
(
T

[P+i]
resp | OMoE, T

[:i−1]
resp

)
. (5)

In the end, the model is fine-tuned for specific med-
ical domains, leveraging expert knowledge to pro-
vide highly accurate and relevant responses across
the open- and close-end and classification tasks.

3 Experiment

3.1 Experiment Settings
Dataset: We utilize well-organized datasets pro-
vided by LLaVA-Med (Li et al., 2024a) for align-
ment and instruction tuning in phase 1&2, see de-
tails in Supplementary Figure 13. In MoE-tuning
phase, we employ VQA-RAD (Lau et al., 2018),
SLAKE (Liu et al., 2021), PathVQA (He et al.,
2020) with open- and close-end QA pairs for Med-
VQA tuning and evaluation. For classification task,
we use the PneumoniaMNIST and OrganCMNIST
from (Yang et al., 2023). Detailed information and
examples of Med-MoE’s responses are shown in
Supplementary.
Evaluation Metrics: We employ the accuracy
for closed-set questions and recall for open-set

questions, being consistent with existing work like
LLaVA-Med for a fair comparison. In Table 2, we
also evaluate the exact match and BLEU scores for
comprehensive evaluation.
Experiment Setup: We select two small LLMs,
i.e., StableLM (1.7B) and Phi2 (2.7B), as the base
model, see Figure 14. The size of activated param-
eters in resulting Med-MoEs are 2.0B (Med-MoE
StableLM) and 3.6B (Med-MoE Phi2), with ad-
ditional parameters from domain-specific experts
and meta-experts. To ensure a fair comparison with
LLaVA-Med, we also train a LLaVA-Med model
using the Phi2 (2.7B) backbone. This allows us
to compare the performance under the same LLM
backbone. We also investigate the versatility of our
method by combining it with other cost-efficient
approaches, such as LoRA-based methods. Our
experimental hyperparameters are shown in Sup-
plementary Table 12.
Baselines: We compare our method with a diverse
set of baselines: (1) CLIP-based methods, such as
BiomedCLIP and CLIP-ViT (Zhang et al., 2023b;
Eslami et al., 2023), which are state-of-the-art in
this category but are limited by their reliance on
candidate words for answering questions in open
settings; (2) OFA (One for All)-based models,
like the recent BiomedGPT (Zhang et al., 2023a),
which leverage generative multimodal pretraining
and have shown promising performance in the med-
ical field, but their lack of multi-turn dialogue capa-
bility, due to not being LLM-based, restricts their
usage in clinical practice; (3) MLLM-based mod-
els, including Med-Flamingo and the state-of-the-
art LLaVA-Med, which, despite their impressive
VQA performance, have large parameter sizes (7B
and above) that hinder their applicability in real-
world clinical settings. In classification tasks, we
compare with ViT-based methods and the latest
Med-Mamba (Yue and Li, 2024). Notably, our
Med-MoE, an MLLM-based method, offers multi-
turn dialogue capabilities for open VQA settings
which are not present in traditional methods, while
exhibiting effective training/inference and compet-
ing performance.

