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Abstract

Pretrained language models (PLMs) have be-
come remarkably adept at task and language
generalization. Nonetheless, they often fail
when faced with unseen languages. In this
work, we present LINGUALCHEMY, a regu-
larization method that incorporates various lin-
guistic information covering typological, geo-
graphical, and phylogenetic features to align
PLMs representation to the corresponding lin-
guistic information on each language. LIN-
GUALCHEMY significantly improves the per-
formance of mBERT and XLM-R on low-
resource languages in multiple downstream
tasks such as intent classification, news classifi-
cation, and semantic relatedness compared to
standard approach and displaying a high degree
of unseen language generalization. We further
introduce ALCHEMYSCALE and ALCHEMY-
TUNE, extension of LINGUALCHEMY which
adjusts the linguistic regularization weights au-
tomatically, alleviating the need for hyperpa-
rameter search.

1 Introduction

Significant advancements in language processing
technology have been achieved through the devel-
opment of PLMs with their impressive capability
in language comprehension and generation (Devlin
et al., 2019; Liu et al., 2019; Lewis et al., 2019; Li
et al., 2021; Sanh et al., 2022; Raffel et al., 2023).
The development has been further expanded to non-
English languages (Conneau et al., 2020; Martin
et al., 2020; Wilie et al., 2020; Kakwani et al., 2020;
Cahyawijaya et al., 2024). However, there is still
a gap in these models’ ability to generalize effec-
tively to low-resource and unseen languages, al-
though there have been a numerous work in the
field (Pfeiffer et al., 2021b; Goyal et al., 2021; Al-
abi et al., 2022; Ebrahimi et al., 2022; Yong et al.,
2023).

∗*The work was done prior joining Capital One
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Figure 1: LINGUALCHEMY enhances performance in
unseen languages by allowing the model to predict the
linguistic vector and then fitting it via a similarity loss
towards the specific language’s URIEL vector.

Previous approaches (Rathore et al., 2023; Üstün
et al., 2022; Pfeiffer et al., 2020b; Ansell et al.,
2021) are based on the assumption that disregards
the fact that in a real-world application, there is usu-
ally no language information from the user, high-
lighting the importance of the multilingual robust-
ness of a language model. The second assumption
might cause performance degradation due to the
error propagation from the language identification
module (Adilazuarda et al., 2023). However, these
methods inherit the limitations of the pretrained
multilingual models, such as the limited capacity
to adapt effectively to low-resource and unseen lan-
guages. Furthermore, while the framework facili-
tates adaptation to specific target languages, it may
bias the model towards them, potentially impacting
its performance on other languages.

In this work, we introduce LINGUALCHEMY, a
novel method that incorporates a unified representa-
tion across multiple languages to enable the model
for utilizing the shared linguistic knowledge. Our
approach differs from adapter-based approaches
which often segment language understanding into
multiple, isolated language-specific modules. In-
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stead, we developed a regularization technique
that utilizes linguistic information directly into
the model’s architecture, allowing for language-
agnostic inference. Our evaluations demonstrate
that LINGUALCHEMY not only enhances general-
ization capabilities of mBERT (Devlin et al., 2018)
and XLM-R (Conneau et al., 2020) on unseen lan-
guages but also upholds robust performance across
high-resource languages, all without prior knowl-
edge of the query’s language.

Our strategy aims to refine cross-lingual gener-
alization by leveraging linguistic features encap-
sulated in URIEL vectors. We hypothesize that
languages with similar syntactic and geographical
characteristics can benefit from shared represen-
tational frameworks, significantly boosting perfor-
mance in multilingual settings. This approach is
particularly beneficial in contexts where language
resources are limited.

In summary, our contributions are as follows:

1. We propose LINGUALCHEMY, a regulariza-
tion method that utilizes geographical and syn-
tactic information to foster the models’ unified
representation.

2. LINGUALCHEMY does not require any archi-
tectural change and can be adapted to different
tasks and models.

3. We demonstrate strong performance on 50+
languages across three diverse datasets and
tasks (intent classification, news classifica-
tion, and semantic relatedness) for models
trained with LINGUALCHEMY, including the
languages that are not seen during pretraining.

4. We introduce two automatic hyperparameter
search methods to scale the classification and
auxiliary loss factors used in the fine-tuning
stage, namely dynamiclearn and dynamic-
scale.

2 Related Work

PLMs with their transformer-based architectures
have been demonstrating exceptional capabilities
in language comprehension and generation Ganesh
et al. (2021). Rathore et al. (2023) have explored
how these models learn intricate linguistic features,
including syntax and semantics to enhance their
performance across a wide range of language tasks.

Incorporating new unseen languages has been
a longstanding problem in the multilingual re-

search, MAD-X (Pfeiffer et al., 2020b) employ
a language adapter to learn new unseen languages
using language adapters that mitigate the risk of
forgetting pre-trained knowledge, which is known
as the curse-of-multilinguality (Conneau et al.,
2020). Nonetheless, this approach requires training
for generalizing to new unseen languages, which
makes it costly and difficult to scale to thousands
of languages. MAD-G (Ansell et al., 2021) and
Udapter (Üstün et al., 2020) further generalize this
approach by utilizing a linguistic-driven contex-
tual parameter generator (CPG) module to generate
language-specific parameters, allowing the mod-
els to generalize to other languages with similar
linguistic characteristics. Recently, Rathore et al.
(2023) introduce ZGUL, which combines represen-
tations over multiple language adapters and adding
linguistic vector information to generate the unseen
language representation. Despite the effectiveness,
all these approaches rely on two assumptions: (1)
strict categorization of languages and (2) knowing
the language category of the query apriori—our
definition of “a priori categorization" as incorporat-
ing language-specific information into the model.

