
Findings of the Association for Computational Linguistics: EACL 2024, pages 4017–4033
November 12-16, 2024 ©2024 Association for Computational Linguistics

MABC: Multi-Agent Blockchain-inspired Collaboration for Root Cause
Analysis in Micro-Services Architecture

Wei Zhang1, Hongcheng Guo1*, Jian Yang1*, Zhoujin Tian1, Yi Zhang1, Chaoran Yan1,
Zhoujun Li1*, Tongliang Li2, Xu Shi3, Liangfan Zheng3, Bo Zhang3

1State Key Laboratory of Complex & Critical Software Environment, Beihang University
2Computer School, Beijing Information Science and Technology University

3Cloudwise Research
{zwpride,hongchengguo,jiaya,eitbar,zhangyi2021,ycr2345,lizj}@buaa.edu.cn;
tonyliangli@bistu.edu.cn;{tim.shi,leven.zheng,bowen.zhang}@cloudwise.com;*

Abstract
Root cause analysis (RCA) in Micro-services
architecture (MSA) with escalating complex-
ity encounters complex challenges in main-
taining system stability and efficiency due to
fault propagation and circular dependencies
among nodes. Diverse root cause analysis
faults require multi-agents with diverse ex-
pertise. To mitigate the hallucination prob-
lem of large language models (LLMs), we de-
sign blockchain-inspired voting to ensure the
reliability of the analysis by using a decen-
tralized decision-making process. To avoid
non-terminating loops led by common circu-
lar dependency in MSA, we objectively limit
steps and standardize task processing through
Agent Workflow. We propose a pioneering
framework, multi-Agent Blockchain-inspired
Collaboration for root cause analysis in micro-
services architecture (MABC), where multiple
agents based on the powerful LLMs follow
Agent Workflow and collaborate in blockchain-
inspired voting. Specifically, seven special-
ized agents derived from Agent Workflow each
provide valuable insights towards root cause
analysis based on their expertise and the intrin-
sic software knowledge of LLMs collaborating
within a decentralized chain. Our experiments
on the AIOps challenge dataset and a newly
created Train-Ticket dataset demonstrate supe-
rior performance in identifying root causes and
generating effective resolutions. The ablation
study further highlights Agent Workflow, multi-
agent, and blockchain-inspired voting is crucial
for achieving optimal performance. MABC
offers a comprehensive automated root cause
analysis and resolution in micro-services archi-
tecture and significantly improves the IT Op-
eration domain. The code and dataset are in
https://github.com/knediny/mABC.

1 Introduction

Micro-services architecture (MSA) decomposes an
application into a series of independent nodes, inter-

*Corresponding author.

A

B C D

E

F G H

L

I J K

Alert Event
Generation Node

Alert Event Root
Cause Node

Circular Dependency

A depends on D

D depends
on G

G depends
on I

Node B offers a specific
service (e.g., login, register)

 B calls I for information.

Figure 1: Example of root cause analysis in MSA. Each
node corresponds to a specific service in the system
(e.g., login, register). Edge B→I represents that service
I relies on the information provided by service B. Alert
event arises on node A while alert event root cause node
is I with fault propagation path I→G→D→A where a
challenge circular dependency of H→E→L→H.

acting through lightweight communication mech-
anisms (Zhang et al., 2021a; Kim et al., 2013;
Alquraan et al., 2018). A key component in main-
taining MSA is Root cause analysis (RCA), which
aims to find the root cause of alert events and en-
hance system robustness plays a significant role in
avoiding data leaks and program failure analysis
(Lin et al., 2018; Ma et al., 2020a).