3.2 Main Results
Zero-shot Performance on Med-VQA tasks: Our
models exhibit notable improvements in zero-shot
performance across various medical VQA tasks.
The Med-MoE (Phi2) model boosts scores by ap-
proximately 1.4% in VQA-RAD Open, 2.6% in
VQA-RAD Closed, 5.3% in SLAKE Open, and
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VQA-RAD SLAKE PathVQA Act.
Method Open Closed Open Closed Open Closed
Representative & SoTA methods with numbers reported in the literature (Non-MLLM Based Methods)
VL Encoder–Decoder (Bazi et al., 2023) - 82.47 - - - 85.61 -
Q2ATransformer (Liu et al., 2023) - 81.20 - - 54.85 88.85 -
Prefix T. Medical LM (van Sonsbeek et al., 2023) - - - 82.01 - 87.00 -
PubMedCLIP (Eslami et al., 2023) - 80.00 - 82.50 - - -
BiomedCLIP (Zhang et al., 2023b) - 79.80 - 89.70 - - -
M2I2 (Li et al., 2022) - 83.50 - 91.10 - 88.00 -
BiomedGPT-S (Zhang et al., 2023a) 13.40 57.80 66.50 73.30 10.70 84.20 -
BiomedGPT-M (Zhang et al., 2023a) 53.60 65.07 78.30 86.80 12.5 85.70 -
CLIP-ViT w/ GPT2-XL - - 84.30 82.10 40.0 87.00 -
Supervised finetuning results (MLLM Based Methods)
LLaVA 50.00 65.07 78.18 63.22 7.74 63.20 7B
LLaVA-Med (LLama7B) 61.52 84.19 83.08 85.34 37.95 91.21 7B
LLaVA-Med (Vicuna7B) 64.39 81.98 84.71 83.17 38.87 91.65 7B
LLaVA-Med (Phi2.7B) 54.83 81.35 81.29 83.29 31.73 90.17 2.7B
Med-MoE (Phi2) 58.55 82.72 85.06 85.58 34.74 91.98 3.6B
Med-MoE (StableLM) 50.08 80.07 83.16 83.41 33.79 91.30 2.0B
Zero-shot results
LLaVA-Med (LLama7B) 36.23 60.16 41.72 47.60 10.86 59.75 -
Med-MoE (Phi2) 36.73 61.75 43.93 56.97 6.94 66.46 -
Med-MoE (StableLM) 28.02 66.91 40.63 52.64 9.40 69.09 -

Table 1: Performance on Med-VQA tasks. Bold denotes the best performance; underlined denotes the second-best.

VQA-RAD SLAKE PathVQA
Method EMS R BS EMS R BS EMS R BS
LLaVA-Med 7B 58.33 61.52 54.13 82.83 83.08 81.69 37.95 36.86 32.89
Med-Flamingo(Few-Shot) (Moor et al., 2023) 9B 20.00 - - - - - 31.00 - -
PaLM-E (Tu et al., 2024) 84B - - 59.19 - - 52.65 - - 54.92
Med-MoE (Phi2) 3.6B 59.69 58.55 52.95 84.46 85.06 83.16 34.37 34.74 32.85
Med-MoE (StableLM) 2.0B 52.53 50.08 45.67 82.44 83.16 81.53 33.60 33.79 32.67

Table 2: Detailed comparison regarding more metrics (Supplementary A) in Open settings.

Methods PneumoniaMNIST OrganCMNIST

Med-Mamba (Yue and Li, 2024) 91.2 92.4
AutoKeras (Jin et al., 2019) 87.8 87.9
BiomedGPT 90.8 88.9
Med-MoE (StableLM) 89.3 88.6
Med-MoE (Phi2) 91.4 89.9

Table 3: Image classification accuracy comparison.

9.4% in SLAKE Closed compared to LLaVA-Med
(LLama7B). The Med-MoE (StableLM) variant
achieves around 6.8% higher in VQA-RAD Closed,
5.0% in SLAKE Closed, and 9.3% in PathVQA
Closed, demonstrating robust performance. These
results highlight the superior effectiveness of Med-
MoE models in zero-shot settings.
Comparison with SOTA Methods on Med-VQA:
Overall, Med-MoE can achieve superior or compet-
ing performance with the best-performing LLaVA-
Med (7B) with only 2.0B or 3.6B activated param-
eters. In particular, Med-MoE (Phi2) surpasses

the best LLaVA-Med variants in SLAKE Open
(85.06), SLAKE Closed (85.58), and PathVQA
Closed (91.98), and shows competing performance
on the rest tasks. Med-MoE (StableLM) also ex-
hibits better performance than the LLaVA-Med
(Phi-2.7B) in most scenarios, with only 2.0B acti-
vated parameters. Its performance is also on par
with LLaVA-Med (7B) in many scenarios, with
even better performance in SLAKE Closed. These
results highlight the effectiveness and strong po-
tential of Med-MoE to establish new benchmarks
across various datasets and tasks.