In parallel, the development of linguistically-
driven resources such as the URIEL vector and
the lang2vec utility (Littell et al., 2017) has been
notable in extending multilingual NLP research,
particularly for less-resourced languages, by pro-
viding methods to represent and compare the struc-
tured lingustic features across different languages.
Complementing this, Ponti et al. (2019) pointed
out the underexplored typological features in exist-
ing approaches and the need for integrating data-
driven methods of typological knowledge into lan-
guage models. Previous studies have focused on
extending multilingual NLP using URIEL vectors
(Lauscher et al., 2020; Lin et al., 2019; Tan et al.,
2019; Oncevay et al., 2020), but none of their ap-
proaches use URIEL vectors for alignment during
the finetuning process of language models.

However, PLMs still face significant challenges
in generalizing to unseen languages, particularly
when adapting to low-resource and unseen lan-
guages. These challenges stem from the vast
structural and semantic variation across languages
(Bender, 2011; Jurafsky and Martin, 2019), the
scarcity of resources (Mohammad, 2019; Lewis
et al., 2020), and the limitations inherent in the
models themselves (Lin et al., 2017). This situa-
tion highlights the complexity of generalizing these
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models effectively to a broader and scope of lan-
guage. This situation highlights the complexity of
generalizing these models effectively to a broader
scope of languages, making it difficult for them
to perform well on languages they haven’t been
specifically trained on.

3 Unseen Languages Adaptation with
LINGUALCHEMY

In this section, we provide an overview of how
LINGUALCHEMY captures linguistic constraints
and explain the intuition behind it. We also discuss
in detail how we align model representations with
the linguistic vectors.

3.1 Does Multilingual LMs capture Linguistic
Constraints?

We define the linguistic knowledge as a vec-
tor gathered from URIEL vector (Littell et al.,
2017). We chose three distinct linguistic knowl-
edge from the database, namely ’syntax_knn’,
’syntax_average’1, and ’geo’ features. The
choice of ’syntax_knn’ and ’syntax_average’
is motivated by the typological nature of syn-
tax. Syntax in languages varies widely; hence,
by using aggregate measures like averages and k-
nearest neighbors (kNN), we can capture a more
general representation of syntactic features across
languages. Note that in our experiments, we ex-
cluded phonological features and language family
attributes from our analysis as they are less rele-
vant to textual data and have limited granularity for
understanding linguistic variations.

Syntax Features These feature vectors denote
a typological feature that is adapted from sev-
eral sources including World Atlas of Language
Structures (WALS) (Dryer and Haspelmath, 2013),
Syntactic Structures of World Languages (Collins,
2010), and short prose descriptions on typological
features in Ethnologue (Lewis, 2009).Syntax vec-
tors capture information about the syntactic proper-
ties of languages, derived from large-scale typolog-
ical databases that document the structural and se-
mantic variation across different languages. These
syntax features in URIEL are utilized to represent
languages in vector form that allows the analysis

1In this work, we chose the ’knn’ and ’average syntax
features. These include consensus values (like averages) and
predicted values (such as kNN regressions based on phyloge-
netic or geographical neighbors)

Figure 2: Alignment between mBERT Representation
with URIEL Language Representation. The green-
shaded areas indicate the sentence representations of
mBERT while the brown dots represent the URIEL rep-
resentations of the corresponding language.

and comparison of languages based on their syn-
tactic properties.

Geographical Features On the other hand, ge-
ographical features represent languages in terms
of their geographical properties. The inclusion
of “geo" features aims to capture geographical at-
tributes of languages. This feature expresses geo-
graphical location with a fixed number of dimen-
sions that each represents the “great circle" dis-
tance—from the language in question to a fixed
point on the Earth’s surface. By incorporating
geographical information into language vectors,
URIEL and lang2vec provide a more comprehen-
sive view of languages, considering not only their
structural and semantic properties but also their
geographical context.

3.2 Proof of Concept

Linguistic Separability in LMs We investi-
gate whether PLMs like mBERT (Devlin et al.,
2018) can capture linguistic constraints by align-
ing mBERT language embeddings with URIEL
vectors to assess how they represent seen and un-
seen languages. This includes examining how well
mBERT’s embeddings correspond to the typologi-
cal and geographical features detailed in URIEL. In
Figure 2, sentence embeddings (green dots) from
mBERT, derived from the last hidden state of mul-
tilingual training data, and URIEL vectors (brown
dots)—structured representations from the URIEL
database—are projected into the same space. A
matrix W is used to linearly project sentence em-
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beddings, minimizing the mean squared error with
URIEL vectors. This alignment is showcased in
Figure 2 using UMAP for visualization purpose.

Figure 2 presents a visual analysis facilitated
by UMAP (McInnes et al., 2018), showing the
correlation between mBERT language represen-
tation and the linguistic vectors from the URIEL
database (R2 = 0.816). By leveraging UMAP, the
plot highlight the principal variances within the
joint feature space of the embeddings and vectors.
The spatial representation of languages on this plot
mirrors their linguistic and geographical related-
ness, as encapsulated by mBERT. This visualiza-
tion shows the model’s ability to mirror linguistic
typologies, with languages sharing common roots
such as ’de-DE’ and ’nl-NL’ naturally clustering to-
gether. The density and arrangement of these clus-
ters potentially reflect mBERT capacity to capture
and represent language family traits. Conversely,
the presence of sparser clusters or outliers requires
us to carefully check mBERT’s coverage and con-
sistency in representing different linguistic features.
We also formally defined the language representa-
tion alignment in Algorithm 1.