Compared with traditional architectures only
containing one central service, RCA in Micro-
services architecture (MSA) has become extremely
difficult as faults continue to propagate between
service nodes and alerts become increasingly com-
plex (Jamshidi et al., 2018; Liu et al., 2020). In
Figure 1, alert event arises on A, while the alert
event root cause node is I with fault propagation
path I→G→D→A. RCA identifies the root cause
of faults, I here, by tracing back to the origin node
and even further analyzing metrics. Existing ap-
proaches such as TraceAnomaly (Liu et al., 2020),

4017

https://github.com/knediny/mABC

and MEPFL (Zhou et al., 2019) with lack of mech-
anism are unable to handle circular dependencies
(e.g. H→E→L→H) in Figure 1 well and rely heav-
ily on supervised training processes. Large lan-
guage models (LLMs) like GPT (OpenAI, 2023)
and their integration with multi-agent exhibit re-
markable analytical and problem-solving capabili-
ties, which are essential for identifying and address-
ing the root cause of fault in complex MSA (Wei
et al., 2022a; Kojima et al., 2022; Wei et al., 2022b;
Yao et al., 2023). Although RCA-Copilot (Chen
et al., 2023), RCAgent (Wang et al., 2023b), and D-
Bot (Zhou et al., 2023) have improved RCA tools
with event matching and information aggregation,
they struggle with the hallucination problem and
the common cross-node fault (e.g. I→G→D→A
in Figure 1) in MSA.

To tackle the above issues, we introduce MABC,
a groundbreaking framework designed to revolu-
tionize RCA. To solve diverse cross-node faults, we
introduce multi-agents with diverse expertise and
extensive software knowledge to analyze a wide
range of data and navigate through node depen-
dencies, which fully consider the propagation of
failures in dependencies. To mitigate hallucination
in LLMs, we integrate a blockchain-inspired voting
system in the MABC that uses multi-agent collabo-
ration and community voting for high-quality con-
tent assurance. Inspired by blockchain governance
(blockchain, 2023; wiki, 2023), this process is trans-
parent and community-driven, enhancing decision-
making correctness through a decentralized struc-
ture. The MABC employs dynamic weight adapta-
tion for fairness and includes penalties for inactive
or inaccurate agents, alongside a cap on weight con-
centration. This ensures accuracy, fairness, and reli-
ability in content generation through decentralized,
professional multi-agent assessments and repeated
verifications. To address the non-terminating loop
led by circular dependency, we objectively limit the
number of steps and standardize task processing
through Agent Workflow based on task difficulty
and dynamic context perception. By harnessing
the power of LLMs within multi-agent blockchain-
inspired collaboration, MABC conducts RCA and
resolution development in MSA, unlike previous
methods. Specifically, 1) An alert event arises due
to access function blockages or monitoring system
alarms in MSA. 2) Alert Receiver (A1) chooses and
forwards the alert event with the highest priority.
3) Process Scheduler (A2) divides unfinished RCA
into sub-tasks, handled by Data Detective (A3), De-

pendency Explorer (A4), Probability Oracle (A5),
and Fault Mapper (A6) for various requests. 4)
Solution Engineer (A7) develops resolutions refer-
encing previous successful cases.

Experimental results on the public AIOps chal-
lenge dataset and our created train-ticket dataset
demonstrate superior performance in identifying
root causes and effective resolution development,
compared to existing strong baselines. The abla-
tion study further highlights Agent Workflow, multi-
agent, and blockchain-inspired voting is crucial
for achieving optimal performance. Generally, the
main contributions of this work are as follows:

• Multi-Agent Framework in RCA: Different
from previous works designed for single node
fault, we proposed framework MABC driven
by LLM and multi-agent collaboration stan-
dardized by Agent Workflow performs RCA
and resolution development in complex MSA
scenarios, which will be open-sourced first.

• Blockchain-Inspired Voting: By employing
blockchain-inspired voting with multi-agent
collaboration in MABC, dynamically adjusted
weights based on contribution index and ex-
pertise index of agents ensure the accuracy
and reliability of content generation.

• Impressive Evaluation: Superior perfor-
mance in identifying root causes and resolu-
tion development effectively both on the pub-
lic AIOps challenge dataset and our created
Train-Ticket dataset.

2 Methodology

2.1 Overview

In this section, we provide an overview of MABC,
specifically engineered to pinpoint the root causes
of alert events in a complex MSA. Illustrated in
Figure 2, MABC introduces seven agents: Alert
Receiver, Process Scheduler, Data Detective, De-
pendency Explorer, Probability Oracle, Fault Map-
per, and Solution Engineer. These agents collabo-
rate transparently and equally, invoking each other
to address alert events in the MABC pipeline. In
MSA, alert events can arise from user-side blocked
function access and monitoring system alarms,
such as increased login response times and net-
work latency in the login node. The specific case is
shown in Figure 5, 6, 7, 8, 9, 10, 11 in Appendix A.