Results on Medical Image Classification: In
contrast to most existing LLM-based work, e.g.,
LLaVA-Med, which only evaluates the perfor-
mance on Med-VQA, we further evaluate Med-
MoE on classification tasks for comprehensive
analysis. As shown in Table 3, Med-MoE (Phi2)
achieves 91.4% accuracy on PneumoniaMNIST,
outperforming BiomedGPT and Med-Mamba. It
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also showcases the second-best performance on Or-
ganCMNIST, closely following Med-Mamba. The
performance of Med-MoE (StableLM) is a little
bit worse. Overall, the classification performance
of Med-MoE is quite promising, while its perfor-
mance might be boosted if more relevant data rather
than image-caption pairs could be used for model
alignment and tuning in the initial phases.

4 Ablation and Analysis

Method SFT MoE-Tuning
VQA-RAD (Open) 54.83 58.55 (+3.72)
VQA-RAD (Closed) 81.35 82.72 (+1.37)
SLAKE (Open) 81.29 85.06 (+3.77)
SLAKE (Closed) 83.29 85.58 (+2.29)
PathVQA (Open) 31.73 34.74 (+3.01)
PathVQA (Closed) 90.17 91.98 (+1.81)

Table 4: Comparison of SFT and MoE Tuning.

Method No Meta Expert With Meta Expert
VQA-RAD (Open) 54.37 58.55 (+4.18)
VQA-RAD (Closed) 81.42 82.72 (+1.30)
SLAKE (Open) 81.54 85.06 (+3.52)
SLAKE (Closed) 82.45 85.58 (+3.13)
PathVQA (Open) 32.12 34.74 (+2.62)
PathVQA (Closed) 90.19 91.98 (+1.79)

Table 5: Ablation on the meta expert.

Method Learned Router Router (Ours)
VQA-RAD (Open) 56.33 58.55 (+2.22)
VQA-RAD (Closed) 82.19 82.72 (+0.53)
SLAKE (Open) 82.75 85.06 (+2.31)
SLAKE (Closed) 84.59 85.58 (+0.99)
PathVQA (Open) 33.40 34.74 (+1.34)
PathVQA (Closed) 91.19 91.98 (+0.79)

Table 6: Ablation on the routing mechanism.

Ablation of Router: We evaluate the effectiveness
of our routing mechanism compared to the gen-
eral MoE routing mechanism across the Med-VQA
datasets. The Learned Router refers to the router in
MoE that is trained during the MoE tuning phase,
while our routers are pretrained with modality in-
formation, leading to more efficient and accurate
routing. Results in Table 6 for the Phi2.7B model
show that our router achieves consistent improve-
ments. The improvements in open settings are even
more evident than those in closed settings, demon-
strating the effectiveness of our routing mechanism
in more challenging open scenarios.

Ablation of Meta Expert: We evaluate the impact
of the meta expert with ablation results with the
Phi2.7B model in Table 5. We can notice that the
meta expert can bring consistent and significant
improvements over all Med-VQA settings, with
improvements of 1.30-4.18%. These consistent
improvements underscore the critical role of the
meta expert in enhancing the model’s ability to
cope with various multimodal medical tasks.
Ablation of Domain-Specific MoE-Tuning: To
assess the benefits of the MoE-Tuning over tradi-
tional Supervised Fine-Tuning (SFT), we conduct
an ablation study with the Phi2.7B model. Results
across three Med-VQA datasets (Table 4) demon-
strate that the MoE-Tuning can lead to better perfor-
mance. These results demonstrate the effectiveness
of our MoE architecture, giving rise to better per-
formance than tuning a dense FFN.
Comparison with LoRA-based Methods: We
further investigate the compatibility of our meth-
ods with other lightweight techniques, i.e., LoRA.
As shown in Table 7, by integrating with LoRA,
Med-MoE exhibits much less performance degra-
dation compared to LLaVA-Med. For instance,
in the SLAKE Closed setting, Med-MoE (Phi2)
with LoRA exhibits only a 0.49% performance
drop, whereas LLaVA-Med with LoRA experi-
ences 1.97% degradation. Furthermore, we observe
that LoRA reduces GPU memory usage during
training, and our Med-MoE requires fewer acti-
vated parameters during inference. Consequently,
the integration of LoRA with Med-MoE achieves
lightweight learning in terms of both training and
inference. These findings indicate that Med-MoE
presents an appealing practical choice for medical
tasks, delivering promising performance at signifi-
cantly lower computational costs.
Effect of Architectures and Training Data of
Router: Figure 3 investigates the effectiveness of
different MLP structures in the router. We can no-
tice that complicated MLPs, e.g., using 3 MLP lay-
ers, might not give rise to consistent improvements
and may even lead to overfitting. As shown in Fig-
ure 3, a simple MLP with 1 or 2 layers can learn
good embeddings of the input modality, resulting
in clusters with clear boundaries, as well as high
accuracy and Silhouette score. Figure 4 confirms ef-
fective modality differentiation with well-separated
embeddings of image-text pairs post router process-
ing. Moreover, we also investigate the effectiveness
of our router when trained with different numbers
of modality labels. Results in Figure 6 demonstrate
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VQA-RAD SLAKE PathVQA Act. Rank
Method Open Closed Open Closed Open Closed