Model Feature Type Acc.(%)

mBERT

geo 66.14
syntax_avg+geo 65.62
syntax_avg 66.41
syntax_knn+geo 66.08
syntax_knn 66.41
syntax_knn+syntax_avg+geo 66.47
syntax_knn+syntax_avg 66.41

XLM-R

geo 80.16
syntax_avg+geo 80.54
syntax_avg 80.76
syntax_knn+geo 80.48
syntax_knn 80.32
syntax_knn+syntax_avg+geo 80.80
syntax_knn+syntax_avg 80.78

Table 1: Linguistic vector ablation experiment (the high-
est accuracy for each model is highlighted in bold).

Table 1 shows the results of the linguistic vec-
tor ablation experiment for mBERT and XLM-R,
testing different feature combinations. For mBERT,
individual features like syntax_avg and syntax_knn
perform similarly ( 66.41%), with only minor im-
provement (66.47%) when combined with geo. In
contrast, XLM-R benefits more from feature com-
binations, achieving its highest accuracy (80.80%)
when syntax_knn, syntax_avg, and geo are com-
bined. Even individually, syntax_avg (80.76%) per-
forms well for XLM-R, highlighting the model’s

stronger ability to leverage syntactic information.
These results suggest that combining syntax and
geographical features yields optimal performance,
especially for XLM-R, and this combination will
be used in subsequent experiments.

3.3 LINGUALCHEMY

We introduce LINGUALCHEMY as an approach
that intuitively aligns model representations with
linguistic knowledge, leveraging URIEL vectors.
This approach is applied through an auxiliary loss
function that is involved in the training process with
an added information of linguistic characteristics
in the form of URIEL vector.

In LINGUALCHEMY, we enhance the fine-tuning
of encoder models such as mBERT for downstream
tasks by not only using the regular classification
loss but also introducing a novel linguistic regu-
larization term. This is achieved through the im-
plementation of a URIEL loss, designed to align
the model’s representations with linguistic knowl-
edge derived from URIEL vectors. Specifically,
this process involves applying a linear projection
to the model’s pooled output, which aligns it with
the URIEL vector space. The URIEL loss is quan-
tified as the mean squared error (MSE) between
the projected model outputs and the corresponding
URIEL vectors. This dual approach allows for a
more linguistically informed model training and
increase the model’s ability to capture and reflect
complex linguistic patterns.

Luriel(Z,U) =
1

N

N∑

i=1

∥Zi − Ui∥2, (1)

LINGUALCHEMY is represented by equation 1
where Z represents the model-generated represen-
tations, U denotes the URIEL vectors, and N is
the number of data points. To generate the model
representation, we take the output representation
from the CLS token and multiply it with a new,
trainable projection layer to transform the vector
size so that they are compatible.

Formally, we define the language representation
alignment in Algorithm 1, where FU represents the
features extracted from URIEL, S is the set of sen-
tence representations, Hx and Nx are the hidden
states and number of attention-masked tokens for a
sentence x, respectively. The matrix W is used for
the linear projection, and A holds the final aligned
representations. Algorithm 1 outlines the process
for aligning language representations we use in
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Figure 2. It leverages the URIEL database for lin-
guistic features, processes sentences through a lan-
guage model (Θ), and aligns these with mBERT
representations (M ). The algorithm iteratively up-
dates transformation parameters (W and b) through
a training loop to minimize the loss between the
projected mBERT representations and the target
sentence representations in set S, thus achieving
aligned language representations (A).

Algorithm 1 Language Representation and Align-
ment Process
Require: Dataset D, URIEL database U , Lan-

guage Model Θ, mBERT representations M
Ensure: Aligned Language Representations A
FU ← EXTRACTFEATURES(U )
S ← {}
for each sentence x in D do
Hx ← GETLASTHIDDENSTATES(x, Θ)
Nx ← COUNTATTENTIONMASKED(x)
Rx ← SUM(Hx)

Nx

S ← S ∪ {Rx}
end for
W, b← INITIALIZEPARAMETERS()
for each training epoch do
PU ← (W × S) + b
loss← COMPUTELOSS(PU , FU )
W, b ← UPDATEPARAMETERSWITHCON-
STRAINT(W, b, loss)

end for
A← {}
for each sentence representation s in S do
Am ← (W × s) + b
A← A ∪ {Am}

end for

Note that there may be discrepancies between
the scales of the standard classification loss and
the URIEL loss. To address this, we introduce an
optional hyperparameter, denoted as λ, to scale
the URIEL loss appropriately. However, finding
this scaling factor requires another hyperparameter
search. Therefore, we propose a new method for dy-
namically balancing the classification and URIEL
losses using two dynamic scaling approaches.

Dynamic Scaling Approaches In addition to the
fixed scaling factor, we also explore dynamic ad-
justment of this scaling factor at each training step.
This aims to maintain a balance between the clas-
sification and URIEL losses, and even considers
making the scale trainable. The final loss formula

when training with LINGUALCHEMY is given by:

L = λcls ∗ Lcls + λuriel ∗ Luriel(Z,U). (2)

We define two methods to implement dynamic scal-
ing:

1. ALCHEMYSCALE: This method dynamically
adjusts the scaling factor λ during training. It
is initiated with scaling factors set relative
to the mean of initial losses. Furthermore,
these factors are updated periodically using an
Exponential Moving Average (EMA) method
to balance between different loss components.

2. ALCHEMYTUNE: Here, λ is conceptualized
as a trainable parameter within the model’s
architecture. Initialized as part of the model’s
parameters and optimized during the training
process. This method applies the scaling fac-
tors to loss components, then an additional
mini_loss is computed to represent the devia-
tion of the sum of scaling factors.

Both methods aim to enhance model perfor-
mance by dynamically and intelligently scaling
loss components, with the first method relying on
predefined, periodically updated scaling mecha-
nisms, and the second integrating the scaling factor
into the model’s learning parameters for adaptive
adjustments.