4018

Alert
Receiver

Step 1 Alert Event
Generation

Trigger Access function
 blocked

 Monitor system
alarm

 Alert Event

Micro-services
Architeture

Step 2 Alert Event
Prioritization

 Alert Event

Priority
Selection

 Alert Event Alert Event Alert Event

 Alert Event

Step 3 Root Cause
Analysis

 sub-task
 { }

Conquer

 sub-task{ }
NoYes

Finish? Root Cause
Develop

 Resolution

]alert event
resolution

Previous successful cases

Step 4 Root Case
Resolution Development

Data
Detective

Process
Scheduler

Dependency
Explorer

Probability
Oracle

Fault
Mapper

Solution
Engineer

Average Latency: 200ms
Traffic: 20000 requests/s
Errors: 5%
Saturation: Memory: 75%, CPU:
80%, Disk I/O: 60%, Network: 70%
Memory: 1.5GB

Node A: 1; Node B: 1; Node C: 1;
Node D: 2; Node E: -1; Node F: -2;
(1 means direct child nodes, -1
indicates the parent node, and other
distances show further relatives.)

Edge A: 90% ; Edge D: 70%;
Edge C: 10%; Edge B: 40%;
(Each edge has a probability that
indicates the probability of the root
cause being at that edge from the
alert node.)

Fault Web

 Create

 Renew

Data
Request

Assistant

Fault Web
Request

Probability
Request

Dependency
Request

Root Cause
Analysis

 sub-task
 { }
 sub-task
 { }
 sub-task
 { }

Figure 2: Overview of MABC. Overall pipeline encapsulates the flow from alert inception to root cause analysis
within MABC. 1) An alert event arises due to access function blockages or monitoring system alarms in MSA.
2) Alert Receiver (A1) forwards and chooses the alert event with the highest priority. 3) Process Scheduler (A2)
divides unfinished root cause analyses into sub-tasks, handled by Data Detective (A3), Dependency Explorer
(A4), Probability Oracle (A5), and Fault Mapper (A6) for various requests. 4) Solution Engineer (A7) develops
resolutions for the root cause referencing previous successful cases.

2.2 Agent Workflow

In Figure 3, Agent Workflow enables all agents to
complete their tasks effectively, adhering to a pre-
scribed methodology. For questions that require
real-time data or additional information, Agent
Workflow activates the ReAct answer workflow,
which involves an iterative cycle of thought, ac-
tion, and observation until a satisfactory answer is
reached. Conversely, when no external tools are
necessary, Agent Workflow defaults to the direct
answer workflow, where responses are directly for-
mulated based on the prompt provided. It is worth
noting that to address the non-terminating loop led
by circular dependency, we terminate the process
at 20 steps. The prompt example is shown in Fig-
ure 13, 14 in Appendix D.

2.3 Multi-Agent

In this section, we provide a thorough introduction
of agents in MABC. The role description are shown
in Figure 15, 16, 17, 18, 19, 20, 21 in Appendix E
and tools are shown in Table 9 in Appendix H.

2.3.1 Alert Receiver (A1)
In Figure 2, the responsibility of Alert Receiver is
to sort the received alert events based on the time,
urgency, and scope of impact. After determining
the priority of the alert events, Alert Receiver dis-
patches the most urgent and widely impacting alert

 Question

Reasoning
Trace

Action

LLM

Observation

Enviroment

ReAct Answer

Direct Answer

Zero shot

Chain of
Thought

X of
Thought

Reasoning
TraceLLM

 Answer

Figure 3: Two distinct workflows of agent.

events to Process scheduler further processing fol-
lowing the pipeline.

2.3.2 Process Scheduler (A2)

In Figure 2, when an alert arrives at Alert Receiver,
Process Scheduler engages specialized agents for
tasks like data gathering, fault web updates, depen-
dency analysis, and probability scoring. It forwards
critical insights to Solution Engineer for resolution.