LLaVA-Med (LLama7B) with LoRA 58.22 (-3.30) 82.13 (-2.06) 81.29 (-1.79) 83.37 (-1.97) 34.33 (-3.62) 90.12 (-1.09) 7B 128
LLaVA-Med (Vicuna7B) with LoRA 61.37 (-3.02) 80.03 (-1.95) 82.02 (-2.69) 81.74 (-1.43) 36.78 (-2.09) 90.67 (-0.98) 7B 128
Med-LoRAMoE (Phi2) 58.12 (-0.43) 82.35 (-0.37) 83.58 (-0.12) 84.85 (-0.49) 32.62 (-0.63) 91.18 (-0.80) 3.6B 256
Med-LoRAMoE (Phi2) 57.20 (-1.35) 81.75 (-0.97) 83.95 (-0.35) 84.37 (-1.21) 33.03 (-0.98) 90.83 (-1.15) 3.6B 128
Med-LoRAMoE (StableLM) 47.83 (-2.25) 79.04 (-1.03) 82.12 (-1.04) 82.45 (-0.96) 33.28 (-1.46) 90.80 (-0.89) 2.0B 256
Med-LoRAMoE (StableLM) 45.74 (-2.65) 78.31 (-1.76) 82.27 (-0.89) 83.17 (-0.24) 32.20 (-2.53) 90.62 (-1.08) 2.0B 128

Table 7: Comparison of models with LoRA across VQA in open and closed settings. Deltas indicate performance
changes compared to models without LoRA. The smallest changes are in bold while the second smallest are
underlined.

that the training of our router only require a small
set of modality labels without incurring much com-
putational cost.

Method MLP Parameters VQA-RAD SLAKE PathVQA
Open Closed Open Closed Open Closed

a 0.02MB(MLP x 1) 44.53 76.48 81.85 81.78 31.05 90.42
b 0.02MB(MLP x 1) 45.74 78.31 82.27 83.17 32.20 90.62
c 1.00MB(MLP x 2) 45.03 77.64 82.36 82.98 32.13 90.67
d 1.13MB(MLP x 3) 44.98 77.85 81.77 82.09 31.87 90.17

Figure 3: Visualization of task embeddings and perfor-
mance using routers under varied settings. Silhouette
score (sil. score) denotes superior task differentiation.
Supplementary Figure 10 illustrates Phi2’s embeddings.

Image and Text Specialization in Experts: As
shown in Figure 4, we visualize the domain speci-
ficity of experts when processing MRI inputs. Each
expert shows distinct preferences for handling text
or image information. For example, Expert 1
mainly handles text data, while Expert 2 has no
preference for text or image data. Expert 3 focuses
on image data, whereas Expert 4 specializes in text
data. This differentiation highlights the Router’s
ability to enhance MoE model efficiency and per-
formance by assigning tasks to suitable experts.
Domain Specialization of Images in Experts:
Figure 5 visualizes the activation states of MoE ex-
perts during inference. We sample 200 data points