4 Experiment Setting

Datasets In our experiments, we use MASSIVE
Dataset (FitzGerald et al., 2023), which is a com-
prehensive collection of multilingual data incorpo-
rating intent classification tasks. We split MAS-
SIVE into 25 languages that are “seen" during fine-
tuning and the rest 27 languages that are “unseen",
which we exclusively used for evaluation. This
splitting is based on the language adapters avail-
ability as outlined in the prior research of Pfeiffer
et al. (2020a), which we utilized in the Adapter-
Fusion experiment for our baseline model. For a
detailed breakdown of the languages used, includ-
ing their respective families, genera, and script can
be found in Appendix A.

Additionally, we incorporate the MasakhaNews
Dataset (Adelani et al., 2023), consisting of news
article classification across several African lan-
guages. This dataset tests our models against
diverse journalistic styles and complex syntactic
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Model Language
Category

MASSIVE MasakhaNews SemRel

Base Ours Base Ours Base Ours

mBERT
Low 48.43 66.93 (↑ 18.50) 46.25 72.70 (↑ 26.45) -0.26 -0.14 (↑ 0.12)

Medium 55.96 64.42 (↑ 8.47) 42.94 64.38 (↑ 21.45) 0.16 0.21 (↑ 0.05)
High 79.66 66.81 (↓ 12.85) 77.89 73.74 (↓ 4.16) 0.02 -0.03 (↓ 0.05)

XLM-R
Low 78.15 80.90 (↑ 2.76) 47.86 79.31 (↑ 31.46) 0.08 0.40 (↑ 0.32)

Medium 80.31 80.15 (↓ 0.16) 55.87 75.79 (↑ 19.92) 0.49 0.37 (↓ 0.12)
High 86.82 80.86 (↓ 5.96) 68.14 73.79 (↑ 5.65) 0.26 0.41 (↑ 0.15)

Table 2: Performance comparison of mBERT and XLM-R models across different language categories and
benchmarks.

structures. For our experiments, the training lan-
guages are amh, eng, fra, hau, swa, orm, and
som, while the testing languages include ibo, lin,
lug, pcm, run, sna, tir, xho, and yor. Lastly,
we also utilize the SemRel2024 Dataset (Ousid-
houm et al., 2024) for semantic relatedness task in
low-resource languages. We use this dataset to eval-
uate LINGUALCHEMY’s semantic understanding
and relationship extraction capabilities. We train
using the languages amh, arq, ary, eng, esp,
hau, kin, mar, and tel. The test set includes
afr, amh, arb, arq, ary, eng, esp, hau,
hin, ind, kin, and pan.

Models Our study employs two widely used and
resource-efficient multilingual language models:
Multilingual BERT Base (mBERTBASE) and XLM-
RoBERTa Base (XLM-RBASE). In our training pro-
cess, we use a learning rate of 5×10−5, train for 30
epochs, and measure performance based on accu-
racy for MASSIVE and MasakhaNews, and Pear-
son correlation for SemRel. Each training takes at
most 5 hours using a single A100 GPU.

5 Results and Discussion

5.1 LINGUALCHEMY Performance
Our results as shown in Table 5 reveal that LIN-
GUALCHEMY excels across all languages in the
MasakhaNews dataset, including those not encoun-
tered during the pretraining of mBERT (*) and
XLM-R (†). LINGUALCHEMY further demon-
strates notable improvements on the Semantic
Relatedness dataset, showing its ability to adapt
to languages with distinct typological character-
istics from the training corpus. In this experi-
ment, we opted not to compare our method against
the baseline used in the Semantic Relatedness pa-
per because LaBSE is not zero-shot; it was pre-
trained with sentence similarity tasks contrasting

our method’s conditions. Moreover, we excluded
the MAD-X experiment from the MasakhaNews
evaluation because MAD-X’s parameter-efficient
approach differs fundamentally from our full fine-
tuning approach. Collectively, these insights sug-
gest that our LINGUALCHEMY can generalize
across varied linguistic attributes.

Additionally, we applied the same procedure
to MASSIVE dataset and the results are summa-
rized in Table 6. We compared our method with
zero-shot generalization, where the model is fully
tuned on seen languages and then tested on un-
seen languages (referred to as Full FT in the Table).
Furthermore, we explored AdapterFusion (Pfeiffer
et al., 2021a) as another baseline. AdapterFusion
has shown better adaptation to unseen languages
than naive zero-shot generalization. Unfortunately,
many language adapters that we need for Adapter-
Fusion is not available for XLM-R.

From Table 6, it is shown that LIN-
GUALCHEMY achieves better generalization
for unseen languages. We observed a significant
improvement for mBERT and a modest average
improvement for the stronger XLM-R model.
For mBERT, LINGUALCHEMY can significantly
increase performance in truly unseen languages
of am-ET, km-KH, mn-MN, in which mBERT
has never seen during the pre-training stage
nor fine-tuning. These findings show that LIN-
GUALCHEMY can be useful in truly zero-shot
settings. While LINGUALCHEMY significantly
boosts performance in weaker languages such
as cy-GB or sw-KE, it can occasionally degrade
results in languages with already strong zero-shot
performance, particularly evident in XLM-R where
it tends to flatten results to the 80-82% range.

