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Abstract

Mathematical question answering over long-
form documents is challenging across domains
like finance or Wikipedia due to the abundance
of candidate arguments within evidence, which
complicates recognizing proper arguments for
mathematical reasoning and poses hard to learn-
ing. In this paper, we propose an approach
for training a generator to improve argument
recognition. Our method enhances the prob-
abilities of proper arguments in a reasoning
program generation so that the arguments com-
prising the ground truth have higher weights.
The proposed approach consists of an argu-
ment aggregator to model the probabilities in
each candidate generation and an argument set
loss to compute the cross-entropy between that
probability and the candidates’ existence in
the ground truth in terms of the argument set.
In our experiments, we show performance im-
provements of 3.62% and 3.98% in execution
accuracy and program accuracy, respectively,
over the existing FinQANet model based on a
financial mathematical QA dataset. Also, we
observed that the similarity of argument sets
between the generated program and the ground
truth improved by about 2.9%, indicating a mit-
igation of the misrecognition problem.

1 Introduction

Question Answering (QA) with mathematical rea-
soning on textual data (Saxton et al., 2019; Patel
et al., 2021; Lu et al., 2023a; Cobbe et al., 2021;
Amini et al., 2019; Dua et al., 2019) and tabular
data (Zhu et al., 2021; Chen et al., 2021; Zhao et al.,
2022) is an emerging area of research in natural
language processing. This emerging field holds sig-
nificant promise for various applications, including
financial analysis, where it can aid businesses in
making data-driven investment decisions (Vo et al.,
2019) and enable financial analysts to evaluate mar-
ket trends and risks more effectively (Lanbouri and
Achchab, 2015; Wang, 2022).

Long-form Document:

Question: considering the weighted average fair value of options , 
what was the decrease between shares that vested in 2006 and 2005?
GT Program: divide(9413, 20.01), divide(8249, 9.48), subtract(#1, #0)
Misrecognition: divide(3569, 20.01), divide(2824, 9.48), subtract(#1, #0)
Answer: 400

2006 2005 2004 …
weighted average fair 

value  of options granted $ 20.01 $ 9.48 $ 7.28 …

… … … … …

Tabular
Evidence

Textual
Evidence

the fair value for these options was estimated at the date of 
grant using a black-scholes …  for 2006 , 2005 and 2004: .

…
the total fair value of shares vested during 2006, 2005, and 
2004 was $ 9413, $ 8249 , and $ 6418 respectively.

…
during 2006 , 2005 , and 2004 , 124693, 112798 , and 
117900 shares were purchased under the plan for a total 
purchase price of $ 3569 , $ 2824 , and $ 2691 , respectively.

𝑬𝑬𝟏𝟏

𝐸𝐸2

𝐸𝐸3

𝑬𝑬𝟒𝟒

𝑬𝑬𝟓𝟓

Figure 1: Example of Argument Misrecognition with
irrelevant information. Green highlights the arguments
necessary for the answer, while red marks irrelevant
arguments that don’t contribute to the answer. The re-
trieved evidence as input context is shown in purple.

Recently, datasets such as FinQA (Chen et al.,
2021) and ConvFinQA (Chen et al., 2022) have
been released, aiming to perform mathematical rea-
soning over long-form hybrid data containing both
tabular and textual information, such as financial
statements. These tasks require generating a rea-
soning program as an arithmetical expression in
response to a mathematical question. For instance,
Figure 1 shows an example of the FinQA Task. A
pipeline in FinQA first uses a retriever to retrieve
supporting evidence that contains the necessary
arguments from a long-form document. Then, a
sequence-to-sequence program generator generates
a solution program by combining arguments and
operators from the retrieved evidence, as shown in
the example of ‘divide(9413, 20.01), divide(8249,
9.48), subtract(#1, #0)’. In this scenario, the pro-
gram generator is required to be able to select the
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# steps % wrong args % wrong ops % both

1 step 50.97 21.93 27.10
2 steps 39.21 18.30 42.48
>= 3 steps 20.69 6.90 72.41

Total 41.26 18.03 40.71

Table 1: Percentage of errors in FinQANet attributed to
selecting incorrect arguments or operators in the FinQA
public test. these scores are based on program accuracy.

necessary arguments from multiple candidate argu-
ments and sort them with operators for mathemati-
cal reasoning(Dua et al., 2019).