4019

After each sub-task, it checks for root cause iden-
tification. If unresolved, it iterates by generating
new sub-tasks and seeking further agent assistance
until the root cause is determined. Finally, Process
Scheduler provides the root cause, an updated fault
web, and some resolutions, concluding handling
process and preparing for the next alert.

2.3.3 Data Detective (A3)
In Figure 2, Data Detective collects data from des-
ignated nodes within specified time windows as
directed by the Process Scheduler. To ensure thor-
ough analysis and maximize informational value, it
excludes non-essential data and processes key met-
rics like average latency, traffic volume, error rates,
resource saturation, and concurrent user counts into
charts and reports. This approach simplifies data
handling for LLMs, streamlining the task of Data
Detective and enhancing efficiency in data explo-
ration and analysis within MABC.

2.3.4 Dependency Explorer (A4)
In Figure 2, Process Scheduler sends a Dependency
Request to Dependency Explorer to query depen-
dencies among micro-services nodes, including the
specific node and alert time. Dependency Explorer
identifies direct and indirect dependencies based
on global topology and calls within the time win-
dow. This is crucial for tracing fault paths, marking
impacted nodes, and facilitating further root cause
analysis and resolution.

2.3.5 Probability Oracle (A5)
In Figure 2, Probability Oracle assesses the fail-
ure probability of nodes. Inaccessible nodes get
a high default failure probability, while accessible
nodes are evaluated based on performance metrics
like response time, error rate using a computational
model. By analyzing data correlations, such as
a high Pearson correlation coefficient indicating a
link between response time and error rate, Probabil-
ity Oracle adjusts failure probabilities of correlated
nodes increasingly while decreasing on other nodes.
These probabilities are sent to Process Scheduler,
aiding in updating fault web, root cause analysis,
and resolution development.

2.3.6 Fault Mapper (A6)
In Figure 2, when Fault Web needs to be updated,
Process Scheduler issues a Fault Web Request,
which includes nodes and their corresponding fault
probabilities. Fault Mapper creates or renews Fault

Web based on this information to visually repre-
sent the fault probabilities between different nodes.
Fault Web not only displays the alert source node
but also depicts other related nodes and the fault
probabilities of their connecting edges. Fault Map-
per ensures that Process Scheduler can make de-
cisions based on the most up-to-date information,
thereby guiding Solution Engineer to develop ap-
propriate resolutions.

2.3.7 Solution Engineer (A7)
In Figure 2, Solution Engineer receives Root
Cause Analysis and Solution Requests from Pro-
cess Scheduler and then decides the final root cause
analysis and development of solutions based on the
available node data. Solution Engineer performs
node-level analysis to confirm the nodes affected
to be repaired by the MCA when node downtime
data is unavailable. If node data is available, So-
lution Engineer performs metric-level analysis to
find the real problem metric through the correlation
between metrics and historical value fluctuations to
develop more reasonable solutions like increasing
disk throughput for high read and write latency. So-
lution Engineer also references previous successful
cases, like in Table 1, to guide the development
of the current solution and the conclusion of the
process ensuring that the proposed resolution is
practical and effective.

2.4 Blockchain-Inspired Voting

2.4.1 Blockchain Communication
To mitigate the hallucination of LLM and avoid
falling into non-terminating loops, we have de-
signed blockchain-inspired voting as a reflection for
any answer to any question from any agent. After
the agent answers, all other agents decide whether
to initiate a poll and obtain the result through
weighted voting. Answers that do not initiate a
poll process or pass in the poll are considered to be
of high quality due to the majority approval of the
agents, while answers that fail to pass will be regen-
erated by the author agent to improve the quality.
The agents in the MABC are transparent and equal
to each other, despite their different responsibili-
ties, and compose a decentralized structure Agent
Chain. Additionally, although Agent Chain lacks
the implementation of a Byzantine fault-tolerant
system, it is still very robust for driven by Agent
Workflow to avoid the generation of false messages.
Inspired by the governance guidelines of decentral-
ized best practice blockchain, we choose on-chain

4020

Alert Events Description

Tablespace High Utilization Indicates extensive data occupation in tablespace, potentially degrading database performance.

Database Connectivity Fault Signifies possible connection issues due to excessive connections, impacting response and transactions.