Despite the variations in performance, the po-
tential of LINGUALCHEMY is particularly clear in
scenarios where zero-shot performance is inher-
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Dataset Language UNK %
MASSIVE am-ET 6.79

km-KH 3.81
vi-VN 0.35
Other languages <0.1

SemRel amh 3.43
hau 0.60
ary 0.44
Other languages <0.4

MasakhaNews pcm 0.43
eng 0.16
Other languages <0.1

Table 3: UNK percentages in different datasets, illus-
trating the prevalence of unknown tokens that LIN-
GUALCHEMY successfully manages.

ently weak. Our hypothesis is that the model indi-
rectly leverages familiar scripts encountered dur-
ing pretraining and helps its ability to effectively
handle UNK tokens. Advances in models using
byte-level tokenization units theoretically reduce
or eliminate OOV tokens; however, our evaluations
across the MASSIVE, MasakhaNews, and Sem-
Rel2024 datasets, as shown in Table 3, confirm that
UNK tokens have a minimal impact, thus showing
the robustness of LINGUALCHEMY in such envi-
ronments. For contexts where UNK token rates are
high, the solution might be orthogonal to our ap-
proach, requiring further improvement in the base
models or tokenizers that could later be integrated
with LINGUALCHEMY.

5.2 Effect of Scaling URIEL Loss

The classification and URIEL losses operate on dif-
ferent scales. Simply adding these losses together
would cause the model to prioritize the loss with
the larger magnitude. During the early stages of
training, we observe that the classification loss is
approximately ten times larger than the URIEL loss.
In this section, we explore the impact of various
scaling factors applied to the URIEL loss.

Constant Scaling We investigate the effect of
consistently scaling the URIEL loss by different
factors. The results are illustrated in Figure 3. No-
tably, because we utilize the scale-invariant opti-
mizer AdamW, there is no risk of gradients becom-
ing excessively large due to high loss values.

As observed in Figure 3, for mBERT, the perfor-
mance on unseen languages improves significantly
when scaling the URIEL loss by 10x, achieving the
highest performance of 68.68%. However, as the
scaling factor increases further (e.g., 25x, 50x, and
100x), the performance starts to decline, indicating
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Figure 3: Average performance of unseen languages
under various URIEL loss scaling factors.

that overly emphasizing the URIEL loss has dimin-
ishing returns or even negative effects. Without any
scaling (0x), the model performs poorly, showing
the importance of scaling the URIEL loss.

For XLM-R, the trend is more stable. The per-
formance fluctuates slightly across different scaling
factors but remains generally consistent, with the
highest performance achieved at the 10x scaling
factor (80.32%). Larger scaling factors (e.g., 50x,
100x) do not lead to substantial improvements and
may even cause minor drops in performance. This
suggests that while scaling helps, XLM-R is less
sensitive to the URIEL loss scaling than mBERT.

Overall, a scaling factor of 10× appears to give
the best balance between classification and URIEL
losses.

Dynamic and Trainable Scaling Introducing a
scaling factor adds another tunable hyperparameter,
which can complicate the training process. Ideally,
we seek a balanced weighting between the classifi-
cation and URIEL losses. Instead of exhaustively
testing various scaling factors, an adaptive scaling
approach is more cost-effective and advantageous.
Here, we explore two strategies: dynamic scaling
and trainable scaling factors. The results of these
approaches are presented in Table 4.

URIEL Scaling mBERT XLM-R

Constant 10× 64.68 80.32
ALCHEMYSCALE 62.97 80.43
ALCHEMYTUNE 63.24 79.10

Table 4: Performance comparison across different
URIEL scaling methods.

Interestingly, these dynamic scaling methods do
not significantly outperform a constant scaling fac-
tor. Specifically, a 10× scaling achieves the best
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afr arb hin ind pan

Zero-shot CL 0.14 -0.23 -0.03 -0.08 0.29

Ours 0.24 0.02 -0.14 0.06 0.38

Zero-shot CL -0.04 0.09 -0.08 0.15 -0.07

Ours 0.59 0.3 0.68 0.37 -0.01

Method

Unseen Language Performance

mBERT

XLM-R

ibo*
†

lin*
†

lug*
†

pcm*
†

run*
†

sna*
†

tir*
†

xho* yor
†

Zero-shot CL 0.47 0.37 0.21 0.70 0.52 0.20 0.23 0.15 0.42

Ours 0.74 0.73 0.71 0.72 0.71 0.68 0.67 0.64 0.63

Zero-shot CL 0.48 0.41 0.24 0.73 0.50 0.22 0.43 0.24 0.37

Ours 0.81 0.80 0.78 0.78 0.77 0.75 0.73 0.71 0.70

Method

Unseen Language Performance

mBERT

XLM-R

Table 5: Performance of LINGUALCHEMY in SemRel (left) and MasakhaNews (right) dataset for unseen languages.
For languages in * and †, mBERT and XLM-R have never seen the languages during pre-training, respectively.

am-ET* cy-GB af-ZA km-KH* sw-KE mn-MN* tl-PH kn-IN te-IN sq-AL ur-PK az-AZ ml-IN ms-MY

AdapterFusion 0.05 0.25 0.58 0.08 0.22 0.28 0.40 0.41 0.34 0.50 0.47 0.64 0.36 0.66

Zero-shot CL 0.05 0.24 0.53 0.08 0.20 0.27 0.37 0.34 0.35 0.45 0.43 0.62 0.28 0.66

Ours 0.58 0.30 0.50 0.60 0.55 0.57 0.66 0.68 0.72 0.71 0.69 0.69 0.68 0.68

Zero-shot CL 0.79 0.64 0.83 0.85 0.58 0.88 0.86 0.80 0.85 0.68 0.74 0.80 0.79 0.83

Ours 0.77 0.69 0.76 0.79 0.75 0.76 0.80 0.81 0.83 0.82 0.82 0.82 0.82 0.82

ca-ES sl-SL sv-SE ta-IN nl-NL it-IT he-IL pl-PL da-DK nb-NO ro-RO th-TH fa-IR Average

AdapterFusion 0.73 0.49 0.64 0.42 0.70 0.72 0.51 0.62 0.71 0.69 0.59 0.30 0.59 0.48

Zero-shot CL 0.73 0.47 0.60 0.35 0.71 0.71 0.48 0.60 0.72 0.69 0.54 0.24 0.57 0.45