Such retrieve-then-generate framework(Brill
et al., 2002; Chen et al., 2017; Lee et al., 2019; Li
et al., 2023b; Zhang and Moshfeghi, 2022), to gen-
erate a correct answer, retrieved evidence must have
all necessary arguments. To enable easier and more
accurate retrieval of evidence containing all argu-
ments, a coarse-grained region, such as a table row,
is chosen as the evidence chunk(Wang et al., 2022).
So, it often includes irrelevant information in the
retrieved evidence. For instance, in Figure 1 from
the FinQA Task, retrieved evidence like E1, E4,
and E5 includes numerous irrelevant arguments,
marked in red. Including noisy information makes
the model challenging and hinders reasoning per-
formance (Wang et al., 2022; Xu et al., 2022; Shi
et al., 2023). As shown in table 1, we can show that
wrong argument selection is a more significant is-
sue than incorrect operator generation. As the chain
of reasoning gets longer, the number of wrong ar-
guments and operators together increases, but the
number of wrong arguments only still dominates.

In this paper, to address this problem, we in-
troduce Arguments Set Loss, a novel approach
aimed at enhancing arguments recognition in
question-answering with mathematical reasoning.
Our method focuses on fine-tuning the supervision
of an existing sequence-to-sequence program gen-
erator, with a focus on the accurate generation of
arguments. To facilitate this, we have developed an
Argument Aggregator. This tool aggregates the dis-
tribution of arguments at each token step within the
program generator, a key aspect in modeling the
probability of correctly generating arguments. The
aggregator calculates the probability of each can-
didate argument being generated. The arguments
set loss aligns these probabilities with the ground
truth program labels. We further refine the process
by employing the Arguments Set Loss as an auxil-

iary loss in the training of the existing sequence-to-
sequence generator, placing a greater emphasis on
accurate argument selection within the reasoning
program.
In summary, this paper makes the following contri-
butions:

1. We highlight the argument misrecognition is-
sue in mathematical QA and propose an Argu-
ments Set Loss with an Arguments Aggregator.

2. We demonstrate that training models with
Arguments Set Loss significantly improves
performance on the FinQA and ConvFinQA
datasets.

3. We empirically validate the effectiveness of
the Arguments Set Loss in scenarios with noisy
evidence, utilizing two distinct datasets and
thorough case analyses.

2 Related Works

2.1 QA over Tabular and Textual Data

Recent research has increasingly focused on devel-
oping systems capable of answering questions over
hybrid data from real sources, such as financial re-
ports and Wikipedia, which combine tables and text
(Wenhu Chen, 2021; Chen et al., 2020, 2021; Li
et al., 2022; Eisenschlos et al., 2021; Krichene et al.,
2021; Li et al., 2021; Zhao et al., 2022; Zhu et al.,
2021; Herzig et al., 2021). HybridQA(Chen et al.,
2020) is a dataset designed for extractive multi-hop
reasoning, integrating both tabular and textual data
from Wikipedia. OTT-QA(Wenhu Chen, 2021) is
the open-domain setting of HybridQA. It requires
retrieving tables and passages as relevant evidence
sets from a document collections. TSQA (Li et al.,
2021) is a multiple-choice QA dataset based on
high-school exams, designed to assess understand-
ing from scenarios and knowledge. Recently, there
has been increasing focus on tasks involving math-
ematical reasoning on financial tables and textual
data, such as TAT-QA (Zhu et al., 2021), FinQA
(Chen et al., 2021), ConvFinQA (Chen et al., 2022),
and MultiHiertt (Zhao et al., 2022). These datasets
contribute to developing systems that understand
and respond to complex mathematical queries.

2.2 Mathematical Reasoning

One of the key aspects of intelligence is mathe-
matical reasoning(Lu et al., 2023b), especially in
understanding NLP tasks that combine numerical
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information with language. It has been a focus
for decades in algorithm development for solving
mathematical problems (Newell et al., 1957). Re-
cent research in NLP and machine learning has
aimed to enhance the understanding of various
question types, including those involving mathe-
matical symbols, expressions, and equations. This
work addresses diverse challenges such as solving
math word problems (Patel et al., 2021; Lu et al.,
2023a), proving theorems (Yang and Deng, 2019;
Welleck et al., 2021), and mathQA tasks (Saxton
et al., 2019). Researchers employ various methods
to address these challenges, including program gen-
eration (Chen et al., 2021), span prediction (Dua
et al., 2019), and prompting (Li et al., 2023a). There
is also a focus on generating textual rationales to
explain the reasoning process (Cobbe et al., 2021),
enhancing interpretability in reasoning tasks.

3 Preliminary Background

We leverage FinQANet(Chen et al., 2021) as the
baseline framework, which consists of an evidence
retriever and a program generator. The evidence
retriever retrieves relevant evidence set from the
long-form document. The generator then generates
a program as mathematical reasoning result based
on the retrieved evidence.