across different modalities and datasets, identify-
ing the top-1 expert with the most activations in
each MoE layer. The visualization shows domain
specialization for different input image modalities:
Expert 1 and Expert 2 for CT, Expert 2 and Expert
3 for MRI, Expert 4 for Pathology, and Expert 1
for X-Ray. This specialization, due to our router
and meta experts, enhances MoE performance by
encouraging each expert to focus on specific modal-
ities and collaborate with the meta expert for global
information. However, visualizing expert activa-
tions for four modalities handled by traditional
routers in each MoE layer reveals fused patterns, re-
sulting in weaker interpretability and performance.
Cost Analysis: Table 8 illustrates the cost effi-
ciency of our models compared to LLaVA-Med.
Particularly, Med-LoRAMoE models show signif-
icant reductions in training GPU memory usage
and inference time. For example, Med-LoRAMoE
(StableLM) requires only 8GB of GPU memory
and 3 seconds for inference, demonstrating high ef-
ficiency for deployment, and making our approach
more appealing to practical resource-constrained
clinical settings.

Model Mod. Size Tra. GPU Inf. Time Load Mem.
LLaVA-Med 7B >24GB 5s 20GB
Med-MoE (Phi2) 3.6B 23GB 3s 13.4GB
Med-MoE (StableLM) 2.0B 12.5GB 3s 10.5GB
Med-LoRAMoE (Phi2) 3.6B 13.5GB 3s 13.7GB
Med-LoRAMoE (StableLM) 2.0B 8GB 3s 10.8GB

Table 8: Cost efficiency comparison of different models.

Effect of the Number of Activated Experts: The
router’s top-k selection is typically 1 or 2 in many
existing MoE works, as more would negate spar-
sity benefits and increase memory overhead. We
evaluate performance with different numbers of ac-
tivated experts, as shown in Table 9. Ultimately, we
chose 4 experts with top-2 activations for balanced
performance and overhead.
Effect of the Number of Experts: In MoE ap-
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Figure 4: Visualization of expert specialization in processing image and text tokens under the MRI modality. Results
for other modalities are in Supplementary Figure 11.

(a). Expert activations for four modalities handled by the standard learned router in each MoE layer.

(b). Expert activations for four modalities handled by our router of Tinymed-MoE in each MoE layer.

        

            

            

        

    

        

            

            

        

    
        

            

            

        

    

Figure 5: Upper: Expert activations for four modalities handled by our router of Med-MoE in each MoE layer.
Lower: Expert activations for four modalities handled by the standard learned router in each MoE layer.

Top-k (Experts=4) 1 Expert 2 Experts
VQA-RAD (Open) 46.7 47.2 (+0.5)
VQA-RAD (Closed) 83.4 83.8 (+0.4)
SLAKE (Open) 82.1 82.3 (+0.2)
SLAKE (Closed) 83.2 84.9 (+1.7)
PathVQA (Open) 33.9 34.1 (+0.2)
PathVQA (Closed) 90.9 91.8 (+0.9)
Time 7h 8h

Table 9: Performance with varying activated experts

Experts (Top-k=2) 2 Experts 4 Experts(Ours) 6 Experts
VQA-RAD (Open) 47.03 (-0.8) 47.83 48.03 (+0.2)
VQA-RAD (Closed) 77.54 (-1.5) 79.04 78.84 (-0.2)
SLAKE (Open) 81.52 (-0.6) 82.12 82.42 (+0.3)
SLAKE (Closed) 81.45 (-1.0) 82.45 82.65 (+0.2)
PathVQA (Open) 32.78 (-0.5) 33.28 33.58 (+0.3)
PathVQA (Closed) 90.60 (-0.2) 90.80 91.10 (+0.3)
Time 6h 8h 11h

Table 10: Performance with varied expert number

plications, choosing the right number of experts
is crucial for balancing performance and computa-
tional efficiency. We evaluate configurations with
2, 4, and 6 experts, each with the top-2 activa-
tions. Results in Table 10 show that using 4 experts
achieves the best balance between performance and
cost efficiency. While increasing to 6 experts offers
slight performance gains, it significantly increases
computational time and memory usage. On the

other hand, reducing the number to 2 experts leads
to decreased performance across all tasks.