Ours 0.68 0.69 0.68 0.69 0.69 0.68 0.68 0.67 0.66 0.66 0.65 0.64 0.64 0.64

Zero-shot CL 0.87 0.86 0.85 0.84 0.82 0.78 0.89 0.61 0.76 0.78 0.83 0.73 0.77 0.79

Ours 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.81 0.81 0.80

mBERT

XLM-R

Unseen Language Performance

Method

mBERT

XLM-R

Table 6: Performance of LINGUALCHEMY in MASSIVE dataset for unseen languages. For languages in *, mBERT
has never seen the languages during pre-training.

performance for mBERT, while dynamic scaling
only marginally outperforms the 10× scaling for
XLM-R. Therefore, in scenarios with limited com-
putational resources, a 10× scaling factor is rec-
ommended. However, with more computational
capacity, exploring different scaling factors may
yield marginal gains.

5.3 Generalization Across Language Family
We investigate LINGUALCHEMY across language
families to further analyze the generalization capa-
bilities of BERT and XLM-R models. We perform
our experiment by splitting the languages in MAS-
SIVE according to their language families and train
the model on a subset of language families while
testing on the rest, unseen language families. We
explore on including different subset of language
families, as seen in the Appendix (Table 7).

As illustrated in Figure 4, LIN-
GUALCHEMY demonstrates generalization
towards these unseen language families. Perhaps
unsurprisingly, adding more subset of diverse
languages improves generalization performance.
Notably, the inclusion of the Afro-Asiatic language
group—consisting of languages such as “am-ET",
“ar-SA", and “he-IL", each featuring unique
scripts—has significantly enhanced performance
from the second to the third training group
iteration. This improvement underscores LIN-

GUALCHEMY’s capability to adapt to scripts not
presented during the initial training or fine-tuning
phases, illustrating its robustness in generalizing
across different scripts.

The performance of both models, combined with
LINGUALCHEMY underscores the advantage of in-
cluding a broader spectrum of languages within
training groups for enhanced model generalization.
However, the impact of this diversity is not uniform
across all language families: While some consis-
tently benefit from the expansion of training data,
others do not, and shows that merely increasing the
volume of data from the same family may not nec-
essarily improve performance. This inconsistency
highlights the potential limitations within the mod-
els’ capacity to learn and generalize the linguistic
features specific to certain language families. Con-
sequently, our observation shows that the degree
of generalization varies among different language
families. This suggests that while some may sig-
nificantly profit from these models’ capabilities,
others may require more tailored strategies to gain
similar performance improvement.

5.4 Seen Language Performance
While LINGUALCHEMY consistently improves per-
formance across unseen languages, we note some
inconsistencies concerning the performance of seen
languages. In MASSIVE, we observe a noticeable
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performance drop in seen languages, while in con-
trast, we still see a massive gain in MasakhaNews
and the performance of SemRel seems to be unaf-
fected. The compiled results can be seen in Table 2.
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Figure 4: Model performance across language families.
Dotted lines indicates language families used in training
in some of the training stages (solid dots for active use–
refer to Table 7), and solid grey lines for families unseen
in all training stages, with variance shown in shading.

In 4, we compare the performance of the BERT
and XLMR models across different language fami-
lies. The dotted lines represent the language fam-
ilies that were included in training (i.e., seen lan-
guages), and the solid gray lines represent language
families that were unseen in training. Notably,
variance for unseen languages is indicated by the
shaded areas. This figure shows that while both
models generally improve across training groups,
the performance of certain language families, par-
ticularly seen languages, varies. For instance, in
the case of the BERT model, languages from the
Sino-Tibetan family demonstrate relatively poor
performance across training stages compared to
other families, even though they are part of the
seen group. Meanwhile, XLMR shows a more con-
sistent performance boost across language families,
including unseen ones, though Indo-European lan-
guages perform better overall.

As MasakhaNews focuses on extremely low-
resource languages, we hypothesize that despite

being exposed during pretraining, the models’ per-
formance remains low even with standard fine-
tuning methods. Hence, LINGUALCHEMYcan sig-
nificantly improve performance, even by 18% in
the low-resource languages. For high-resource lan-
guages, traditional fine-tuning is a better choice.
We are investigating why LINGUALCHEMYdoes
not help with some languages and how to enhance
the performance of some seen languages as part
of our future work. Nevertheless, our method still
proves beneficial in under-resourced settings where
multilingual models typically perform poorly.

6 Conclusion

We introduced LINGUALCHEMY, a novel approach
that demonstrates strong performance across 30+
unseen languages on intent classification and se-
mantic relatedness tasks. Our method hinges on
the integration of linguistic knowledge through the
URIEL vectors, enhancing the language model’s
ability to generalize across a diverse set of lan-
guages. We also proposed ALCHEMYSCALE and
ALCHEMYTUNE, which employs a hyperparam-
eter search for the URIEL scaling factor. This
is achieved by two key strategies: (1) weight-
averaging classification and URIEL loss, and (2)
learning to balance the scale between classification
and URIEL loss. LINGUALCHEMY achieves a mas-
sive performance improvement on low-resource
languages in multiple downstream tasks including
intent classification (↑ 18.50), news classification
(↑ 31.46), and semantic relatedness (↑ 0.32).