Retriever FinQANet’s retriever retrieves textual
snippets from documents composed of free-form
text and tables as evidence. The model employs
templates to retrieve tabular data using the same
model as text. Each cell in a table is transformed
into a sentence using the template "column header
is value." These sentences are then concatenated,
with semicolons serving as separators for each row.
For each candidate evidence passage ei constructed
in this way, the retriever model assigns a relevance
score rei based on its relevance to the question Q.

rei = cls(Encoder(Q, ei)) (1)

Based on these scores, the retriever model selects
the top n passages as retrieved evidence set Er.

Generator In Figure 2, the first section on
seq2seq program generation provides an overview
of the Program Generator. The Program Genera-
tor generates a predicted program at each step t
by predicting tokens for operators or argument in-
dices. The token generation process draws from
the following sources: 1. Arguments tokens: these
are extracted from the question Q and the retrieved

evidence Er. 2. Predefined special tokens S: These
are defined from the domain-specific language,
such as the operator or constants. (e.g., add, ta-
ble_max, const_10) 3. Step memory tokens M :
these tokens indicate results from previous reason-
ing steps (e.g., #0, #1, ...). FinQANet’s domain-
specific language(DSL) arranges these tokens in
a linear sequence to structurally represent reason-
ing operations and arguments step by step. Each
operation function assigns step memory variables
sequentially, defining the reasoning program, e.g.,
"add(arg1, arg2), divide(s0, arg3)". A detailed de-
scription of the operations and grammar is provided
in Appendix A.

In order to generate reasoning program follow-
ing DSL, FinQANet’s Program Generator embeds
the given question Q and retrieved evidence Er us-
ing as pre-trained language model Encoder, such
as RoBERTa, to obtain embeddings he.

he = Encoder( Q, [SEP ], Er ) (2)

and, The embeddings hs for the predefined spe-
cial tokens S and hm for the step memory tokens
M are initialized randomly. Feed the embedding
he, hs, hm as input to a recurrent generator based
on LSTM with cross-attention and decode the pre-
dicted program token ŷ by step t.

st, ht = RNN(he, hs, hm, ht−1) (3)

ŷt = Argmax(st) (4)

For training, FinQANet optimizes the loss
Lprogram with the ground truth token st and uses
the teacher forcing mechanism.

Lprogram =
t∑

CE(ŝt, st) (5)

4 Methodology

Our objective is to reduce the misrecognition of
arguments in input passages containing irrelevant
information, specifically focusing on improving
the model’s understanding of relationships between
questions and arguments. To achieve this, we pro-
pose the Arguments Set Loss, a supervised learning
approach that compares entire relevant arguments
with the arguments in the generated programs dur-
ing training, aimed at mitigating the problem of
argument misrecognition. We trained the proposed
arguments set loss along with the program loss of
the baseline model to learn the arguments related
to the question along with the sequential pattern of
the reasoning program. The overall architecture of
the proposed method is shown in Figure 2.
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Figure 2: Overall architecture of the proposed framework. The left side of the figure is the Program Generator,
which leverages FinQANet(Chen et al., 2021). The right side is the proposed Arguments Set Loss. We train the two
objective losses together. Our methodology consists of an Argument Aggregator that generates a global argument
distribution of the program generator and an argument set loss that aligns between the predicted argument set and
the GT argument set.

4.1 Arguments Aggregator

Our method applies an additional auxiliary loss
while maintaining the sequential program genera-
tion process in a seq2seq program generator, such
as FinQANet’s Generator. To this end, we utilize
the token distribution of the existing program gen-
erator and the structural features of the domain-
specific language (DSL) of the reasoning program
to generate answers to questions in mathematical
reasoning tasks as executable programs. In this
domain-specific language, a solution program con-
sists of functions as operators and operands as argu-
ments. The arguments are trained to be generated
at fixed positions in the predicted program. Utiliz-
ing these features, we have designed an Arguments
Aggregator to aggregate the global distribution of
candidate arguments for a question during training.

Figure 2 shows the process of the Arguments
Aggregator. To illustrate the process with an exam-
ple, assume the program generator is generating an
incorrect program different from the ground truth
program, like "divide(4447, 23.6), multiply(9896,
..." during training. "4447" marked in red is an im-
proper argument, while the ones in green are proper
arguments. First, at each step t of the program gen-
erator, we take the softmax distribution of the token
S = [s1, s2, s3, ..., st]. S is the distribution matrix
for arguments and operators. And, to mask the dis-
tribution information of the operator in this matrix,

an argument mask is created from the DSL.
The Arguments Mask Margs=[M1,M2, ...,Mt],

which takes a value of 1 at each Arguments Position
in the DSL, is constructed as follows. Let Targs rep-
resent the Arguments positions in the DSL. Then,
for all t:

Mt =

{
1 if t ∈ Targs

0 otherwise .
(6)

We obtain the Masked Vector SM by applying
Argument Position Masking to the output S of the
Recurrent Generator.