Model PneumoniaMNIST OrganCMnist DermaMNIST BloodMNIST
AutoKeras 87.8 87.9 74.9 96.1

BiomedGPT 90.8 88.9 72.3 97.2

Med-MoE-Phi2 91.4 89.9 - -

Med-MoE-StableLM 89.3 88.6 - -

Med-MoE (Scaling) 91.6 (+2.3) 90.1 (+1.5) 80.4 (+5.7) 95.1

Table 11: Performance after training data scaling

Effect of Scaling Training Data: To validate
the performance of our model with a larger train-
ing dataset, we increase the classification data
from BloodMNIST and DermaMNIST (Yang et al.,
2023, 2021) to a total of 36.7K for the classifica-
tion task in Stage 3. After training with Med-MoE
(StableLM), as shown in Table 11, we observed a
significant improvement in classification accuracy.
The addition of new data clearly demonstrates a
substantial enhancement in our model’s capabili-
ties, indicating that our approach is adaptable to
more modalities and larger datasets, showcasing
potential for practical applications.

5 Related Work

Medical MLLMs Advancements in Medical
MLLMs, such as Med-Flamingo (Moor et al.,
2023), Med-PaLM M (Singhal et al., 2023), and
LLaVA-Med (Li et al., 2024a), have significantly
impacted medical diagnostics and patient care,
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building on general AI models like ChatGPT (Ope-
nAI, 2022) and GPT-4 (OpenAI, 2023). These mod-
els enhance few-shot learning, medical question
answering, and conversational AI, demonstrating
the potential of specialized MLLMs in healthcare.
Biomedical chatbots like ChatDoctor (Yunxiang
et al., 2023) and Visual Med-Alpaca highlight the
benefits of domain-specific fine-tuning. However,
their application in resource-constrained hospital
settings remains underexplored, emphasizing the
need for cost-efficient MLLMs in clinical contexts.

MoE in MLLMs MoE in MLLMs addresses task
conflicts in multi-task learning and offers a cost-
efficient scaling method. The first approach (Xu
et al., 2024a; Chen et al., 2024; Gou et al., 2023)
uses Top-1 activation to assign different tasks to
different experts, avoiding performance degrada-
tion from task data conflicts but overlooking modal
biases within the same task type. The second
approach (Lin et al., 2024; Li et al., 2024b; Lee
et al., 2024; Liu et al., 2024b; Dai et al., 2024) re-
places FFN layers in LLMs with MoE structures us-
ing multiple expert activations, achieving improve-
ments with minimal additional parameters. How-
ever, visualizing the expert activations in routers
shows these methods often fail to specialize ex-
perts effectively, limiting interpretability and per-
formance with diverse data modalities (Fan et al.,
2024). A specialized MoE architecture tailored to
the medical domain is needed to leverage modality-
specific information and improve performance with
a smaller LLM backbone.

6 Conclusion

We have introduced Med-MoE, a lightweight
framework for multimodal medical tasks, address-
ing both discriminative and generative needs. Opti-
mized for resource-constrained environments, Med-
MoE involves aligning medical images with lan-
guage model tokens, task-specific instruction tun-
ing, and domain-specific expert fine-tuning. Our
approach reduces activated parameters while main-
taining or surpassing state-of-the-art performance.
Our experiments on VQA-RAD, SLAKE, and Path-
VQA validate Med-MoE’s effectiveness and ef-
ficiency. This model offers a practical solution
for deploying advanced medical AI in diverse and
resource-limited clinical settings.

7 Discussion and Limitations

Our work primarily sought to develop a smaller,
more cost-efficient Multimodal Large Language
Model (MLLM) for the medical field, diverging
from the current trend focused on creating larger
and more robust models. We posit that in practi-
cal applications, especially in resource-constrained
environments like mobile devices, smaller models
could be more advantageous. This approach not
only addresses the practical limitations of deploy-
ing large-scale models in routine clinical settings
but also explores the feasibility of using leaner mod-
els without compromising on performance, foster-
ing broader accessibility and application.

However, our approach faces several limitations.
First, there is a notable scarcity of training data in
the medical domain, largely due to the sensitivity
and privacy concerns associated with medical data.
Generating synthetic data through methods like
those used for GPT-4V can be problematic in this
context, and many datasets require labor-intensive
manual annotations by medical professionals. This
is both costly and limits the scalability of data gen-
eration efforts. As illustrated in Supplementary
Figure 9, our model occasionally fails, particularly
with more complex open-ended questions that de-
mand precise medical knowledge.