Limitations

LINGUALCHEMY enhances performance across
many unseen languages in intent classification, yet
it faces limitations. Performance on seen languages
is less than ideal, indicating room for improvement
through methods like weight freezing. Also, bet-
ter generalization appears to reduce accuracy in
seen languages, pointing to a need for balanced
approaches. Currently, the research is limited to
intent classification, and expanding to other NLP
tasks could reveal more about its versatility. More-
over, the choice of URIEL features—syntax, geog-
raphy, language family—is theoretically sound, as
discussed in Section 3, but empirical tests with dif-
ferent features might refine the model further. Over-
coming these limitations could greatly improve the
generalizability and effectiveness of multilingual
NLP models.
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A Languages in Dataset

The MASSIVE Dataset, also known as the Multi-
lingual Amazon SLU Resource Package (SLUPR),
offers a comprehensive collection of approximately
one million annotated utterances for various natural
language understanding tasks such as slot-filling,
intent detection, and Virtual Assistant performance
evaluation. It is an extensive dataset that includes
51 languages, 60 intents, 55 slot types, and spans
18 different domains. The dataset is further en-
riched with a substantial amount of English seed
data, comprising 587k training utterances, 104k
development utterances, and 152k test utterances.
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Train Group Lang. Family Languages Num. Languages

1 Indo-European af-ZA, bn-BD, ca-ES, cy-GB, da-DK, de-DE, el-GR, en-US,
es-ES, fa-IR, fr-FR, hi-IN, hy-AM, is-IS, it-IT, lv-LV, nb-NO,
nl-NL, pl-PL, pt-PT, ro-RO, ru-RU, sl-SL, sq-AL, sv-SE, ur-PK

26

2 Dravidian Train Group 1 + kn-IN, ml-IN, ta-IN, te-IN 30
3 Afro-Asiatic Train Group 2 + am-ET, ar-SA, he-IL 33
4 Sino-Tibetan Train Group 3 + my-MM, zh-CN, zh-TW 36

Unseen Languages sw-KE, km-KH, vi-VN, id-ID, jv-ID, ms-MY, tl-PH, ja-JP, ka-
GE, ko-KR, mn-MN, th-TH, az-AZ, tr-TR, fi-FI, hu-HU 16

Table 7: Language family distribution used in the language family generalization experiment (§5.3). The "others
unseen" category includes additional language families not incorporated in the training set that we use as an “unseen"
testbed.

Code Name Script Genus Code Name Script Genus

ar-SA Arabic Arab Semitic is-IS Icelandic Latn Germanic
bn-BD Bengali Beng Indic ka-GE Georgian Geor Kartvelian
el-GR Greek Grek Greek km-KH Khmer Khmr Khmer
en-US English Latn Germanic lv-LV Latvian Latn Baltic
es-ES Spanish Latn Romance ml-IN Malayalam Mlym Southern Dravidian
fa-IR Persian Arab Iranian nb-NO Norwegian Latn Germanic
fr-FR French Latn Romance ro-RO Romanian Latn Romance
he-IL Hebrew Hebr Semitic sl-SI Slovenian Latn Slavic
hu-HU Hungarian Latn Ugric ur-PK Urdu Arab Indic
hy-AM Armenian Armn Armenian zh-CN Mandarin Hans Chinese
id-ID Indonesian Latn Malayo-Sumbawan zh-TW Mandarin Hant Chinese

Table 8: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE
dataset, selecting 25 different seen languages.

Code Name Script Genus Code Name Script Genus

af-ZA Afrikaans Latn Germanic my-MM Burmese Mymr Burmese-Lolo
am-ET Amharic Ethi Semitic nl-NL Dutch Latn Germanic
az-AZ Azerbaijani Latn Turkic pl-PL Polish Latn Slavic
cy-GB Welsh Latn Celtic pt-PT Portuguese Latn Romance
da-DK Danish Latn Germanic ru-RU Russian Cyrl Slavic
de-DE German Latn Germanic sq-AL Albanian Latn Albanian
fi-FI Finnish Latn Finnic sv-SE Swedish Latn Germanic
hi-IN Hindi Deva Indic sw-KE Swahili Latn Bantoid
ja-JP Japanese Jpan Japanese ta-IN Tamil Taml Southern Dravidian
kn-IN Kannada Knda Southern Dravidian te-IN Telugu Telu South-Central Dravidian
ko-KR Korean Kore Korean th-TH Thai Thai Kam-Tai
mn-MN Mongolian Cyrl Mongolic vi-VN Vietnamese Latn Viet-Muong
ms-MY Malay Latn Malayo-Sumbawan

Table 9: Statistics and description of the dataset used (Xu et al., 2022). The dataset used is a subset of the MASSIVE
dataset, selecting 27 different unseen languages.
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B Language Family Experiment

Tables 10 and 11 provide a comprehensive analysis
of language family performance across different
training groups. These tables compare the accu-
racy percentages of the Multilingual BERT and
XLM-RoBERTa models, respectively. The results
displayed in the tables elucidate the models’ capa-
bilities in generalizing from the training data to un-
seen languages. A clear trend that can be observed
is the improvement in performance as the training
groups progress from 1 to 4, which suggests that
the models benefit from exposure to a wider variety
of language families during training. The ’Average’
row at the bottom of each table indicates the mean
accuracy across all language families, providing an
insight into the overall performance enhancement
achieved by each model with incremental training
diversity.

Language Family Train Group 1 Train Group 2 Train Group 3 Train Group 4

Afro-Asiatic 52.82% 52.93% 61.26% 61.00%
Atlantic-Congo 65.71% 68.08% 70.62% 71.79%
Austroasiatic 64.77% 66.78% 69.72% 70.16%
Austronesian 66.88% 68.66% 72.06% 72.19%
Dravidian 64.74% 67.97% 70.93% 71.41%
Indo-European 67.50% 68.61% 72.53% 72.95%
Japonic 72.11% 71.98% 75.80% 75.67%
Kartvelian 68.91% 68.89% 72.46% 72.32%
Koreanic 64.80% 66.46% 70.04% 69.91%
Mongolic-Khitan 63.11% 66.44% 69.71% 69.59%
Sino-Tibetan 62.65% 66.29% 68.79% 70.33%
Tai-Kadai 63.52% 67.89% 70.23% 71.34%
Turkic 54.69% 56.91% 63.54% 64.05%
Uralic 71.49% 71.27% 75.33% 75.15%