CPU Resource Insufficiency High session average CPU time suggest significant CPU occupation, risking performance and stability.

Memory Overflow Shows memory usage exceeding safe limits, risking performance degradation or crashes.

Disk IO Performance Fault Abnormal increase in physical read rates, indicating potential disk IO issues.

Table 1: Examples of Alert Events

governance to allow participants to trust each other
and leave decision-making power in the hands of
decentralized entities. More detailed rules descrip-
tion is shown Figure 22 Appendix F.

2.4.2 Voting Weights

Voting weight is determined by wc · we, where
contribution index (wc) reflects activity level, and
expertise index (we) reflects professionalism.
The contribution index wc is updated as follows:

wc = min (wc · (1− δ) + ∆wc, wcmax) (1)

were wc starts at 1.0. The decay rate δ ranges from
0 to 0.03, applied after each voting event to en-
courage ongoing contribution and prevent power
concentration. ∆wc is an increase of 0.1 from vot-
ing participation and proposal submission. wcmax

is set to 1.5 to ensure fairness.
The expertise index we is governed by:

we = min (we +∆we, wemax) (2)

where we does not decay automatically, reflecting
accumulated expertise. ∆we increases by 0.01 if
the agent’s vote aligns with the final outcome and
decreases by 0.01 otherwise. wemax is also set to
1.5 to prevent disproportionate influence.

The voting weight system balances activity and
expertise to ensure fairness. The contribution index
(wc) starts at 1.0, increases by 0.1 for each vote
or proposal, and decays by up to 0.03 after each
voting event to encourage ongoing participation,
capped at 1.5. The expertise index (we) increases
by 0.01 if an agent’s vote aligns with the outcome
and decreases by 0.01 otherwise, capped at 1.5,
reflecting professionalism without decay. This sys-
tem rewards both active engagement and accurate
contributions, preventing power hoarding and reck-
less voting, while maintaining a balanced and fair
decision-making process.

2.4.3 Voting Outcome Determination
The support rate (s) and participation rate (p) are
defined as:

s =

∑n
i=1 1(wi)∑n
i=1 wi

(3)

p =

∑n
i=1 1

′(wi)∑n
i=1 wi

(4)

where n is the total number of voting agents, votei
is the vote of the i-th agent, and wi is the weight
of the i-th vote. A proposal passes if s ≥ α &
p ≥ β, where α and β are predefined thresholds
(e.g., 0.5). The indicator function 1(·) outputs wi

if the i-th agent votes For, and 0 otherwise. The
indicator function 1′(·) outputs wi if the i-th agent
votes For or Against, and 0 for Abstain.

2.4.4 Voting Process
On Agent Chain, every agent is entitled to par-
ticipate in voting. The voting process works in
Figure 4: When Ax ∈ {Ai}7i=1 gets an answer A
for question Q, all agents on the chain will exam-
ine A and face the choice of whether to initiate a
vote on X − Q − A. If no Agent initiates a vote,
the answer is accepted. If Ay ∈ {Ai}7i=1 requires
a vote, all agents on the agent chain will vote on
Ay − Ax −Q−A, with the voting options being
For, Abstain, and Against. If the vote passes, Ax

will re-answer Question Q to generate a new An-
swer A′. More detailed description and case are
shown in 23, 24, 25 Appendix F.

Object

Question Q

Options

Answer A

Initial a Vote

For Abstain Against

Agent Chain Vote
Re-answer A'

Next

Figure 4: Vote process on Agent Chain

4021

Process Description

Admin Operations Admin login, site, and route addition, train information addition, user and contact addition, multiple queries (routes, trains, sites, etc.), updates, deletions, repeat queries.

Normal Flow User registration and login, ticket availability search, ticket booking, order status refresh, order payment, and ticket check-in.

Re-book Flow Registration and login, availability search, booking, latest order status refresh, re-booking, new order payment (if applicable), check-in.

Re-Book Fail Flow Registration and login, availability search and booking, order status refresh, successful first re-booking, order payment, failed second re-booking attempt.

Search Fail to Add User registration and login, failed ticket search (due to missing stations), admin adds missing info, ticket research and booking, latest order status refresh.

