@inproceedings{rosenman-etal-2024-llm,
title = "{LLM} Questionnaire Completion for Automatic Psychiatric Assessment",
author = "Rosenman, Gony and
Hendler, Talma and
Wolf, Lior",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.23",
pages = "403--415",
abstract = "We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains. The LLM is prompted to answer these questionnaires by impersonating the interviewee. The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C), using a Random Forest regressor. Our approach is shown to enhance diagnostic accuracy compared to multiple baselines. It thus establishes a novel framework for interpreting unstructured psychological interviews, bridging the gap between narrative-driven and data-driven approaches for mental health assessment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rosenman-etal-2024-llm">
<titleInfo>
<title>LLM Questionnaire Completion for Automatic Psychiatric Assessment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gony</namePart>
<namePart type="family">Rosenman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Talma</namePart>
<namePart type="family">Hendler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lior</namePart>
<namePart type="family">Wolf</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains. The LLM is prompted to answer these questionnaires by impersonating the interviewee. The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C), using a Random Forest regressor. Our approach is shown to enhance diagnostic accuracy compared to multiple baselines. It thus establishes a novel framework for interpreting unstructured psychological interviews, bridging the gap between narrative-driven and data-driven approaches for mental health assessment.</abstract>
<identifier type="citekey">rosenman-etal-2024-llm</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.23</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>403</start>
<end>415</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLM Questionnaire Completion for Automatic Psychiatric Assessment
%A Rosenman, Gony
%A Hendler, Talma
%A Wolf, Lior
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F rosenman-etal-2024-llm
%X We employ a Large Language Model (LLM) to convert unstructured psychological interviews into structured questionnaires spanning various psychiatric and personality domains. The LLM is prompted to answer these questionnaires by impersonating the interviewee. The obtained answers are coded as features, which are used to predict standardized psychiatric measures of depression (PHQ-8) and PTSD (PCL-C), using a Random Forest regressor. Our approach is shown to enhance diagnostic accuracy compared to multiple baselines. It thus establishes a novel framework for interpreting unstructured psychological interviews, bridging the gap between narrative-driven and data-driven approaches for mental health assessment.
%U https://aclanthology.org/2024.findings-emnlp.23
%P 403-415
Markdown (Informal)
[LLM Questionnaire Completion for Automatic Psychiatric Assessment](https://aclanthology.org/2024.findings-emnlp.23) (Rosenman et al., Findings 2024)
ACL