SM = STMargs (7)

This matrix, masked results, is a distribution
where the softmax distribution of the operator is
masked to 0. To aggregate the softmax distribu-
tion of all candidate arguments, we use the max-
imum value of each argument in the softmax St,
which represents the probability of each argument
appearing in the model-generated result. We em-
ploy MaxPooling to generate the global argument
distribution as follows:

Swhole_args = MaxPooling(SM ) (8)

In the example, the predicted arguments set is
generated as the distribution with the highest gen-
eration probabilities of "4447", "23.6" and "9896".
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4.2 Arguments Set Loss
To maximize the likelihood of generating proper
arguments in the solution program creation, we
propose an Arguments Set Loss that aligns the
predicted Arguments Set with the GT Arguments
Set, promoting proper arguments and depressing
improper arguments in the distribution generated
through the Arguments Aggregator.

We use the arguments that exist within the
ground truth program as the ground truth argument
set Ygt_args. Regardless of the frequency of appear-
ance in the program, we construct the labels as
"true" for arguments that are present.

To optimize the model, we compute the cross-
entropy between the global arguments distribution
Swhole_args and the ground truth arguments label
Sgt_args.

Largset = CE(Swhole_args, Ygt_args) (9)

We optimize the total objective loss Ltotal, which
is the sum of the Largsset loss and the Lprogram

loss for the Program during training.

Ltotal = Lprogram + Largset (10)

5 Experimental Setup

5.1 Datasets
We utilized datasets based on real-world documents
containing noisy and irrelevant information within
the evidence. FinQA(Chen et al., 2021) is designed
for mathematical reasoning over long-form finan-
cial documents. The task involves answering mathe-
matical questions by extracting relevant arguments
and operators from both tables and free-form text in
S&P 500 reports. ConvFinQA(Chen et al., 2022)
is a dataset focused on conversational long-form
mathematical reasoning over financial statements.
this dataset requires the model to sequentially iden-
tify each relevant argument from conversations and
generate reasoning steps accordingly.

5.2 Evaluation Metrics
We use three metrics to assess the mathematical
QA and arguments recognition performance.
Program Accuracy: This metric determines
whether the program solution is mathematically
equivalent to the ground truth program.
Execution Accuracy: This metric evaluates the
correctness of the final output of the executed pro-
gram solution. It checks if the program solution,
when run, provides the expected outcome.

Jaccard Similarity: To compare the accuracy of
argument recognition with various reasoning paths,
we use Jaccard similarity as a measure of the de-
gree of matching between the arguments included
in two programs. This metric measures the simi-
larity between a set of arguments in the generated
program (argsprog) and a set of arguments in the
ground truth program (argsgt).

Similarityjaccard =
|argsprog ∩ argsgt|
|argsprog ∪ argsgt|

(11)

5.3 Baselines
We compare our approach against representative
fine-tuned baselines and Large Language Models
(LLMs). FinQANet(Chen et al., 2021), , which is
the baseline model proposed in the FinQA Task,
generates programs sequentially using an encoder-
decoder based model. DyRRen(Li et al., 2023b):
This model applies an evidence-level reranking
module to FinQANet to attend to relevant re-
trieved information at each generation step. ELAS-
TIC(Zhang and Moshfeghi, 2022), which is a
model with generators separating operators and
arguments to mitigate cascade errors. Counter-
Comp(Nourbakhsh et al., 2023), which is a Con-
trastive loss approach to calculate triple loss with
a negative sample of similar patterns of operators.
To ensure fair comparisons, without the size of
pre-trained models, ours is only compared with
models based on the RoBERTa encoder sequence-
to-sequence model. and, we reference the perfor-
mance of Large-scale Language Models (LLMs) by
considering ChatGPT, specifically zero-shot and
CoT performances reported in (Li et al., 2023a).

5.4 Implementation Details
In the experiments, we utilized the default retrieval
results in the FinQA dataset as input contexts. Our
method is implemented based on the original code
of FinQANet. The hyperparameter configuration,
such as the hidden dimension size and the num-
ber of layers, remains the same as FinQANet. For
all models, we use the Adam optimizer. The batch
size is set to 12 for large models and 20 for base
models. We selected the model with the highest
Execution Accuracy based on the dev dataset for
our final implementation, trained up to 300 epochs.
Our method is trained 5 times with different ran-
dom seeds from scratch and computes the mean
and standard deviation of metrics. the QA perfor-
mances of the baseline models are referenced from
the published results in respective papers.
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PLM Method
FinQA(dev) FinQA(Test)