Average 65.54% 67.07% 71.04% 71.43%

Table 10: Multilingual BERT Performance of Language Families Across Training Groups

Language Family Train Group 1 Train Group 2 Train Group 3 Train Group 4

Afro-Asiatic 75.74% 76.23% 85.56% 85.39%
Atlantic-Congo 70.86% 72.38% 83.24% 82.73%
Austroasiatic 74.85% 76.04% 83.91% 83.59%
Austronesian 78.94% 79.83% 84.77% 84.69%
Dravidian 81.49% 82.20% 85.41% 85.43%
Indo-European 80.31% 81.21% 83.26% 83.47%
Japonic 80.21% 81.36% 82.67% 83.15%
Kartvelian 80.40% 81.53% 82.79% 83.27%
Koreanic 79.74% 80.91% 82.14% 82.61%
Mongolic-Khitan 79.54% 81.00% 82.20% 82.65%
Sino-Tibetan 79.25% 81.00% 82.14% 82.58%
Tai-Kadai 79.08% 80.81% 81.90% 82.35%
Turkic 79.20% 80.90% 81.96% 82.39%
Uralic 79.24% 80.91% 81.92% 82.47%

Average 79.45% 80.48% 83.44% 83.62%

Table 11: XLM-RoBERTa Performance of Language Families Across Training Groups

3926



Language LID-Fasttext CLD3 CLD2 langid LangDetect

ar-SA 94.25 86.45 81.58 91.78 94.13
bn-BD 99.72 97.52 89.57 96.93 99.76
de-DE 97.70 88.59 89.73 92.83 82.54
el-GR 99.68 96.91 99.77 99.84 99.64
en-US 98.61 79.44 93.43 93.96 87.82
es-ES 96.20 78.24 73.14 86.87 86.55
fi-FI 97.70 92.91 92.90 92.08 96.09
fr-FR 98.35 87.53 85.23 94.77 94.80
hi-IN 98.44 88.21 97.83 87.94 93.54
hu-HU 98.54 92.24 93.89 95.34 96.71
hy-AM 99.90 98.37 99.92 99.17 0.00
id-ID 87.20 65.86 73.54 72.68 89.32
is-IS 89.93 92.64 90.88 92.97 0.00
ja-JP 99.41 96.63 99.04 99.11 96.23
jv-ID 24.75 68.10 0.00 22.04 0.00
ka-GE 99.56 98.49 99.95 99.65 0.00
ko-KR 99.50 98.47 99.03 99.96 99.36
lv-LV 90.73 90.06 95.25 94.33 97.32
my-MM 99.93 96.90 99.97 0.00 0.00
pt-PT 92.17 83.42 77.39 77.74 84.05
ru-RU 99.27 84.48 82.35 83.79 91.32
vi-VN 98.41 95.85 97.26 98.62 99.53
zh-CN 97.55 98.07 84.33 99.64 0.00
zh-TW 95.76 94.19 0.03 99.31 0.00

Average 93.89 89.57 83.17 86.31 66.20

Table 12: Per language results of language identification evaluation in MASSIVE.

C Appendix: Language Identification
(LID) Experiments

This section presents the results of comprehen-
sive language identification experiments performed
across a variety of popular language detection mod-
els. The evaluation is detailed in two distinct tables:

Table 12 displays the performance of tradi-
tional language identification models such as LID-
Fasttext, CLD3, CLD2, langid, and LangDetect
across multiple languages within the MASSIVE
dataset. These results illustrate the effectiveness of
each model in correctly identifying the language of
given text samples.

Table 13 focuses on the accuracy of multilin-
gual language models, specifically XLM-R and
mBERT, alongside adaptations using the MAD-X
framework with embeddings from FastText and
CLD3. This evaluation aims to show how these
advanced models perform in the task of language
identification, especially in comparison to more
specialized LID tools.
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Language XLMR mBERT MAD-X MAD-X
w/ FastText

MAD-X
w/ CLD3

ar-SA 79.32 78.35 75.72 71.92 67.79
bn-BD 83.25 80.23 78.61 76.36 74.95
de-DE 85.54 83.59 81.81 79.49 76.90
el-GR 85.07 81.74 80.93 79.56 78.51
en-US 88.16 86.45 85.78 83.89 83.15
es-ES 86.18 84.97 82.58 80.97 76.43
fi-FI 85.24 82.55 82.55 79.86 77.07
fr-FR 86.48 86.11 83.69 82.35 80.03
hi-IN 84.63 82.38 80.73 78.14 72.73
hu-HU 85.68 82.65 81.57 80.13 76.40
hy-AM 84.23 81.20 80.43 78.78 77.91
id-ID 86.52 84.67 82.01 76.03 69.30
is-IS 84.16 82.21 80.40 71.49 73.57
ja-JP 85.78 84.70 83.22 82.04 81.27
jv-ID 81.20 81.57 78.58 45.70 59.68
ka-GE 79.19 75.25 73.23 70.85 70.17
ko-KR 85.51 84.30 82.99 81.14 80.56
lv-LV 84.73 82.18 82.08 74.58 74.95
my-MM 82.18 78.01 78.48 76.36 74.98
pt-PT 86.35 85.27 83.59 80.56 77.77
ru-RU 86.65 83.96 83.52 81.74 75.45
vi-VN 86.48 83.32 82.52 79.72 78.61
zh-CN 85.41 85.24 84.23 53.09 52.69
zh-TW 83.73 82.55 81.27 52.79 52.45

Average 84.65 82.64 81.27 74.90 73.47

Table 13: Per language accuracy score of multilingual language models in MASSIVE.
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