Furthermore, the inherent requirement for med-
ical applications to provide trustworthy explana-
tions and confidence scores poses another chal-
lenge. Ensuring that the model outputs are not only
accurate but also accompanied by reliable justifica-
tions is crucial, especially in a field where decisions
have significant health implications. This necessity
heightens the importance of building a trustworthy
MLLM that can articulate its reasoning processes
clearly and provide confidence levels, thereby en-
hancing the reliability and safety of AI applications
in healthcare.
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A Appendix

Calculation Formulas for Open Setting Metrics

1. Recall
Recall is calculated using the following formula:

Recall =
TP

TP + FN
(6)

where TP (true positives) is the number of words in
both the candidate and the reference, and FN (false
negatives) is the number of words in the reference
but not in the candidate.

2. Exact Match Score
Exact Match Score is calculated using the follow-
ing formula:

EMS =
Number of matching words

Total number of candidate words
(7)

This formula calculates the ratio of the number of
matching words in the candidate and the reference
to the total number of words in the candidate.

3. BLEU Score
The BLEU Score is calculated using the following
steps:
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• Calculate the modified precision pn for each
n-gram up to n:

pn =
∑

C∈Candidates
∑

ng∈C min(Count(ng),Countmax(ng))∑
C∈Candidates

∑
ng∈C Count(ng)

(8)
where ng is the n-gram, Count(ng) is its
count in the candidate, and Countmax(ng) is
its maximum count in the reference.

• Calculate the brevity penalty (BP):

BP =

{
1 if c > r

e(1−
r
c
) if c ≤ r

(9)

where c is the length of the candidate sentence
and r is the length of the reference sentence.

• Combine the modified precision and brevity
penalty to compute the BLEU score:

BLEU = BP · exp
(

n∑

i=1

wi log pi

)
(10)

where wi are the weights assigned to each
n-gram precision.

A.1 Dataset information
VQA-RAD (Lau et al., 2018) contains 3,515 QA
pairs and 315 radiology images, with questions
covering 11 categories and a mix of closed-ended
and open-ended types. SLAKE (Liu et al., 2021)
comprises 642 radiology images and over 7,000
QA pairs, including segmentation masks and ob-
ject detection bounding boxes. PathVQA (He
et al., 2020) includes 4,998 pathology images with
32,799 QA pairs, focusing on aspects like loca-
tion, shape, color, and appearance, categorized into
open-ended and closed-ended types. The Pneu-
moniaMNIST dataset focuses on pediatric chest
radiographs for binary classification of pneumonia
versus normal, using 4,708 training and 624 test im-
ages. OrganCMNIST (Yang et al., 2023) classifies
11 human body organs with 12,975 training and
8,216 testing images. To ensure a fair comparison
with LLaVA-Med, we did not use the additional
image classification training datasets when evalu-
ating VQA. For evaluation, we use test sets from
these widely recognized medical VQA datasets and
additionally assess classification performance.
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Figure 6: Performance of router predictions with differ-
ent domain-labeled training data
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Config Stage I Stage II Stage III

Deepspeed Zero2, Zero2, Zero2 offload
Image encoder CLIP-Large
Feature select layer -2
Image projector 2 Linear layers with GeLU
Epoch (same as LLaVA-Med) 1 3 9
Learning rate 1e-3 2e-5 2e-5
Learning rate schedule Cosine
Weight decay 0.0
Text max length 2048
Batch size per GPU 2
GPU 8 × 3090-24G
Precision Bf16

Table 12: Our experimental hyperparameters

Stage Data Source Sample Size

Stage 1 llava_med_alignment_500k.json 500K

Stage 2 instruct_60k_inline_mention 60K

Stage 3
VQA: RAD-VQA, SLAKE, Path-VQA: 27K

44K
Classification: PneumoniaMNIST, OrganCMNIST: 17K

Table 13: Summary of Data Utilized Across Training Stages

Name Experts Activated Experts MoE Layers Embedding Width Layers FFN FFN Factor Heads Activated Param Total Param
StableLM-1.6B - - - 100352 2560 32 10240 2 32 1.6B 1.6B
Med-MoE (StableLM-4x1.6B) 4 2 16 100352 2560 32 10240 2 32 2.0B 2.9B
Phi2-2.7B - - - 51200 2560 32 10240 2 32 2.7B 2.7B
Med-MoE (Phi2-4x2.7B) 4 2 16 51200 2560 32 10240 2 32 3.6B 5.3B

Table 14: Comparison of different models in terms of various parameters.
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Q:What is shown in this image?