Execution Accuracy Program Accuracy Execution ccuracy Program Accuracy

FinBERT FinQANet 46.64 44.11 50.10 47.52

ChatGPT
ZeroShot(Li et al., 2023a) - - 48.56 -
CoT(Li et al., 2023a) - - 63.87 -

RoBERTa-base

FinQANet 56.27 53.49 56.10 54.38
DyRRen* 59.00 56.62 57.80 55.88
Ours 63.19 ± 0.43 60.68 ± 0.41 59.46 ± 0.44 57.35 ± 0.42

RoBERTa-large

FinQANet 61.22 58.05 61.24 58.86
FinQANet* 63.87 61.15 61.38 59.28
Elastic 65.00 61.00 62.16 57.54
CounterComp - - - 61.18
DyRRen 66.82 63.87 63.30 61.29
DyRRen* 63.87 61.27 62.51 60.42
Ours 67.50 ± 0.65 64.35 ± 0.67 64.86 ± 0.41 62.84 ± 0.24

General Crowd Performance 50.68 48.17
Human Expert Performance 91.16 87.49

Table 2: Performance Comparison of Mathematical QA Models on FinQA dev and public test. Ours is the average
score trained 5 times, and ‘ ± ’ indicates std. ‘-’ means that no score provided in the paper. ‘ * ’ denotes our
implementation trained with evidence retrieved by FinQANet’s retriever.

6 Experiments

6.1 Financial QA Performance Comparison

FinQA Performance Using the above datasets
and baselines, we evaluate our model, FinQaNet
with Arguments set loss, and demonstrate its ef-
fectiveness in Table 2. Our approach exhibits a
significant improvement in both Execution Accu-
racy and Program Accuracy metrics in the dev and
public test sets, consistently and significantly out-
performing all other baseline models.

Our approach has shown an execution accuracy
of 67.50% and a program accuracy of 64.35 %
in the dev while achieving 64.86% and 62.84%,
respectively, in the test. When compared to Coun-
terComp, which trains triplet loss among similar
operator pattern examples, our model demonstrated
1.66% outperforming accuracy. This result demon-
strates that our arguments-based approach is more
robust in noisy retrieved evidence than operator-
based approaches. Furthermore, in comparison to
DyRRen, our approach exhibits a significant dif-
ference in both metircs. This result indicates that
our method, which explicitly fine-grained super-
vises the arguments in the retrieved evidence, has
a better understanding of noisy retrieved evidence
than DyRRen, which dynamically assigns weight
to evidence requiring argument extraction through
a reranking module. DyRRen* is a DyRRen model
using FinQANet’s Retriever to compare the per-
formance of the Generator using the same input
evidence set. In the comparison between ours and

Method
ConvFinQA(dev) ConvFinQA(Test)

EA PA EA PA
GPT-2 (Medium) 59.12 57.52 58.19 57.00
T-5 (Large) 58.38 56.71 58.66 57.05
ChatGPT(ZeroShot) 59.86 - - -
FinQANet (base) 64.90 63.15 64.95 64.16
Ours (base) 70.09

± 0.59
68.41
± 0.54

70.46
± 0.79

69.45
± 0.57

FinQANet (large) 68.32 67.87 68.90 68.24
Ours (large) 73.94

± 0.33
71.78
± 0.63

73.93
± 1.07

72.80
± 0.98

General Crowd Performance 46.90 45.52
Human Expert Performance 89.44 86.34

Table 3: Performance Comparison on ConvFinQA dev
and private test. Ours is the average score trained 5
times, and ‘ ± ’ indicates std.

DyRRen*, we observe a 2.42% improvement in
program accuracy. This improvement underscores
the effectiveness of our approach as much as mit-
igating noise within evidence through pair-wise
retriever for more accurate searches in DyRRen.

Following the comparison with the fine-tuned
approach, our method achieved higher execution
accuracy compared to the performance of Chat-
GPT. This result demonstrates the efficiency of our
approach compared to the performance of Chat-
GPT. ChatGPT showed similar performance com-
pared to RoBERTa-based models, explaining the
challenging aspects of the FinQA Task.

ConvFinQA Performance The performance of
the model in the ConvFinQA task is also pre-
sented in Table 3. We also achieved performance
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improvements over baselines in the ConvFinQA
dataset(Chen et al., 2022), which has different lin-
guistic patterns. Compared to the baseline Fin-
QANet, our approach showed consistent perfor-
mance improvements in both base and large sizes
of PLMs. Our, Roberta-large, achieved 73.94% ex-
ecution accuracy, 71.78% program accuracy in the
dev set, 73.93% execution accuracy, and 72.80%
program accuracy in the private test. These results
demonstrate that the proposed arguments set loss
can robustly operate in datasets with conversation
history-type linguistic patterns.