Consign Preserve User registration and login, ticket search and booking, order status refresh, order payment, luggage consignment addition, and check-in.

Preserve Successfully User registration and login, ticket availability search and booking, order status refresh, payment, and check-in.

Table 2: Train-Ticket Process Descriptions

3 Experiments

3.1 Datasets
Train-Ticket Dataset. We curate our dataset on
Train-Ticket (Zhou et al., 2018; Li et al., 2022a),
an open-source MSA from Fudan University. We
designed 7 processes and 100 virtual users to simu-
late real operations. Table 2 details each process,
which includes operations like registration, login,
querying, booking, and ticket changes. Users ran-
domly select processes to cover various scenarios.
Specifically, we introduce faults by ChaosBlade (al-
ibaba, 2021) into the system as outlined in Table 3.
Please refer to Appendix B for more details.

Category Case Examples

Network Packet loss, Frequent retransmission, DNS failures,
bandwidth saturation, high TCP connection setup delays

Storage High I/O latency

CPU High CPU usage by code, CPU frequently grabs

Memory High frequency of FULL GC, memory frequently grabs

Code Exceptions thrown by error codes, HTTP requests,
returning error codes

Table 3: Types of Faults Injected in the Experiment

AIOps Challenge Dataset. 2020 AIOps Inter-
national Challenge Dataset aims to discover alert
events and their root causes in micro-service ap-
plications, such as cloud platform services, which
include containers, service meshes, micro-service,
and variable infrastructures. More details are in
Appendix C.

3.2 Evaluation Metrics
Root Cause Result Accuracy (RA) : Following
the previous work (Liu et al., 2023; Zhou et al.,
2023), we use result accuracy (RA) to quantify the
precision of MABC in finding the root cause.

RA =
Ac − σ ·Ai

At
(5)

where Ac denotes the number of correct causes,
At denotes the total number of causes, Ai denotes

the number of wrongly detected causes, and σ is a
hyper-parameter with 0.1 as the default value be-
cause we recognize redundant causes is less harm-
ful than missing causes. Therefore, we limit the
identification to a maximum of 4 root causes for an
anomaly.

Root Cause Path Accuracy (PA) : We use the
root cause path accuracy (PA) metric, which aims
to measure the effectiveness of MABC in tracing
the correct path from the symptoms (alerts) back to
the root causes. The formula for PA similar to RA
focuses on path accuracy as:

PA =
Pc − τ · Pi

Pt
(6)

where Pc denotes the number of correctly identified
paths leading to the root cause, Pt is the total num-
ber of actual root cause paths present, Pi denotes
the number of incorrectly inferred paths, which do
not align with the actual root cause paths, and τ
is a hyper-parameter designed to penalize the inac-
curacies in path inference, with a default value of
0.2, reflecting the understanding that inaccurately
inferred paths are less detrimental than completely
missing the correct paths, but there is a stronger em-
phasis on precision due to the potential complexity
and relevance of paths.

3.3 Baselines

We choose decision tree (Abdallah et al., 2018),
TraceAnomaly (Liu et al., 2020) and MEPFL (Zhou
et al., 2019) as unsupervised baselines to compare
MABC. For ReAct (Yao et al., 2023), we imple-
ment by Langchain (langchain ai, 2023). It is worth
noting that RCACopilot (Chen et al., 2023) and
RCAgent (Wang et al., 2023b) are not open-source,
D-Bot (Zhou et al., 2023) is not suitable for MSA.

3.4 Implementation and Configuration

We implement MABC on Ubuntu 22.04, equipped
with an Intel Xeon (R) Gold 6348 CPU @2.60GHz,
eight NVIDIA H800 GPUs (80 GB), and 528 GB

4022

Model Base Train-Ticket AIOps Average
RA PA Average RA PA Average

Decision Tree - 36.8 34.7 35.8 28.3 26.7 27.5 31.6
TraceAnomaly - 25.3 23.5 24.4 20.1 18.9 19.5 22.0