 From the perspective of a medical professional:

1.This explanation is detailed and accurate, so I'd give it an 8 out of 10. It 
mentions the specific posteroanterior view, which is essential for proper 
interpretation of a chest X-ray. It also lists the structures that are typically 
assessed with this imaging technique, though it does not provide much detail 
about what might be diagnosed with this information.

2.I would rate this explanation a 7 out of 10. While it correctly identifies the type 
of chest X-ray, it does not offer any additional details beyond what the first 
explanation provides. The term "surrounding structures" is somewhat vague and 
could be expanded upon for clarity.

3.This response gets a 9 out of 10. It offers an extensive overview of the anatomy 
visible on a chest X-ray, noting the appearance of normal lung fields, the 
positioning of the heart, and the visibility of the diaphragm. It goes further to 
explain the clinical utility of a chest X-ray, detailing various conditions it can 
help diagnose. This level of detail is very informative and has significant 
educational value for understanding both the anatomy and the clinical reasoning 
behind the use of chest X-rays.

The ratings are based on the depth and utility of the information provided. The 
third response is rated highest because it provides a thorough explanation that 
could enhance understanding in a clinical education context and assist in patient 
care decisions.

MoE-TinyMed: The image is a posteroanterior chest
X-ray, which is a common diagnostic imaging
technique used to visualize the structures within the
chest, including the lungs, heart, and bones of the chest
and spine.

LLaVA-Med: The image is a postero-anterior chest X-
ray, which shows the patient's chest, including the
heart, lungs, and surrounding structures.

GPT4V:This image is a chest X-ray, a type of
radiograph that is used in medical settings to examine
the chest cavity. It shows the bones of the shoulder
girdle and the upper arms, as well as the bony thorax
which includes the ribs, the thoracic portion of the
spine, and the sternum. It also shows the lung fields,
which should normally appear darker due to the air
content, the heart, which is usually visible in the center
as a denser area, and the diaphragm separating the
chest cavity from the abdominal cavity. 

GPT4 Evaluation

 Assuming you are a doctor, please rate the following three 
answers about this medical picture from 0 to 10, and tell me 
why.

Figure 7: An example showcasing our method’s ability to answer medical imaging questions with performance
nearing or even surpassing that of LLaVA-Med under GPT-4V evaluation.
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Q:Which is smaller in this image, colon or 
small bowel?
A:Colon

Q:Does typical tuberculous exudate show 
obvious lesion?
A:No

Q:The image is taken in what plane?
A:Axial

Case from RAD-VQA Case from SLAKE Case from Path-VQA

Q:Is there narrowing of the lumen of coronary due to fully 
developed atheromatous plaque which has dystrophic

 calcification in its core?
A:No

Q:What is the shape of spinal cord in this image?
A:Circular

Q:Is there air outside the bowel walls?
A:No

Figure 8: More Medical VQA cases from VQA-RAD, SLAKE, and Path-VQA. our Med-MoE generates expected
responses for medical image queries.

3858



Q: What is present?
A:endocrine
GT:cardiovascular

Q: What done external view of lacerations of
capsule done during?
A:dissection
GT:done surgical procedure

Q: What are the hyperdense lesions
noted at the edges of the aorta?
A:Calcifications
GT:Calcified atherosclerosis

Q: What structures are involved?
A:basal ganglia, cerebellum, cerebral cortex
GT:Caudate, putamen, left parietal

Figure 9: Incorrect cases: Med-VQA examples in OPEN setting requiring precise and specialized medical knowl-
edge.
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(a). Embedding visualization for domain-specific tasks using Router in MoE-TinyMed-Phi2. 

Silhouette Score:0.173 Silhouette Score:0.579

Figure 10: Experts Routing Visualization On Phi2

Figure 11: The activation proportions for text and image processing in other modalities
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