6.2 Financial QA Performance Breakdown
These experiments were conducted using default
retrieval results from the dataset to ensure fair com-
parisons based on same search results. Only Fin-
QANet and DyRRen had publicly available code
among the baseline models, so we evaluated these
two models.

In Table 4, we assess FinQANet* and DyRRen*
performance in FinQA across different program
lengths and question types. Our approach consis-
tently outperforms other models as program length
increases. Particularly, we achieve significant im-
provements in execution accuracy, reaching 70.18%
for one-step programs, 63.32% for two-step pro-
grams, and an impressive 33.33% for programs
exceeding two steps. DyRRen, which reranks evi-
dence for each reasoning step, primarily improves
performance in longer reasoning steps. However,
our approach shows performance gains even in
shorter reasoning steps and achieves greater im-
provements in longer cases, highlighting its effec-
tiveness in handling complex reasoning processes.

Moreover, our model excels in analyzing various
question types based on evidence types (Table-only,
Text-only, Hybrid), particularly in scenarios with
tabular data. It achieves remarkable execution and
program accuracies of 73.09% and 70.82% in table-
only scenarios, showcasing its proficiency in ex-
tracting information from structured tables. On the
other hand, ours shows a similar performance im-
provement to other baselines in text-only, where rel-
atively few candidate arguments occur compared to
tabular evidence, which produces noisy evidence.

6.3 Arguments Recognition Performance
We conducted experiments to evaluate the impact
of the proposed Arguments Set Loss on Arguments
Recognition performance. Results in Table 5 are
from experiments on the FinQA Dataset, focusing

Method
FinQANet* DyRRen* Ours
EA PA EA PA EA PA

Program Steps
1 step 67.28 65.14 67.58 65.90 70.18 68.50
2 steps 58.92 56.97 60.88 58.19 63.32 60.39
> 2 steps 27.38 25.0 30.95 28.57 33.33 30.95

Question Type
Table-only 67.99 65.86 70.25 67.56 73.09 70.82
Text-only 55.83 54.06 56.18 55.12 56.89 54.77
Hybrid 41.77 39.24 39.24 37.97 43.67 41.77

Table 4: Performance Breakdown in the FinQA Dataset.
We separate the Question Types based on the ground
truth program step length and whether the Evidence is
included in a table or free-form text.

Overall # of candidate ≤ 21 # of candidate > 21

FinQANet * 0.7661 0.7743 0.7530
DyRRen* 0.7776 0.7751 0.7813
Ours 0.7951 0.7918 0.8004

Table 5: Performance table for Arguments Recognition,
a significant performance improvement compared to the
baseline model, especially in cases with many candidate
arguments.

on program arguments recognition. The evaluation
was based on Jaccard’s Similarity among argument
sets. Hard cases, identified by an average argument
count of 21 in the trainset, were considered to as-
sess noisy evidence.

Table 5 compares our method with FinQANet*
and DyRRen*. Our approach outperforms both,
with an overall Jaccard similarity of 0.7951, sur-
passing FinQANet by 0.029 and DyRRen by
0.0175. Particularly in challenging scenarios with
more than 21 candidate arguments, our model
achieved a Jaccard similarity of 0.8004, an improve-
ment of 0.0474 over FinQANet. These results high-
light the effectiveness of our model in enhancing
arguments recognition, especially in noisy envi-
ronments, and affirm its ability to handle diverse
argument sets within the FinQA Dataset.

7 Further Study

In this section, we assess the impact of noisy
type on QA performance by conducting experi-
ments under scenarios with varying numbers of
candidate options. Through this analysis, we ob-
serve that mathematical reasoning faces challenges
with noisy evidence, and our model exhibits better
performance on more noisy examples compared
to the baseline. We also present a case study in
Appendix B for a clearer understanding of the
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Figure 3: Mathematical Reasoning performance based
on the number of argument candidates in input passages
of the program generator. As the number of arguments
candidates increases, there is a higher likelihood of in-
cluding irrelevant arguments unrelated to the question.

improvements in argument recognition achieved
through the proposed method

7.1 Performance on Argument Candidate Size

Figure 3 depicts the performance of mathematical
QA tasks concerning the size of argument candi-
dates in retrieved evidence. This analysis highlights
the impact of argument set loss on performance
amidst noisy retrieved evidence. Our results demon-
strate that our method outperforms others across
various ranges of argument candidates. Notably,
our model achieves a program accuracy of 60.84%
and an execution accuracy of 63.11% when dealing
with more than 20 candidate sizes.

Significantly, our model shows that performance
improvements become more pronounced as the
number of argument candidates increases. While
DyRRen also exhibits performance improvement
with more than 30 arguments, it shows limited en-
hancement in certain ranges. In contrast, our model
consistently shows enhanced performance when
evidence contains numerous arguments. This en-
hancement in QA performance is attributed to the
effective focus on appropriate arguments in noisy
evidence using argument set loss. Therefore, argu-
ment set loss plays a pivotal role in enhancing QA
performance, particularly in the presence of noisy
evidence. Moreover, our model shows performance
improvement even when the number of candidate
arguments is small. This is especially important
in cases where the evidence tokens are similar or
when multiple arguments need to be extracted. In
these scenarios, our model’s effectiveness in rec-
ognizing and extracting relevant arguments con-
tributes to its overall superior performance.
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Figure 4: Performance based on different sizes of the
proper argument in ground truth programs. Ours shows
significant performance gains in the recognition of mul-
tiple arguments compared to the baseline.

7.2 Performance on Proper Arguments Size

Figure 4 compares the performance when recogniz-
ing multiple proper arguments within the ground
truth program. We examined our ability to iden-
tify these arguments without distraction from the
noisy evidence. FinQANet achieves a program ac-
curacy of 66.39% for 1-2 arguments and 23.95%
for more than 2 arguments. DyRRen shows slight
improvements, with 66.91% and 28.12% in the
same categories. Ours achieves a program accuracy
of 69.11% for 1-2 arguments and 31.77% for more
than 2 arguments. The execution accuracy follows a
similar trend. Our model demonstrates a significant
performance difference of 7.82% for more than 2
arguments. These results indicate the effectiveness
of our approach in QA performance when recogniz-
ing multiple arguments. It can be seen that explicit
supervision loss at the argument level contributed
to a significant performance improvement.

8 Conclusion

In this paper, we address the challenge of mis-
recognizing arguments in mathematical Question-
Answering (QA), primarily caused by noisy evi-
dence retrieval. To mitigate the issue of learning
argument recognition from such noisy evidence,
we propose an Arguments Set Loss as an auxiliary
loss during training. This approach enhances the ex-
traction and recognition of proper arguments from
input passages. Additionally, we introduce the Ar-
guments Aggregator, a novel reasoning program
that leverages the structural features of domain-
specific language to aggregate information about
arguments during the training of seq2seq genera-
tors.

Our experiments on the FinQA and ConvFinQA
datasets show a substantial improvement in mathe-
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matical QA performance, particularly in argument
recognition for generating reasoning programs. We
further analyzed the model’s performance on argu-
ment recognition and compared its effectiveness
across different types of noisy evidence. Our find-
ings indicate that the Arguments Set Loss helps
the model focus more effectively on recognizing
arguments, even when dealing with irrelevant or
noisy information. This enhancement is especially
notable when generating complex reasoning pro-
grams. In future work, we plan to refine our ap-
proach to better manage operators, aiming to im-
prove the accuracy and efficiency of mathematical
QA systems.

Limitations

Our study primarily focuses on the generator in
a QA pipeline, without addressing the retriever.
we chose to concentrate on improving the gener-
ator’s ability to recognize arguments, even when
the retrieval results contain irrelevant information.
Although refining the retriever or chunking mech-
anisms could further mitigate the impact of irrele-
vant data, these aspects were beyond the scope of
our study.

The results of our experiments were compared to
those validated on the FinQA leaderboard1. How-
ever, certain datasets designed for more complex
table structures, such as MultiHiertt (Zhao et al.,
2022), require not only mathematical reasoning but
also extractive qa through span prediction. As a
result, we did not include them in our experiments.
In future work, we plan to explore whether the
Arguments Set Loss can improve performance in
extractive qa tasks alongside the retriever. While
our method is effective, it is currently limited to
mathematical reasoning tasks where operators and
arguments are represented in list form. It faces chal-
lenges when applied to graphs and specific mathe-
matical expressions. In future research, we aim to
extend its applicability to a wider range of mathe-
matical structures.
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A Domain Specific Language on the
FinQA and ConvFinQA

Following the domain-specific language defined by
(Chen et al., 2021), we designed an Argument Ag-
gregator. the reasoning program is defined using a
domain-specific language, which can be structured
in either a nested or a sequential format. In both
the FinQA and ConvFinQA datasets, a reasoning
program is used to represent the reasoning process
for solving mathematical questions and answers.
the reasoning program is defined using a domain-
specific language, which can be structured in either
a nested or a sequential format. In the nested for-
mat, operations are organized hierarchically, such
as "divide(add(arg1, arg2), arg3)". In contrast, the
sequential format arranges operations linearly, with
each operation executed in sequence. Unlike the
nested format, the sequential format requires step
memory variables to reference the result of previ-
ous reasoning steps. These variables are assigned
sequentially, starting from 0 and denoted as "#0,
#1, ...". They track intermediate outputs from one
step to the next, as shown in "add(arg1, arg2), di-
vide(#0, arg3)". we adpoted the sequential format
following the setting of FinQANet.

Table 6 outlines the operators defined for the
FinQA task, along with examples. The operators
consist of 6 arithmetic operators and 4 table opera-
tors. Arithmetic operators take 2 arguments, arg1
and arg2, and operate on numerical data or step
memory variables within the evidence. Table op-
erators use column names as arguments. When
generating programs as sequences, a special token,
"none", is padded to keep the same sequence as the
arithmetic operators. As a result, each reasoning
step generates 4 tokens, including the closing token
")". In our proposed method, we utilize this charac-

Operator Example of sequence

add add(, arg1, arg2, )
subtract subtract(, arg1, arg2, )
multiply multiply(, arg1, arg2, )
divide divide(, arg1, arg2, )
exp exp(, arg1, arg2, )
greater greater(, arg1, arg2, )
table-sum table_sum(, col name, none, )
table-average table_average(, col name, none, )
table-max table_max(, col name, none, )
table-min table_min(, col name, none, )

Table 6: The operators defined by (Chen et al., 2021)

teristic to mask the vectors of arguments from the
softmax matrix generated within the program.

B Case Study

To clearly understand our method’s improvement
in mathematical QA, we present a case study of
success cases and failure cases on the FinQA
dataset. As shown in Figure 5, we sampled exam-
ples from the FinQA test for Ours and FinQANet
with RoBERTa-large.

Success Case The first example demonstrates a
case where our generator successfully reasons from
a multitude of irrelevant arguments. The input ev-
idence contained 58 candidate arguments due to
the numerous columns in the table. The example
requires recognizing and calculating the liability
at the end of 2004 and 2005 to calculate the net
change during 2005. In this case, tabular evidence
is challenging to recognize proper argument be-
cause the values in all cells are linearized. e.g.,
"liability as of January 1 2004 is $ 2239; liability
as of December 31 2004 is $ 665; ... ". The baseline
model, FinQA, misrecognized 2239 next to the cor-
rect answer argument in this input and generated
an incorrect answer program. On the other hand,
our model successfully recognized the intended
arguments. Our approach demonstrates enhanced
performance in scenarios with many candidate ar-
guments.

Error Case The second example represents a
failure to recognize arguments pertinent to the ques-
tion. The FinQA task involves reasoning based on
an understanding of financial terminology (Chen
et al., 2021). Despite applying our proposed loss
function, our model struggled to recognize argu-
ments in cases requiring nuanced financial reason-
ing. For instance, when considering the condition
"1-3 years," the baseline model was misled by pri-
oritizing the "total" aspect, whereas our proposed
method correctly aligned with the "1-3" condition.
However, in some instances, our model failed to
recognize the context, erroneously associating cer-
tain parameters with the "total" condition. These
failure cases underscore the challenges posed by
intricate argument dependencies and nuanced fi-
nancial reasoning, showcasing the areas where our
model demonstrates improvement over baseline
models in argument extraction tasks.
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Example of arguments recognition from large tabular evidence.

Question: what is the net change in the balance of employee separations liability during 2005?

Evidence:

Program: Ground truth:  subtract( 301, 665 )         FinQANet: subtract( 301, 2239 ) Ours: subtract( 301, 665 )

liability as of 
january 1 2004

liability as of 
december 31 2004 … 2005 cash payments liability as of 

december 31 2005
…

employee 
separations $ 2239 $ 665 .. $ -448 $ 301

.. … … .. … … …
total $ 3689 $ 1096 … $ - 773 $ 479

Failure to recognize due to lack of understanding of financial terms.

Question: considering the contractual obligations in which payments due by 1-3 years , what is the percentage of the operating leases in relation to the 
total obligations?

Evidence:

Program: Ground truth:  divide( 13789, 16054 )         FinQANet: divide( 44048, 95519 ) Ours: subtract( 13789, 95519 )

contractual 
obligations

payments due by period 
total

payments due by period 
less than 1 year

payments due by period
1-3 years

payments due by period 
3-5 years

payments due by period 
more than 5 years

operating leases $ 44,048 $ 7,957 $ 13,789 $ 11,061 $11,241 
purchase obligations 51471 47966 2265 1240 0

total $ 95,519 $ 55,923 $ 16,054 $ 12,301 $11,241 

Figure 5: Two cases showing predicted reasoning program from the Ours and FinQANet (RoBERTa-large). Argu-
ments that match the ground truth are highlighted in green, while incorrect arguments are indicated in red.
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