MEPFL - 30.3 29.1 29.7 33.7 29.7 31.7 30.7
ReAct GPT-3.5-Turbo 31.8 26.8 29.3 25.1 22.7 23.9 26.6
ReAct GPT-4-Turbo 43.0 38.9 41.0 37.5 34.4 36.0 38.5
MABC Llama-3-8B-Instruct 46.1 40.9 43.5 43.0 39.9 41.5 42.5
MABC GPT-3.5-Turbo 48.1 42.8 45.5 41.1 36.7 38.9 42.2
MABC GPT-4-Turbo 54.4 48.2 51.3 45.5 39.3 42.4 46.9

Table 4: Main Results On Train-Ticket Dataset and AIOps challenge Dataset

of memory. The software setup includes NVIDIA-
SMI version 535.104.05 and CUDA 12.3. We set
temperature as 0.6 for LLMs.

3.5 Main Results

Based on the results in Table 4, we can see
that baselines such as Decision Tree(Abdallah
et al., 2018), TraceAnomaly(Liu et al., 2020), and
MEPFL(Zhou et al., 2019) achieved average per-
formance scores ranging from 16.0 to 26.7 on the
Train-Ticket dataset and AIOps Challenge dataset.
In comparison, ReAct(Yao et al., 2023) with GPT-
3.5-Turbo and GPT-4-Turbo showed improvements
with average scores of 21.6 and 27.5, respectively.
However, our proposed MABC significantly out-
performed all the baseline models and ReAct with
GPT-4-Turbo, achieving an impressive average
score of 64.9. This indicates that our framework
MABC has a strong predictive capability and ro-
bustness in detecting faults and anomalies in both
datasets. The substantial improvement over the
baselines demonstrates the effectiveness and supe-
riority of our approach in this context.

4 Analysis

4.1 Decision Efficiency.

Following RCAgent (Wang et al., 2023b), we use
pass rate (PR) and average path length (APL) to
evaluate the thinking trajectory steps of MABC
in accomplishing the task, considering the valid-
ness of action trajectories and stability of the au-
tonomous agent. PR calculated by Np

Nt
, where

Np denotes the number of trajectories completed
within θ steps, θ typically set to 15, and Nt denotes
the total number of trajectories. Besides, APL is

denoted by
∑Np

k=1 Lk

Np
, where Lk denotes the path

length of the k-th successful trajectory.

Model Base
Train-Ticket AIOps

PR APL PR APL

Decision Tree - 62.4 12.1 53.8 13.4
TraceAnomaly - 25.3 20.3 31.1 19.1

MEPFL - 33.3 19.2 37.1 18.7
ReAct GPT-3.5-Turbo 41.7 15.9 38.0 16.2
ReAct GPT-4-Turbo 47.1 13.9 44.2 14.3
MABC Llama-3-8B-Instruct 56.1 14.8 46.1 17.7
MABC GPT-3.5-Turbo 58.1 13.8 51.1 14.7
MABC GPT-4-Turbo 73.0 10.4 68.8 11.7

Table 5: Decision Efficiency Evaluation

Model Base R-Useful (Train) R-Useful (AIOps)

Decision Tree - - -
TraceAnomaly - - -

MEPFL - - -
ReAct GPT-3.5-Turbo 2.1 2.1
ReAct GPT-4-Turbo 2.4 2.3
MABC Llama-3-8B-Instruct 3.3 2.7
MABC GPT-3.5-Turbo 3.1 3.2
MABC GPT-4-Turbo 4.2 3.6

Table 6: Human Evaluation

In Table 5, the results confirm that MABC ex-
hibits superior decision efficiency, as evidenced by
its high pass rate (PR) and low average path length
(APL) across both datasets, which demonstrates
that MABC not only completes tasks with a higher
probability but also does so with fewer steps, indi-
cating a more efficient and stable decision-making
process. The GPT-4-Turbo variant, in particular,
showcases the most effective decision trajectories,
suggesting that MABC is highly capable of gener-
ating efficient actions in the context of root cause
analysis in a MSA.

4.2 Human evaluation.

In Appendix G, we evaluated 200 randomly se-
lected cases, focusing on root causes, pathways,
and resolutions. Ten AIOps experts rated each case
on a scale of 1 (very useless) to 5 (very useful), and

4023

Model Train-Ticket AIOps

RA PA PR APL R-Useful RA PA PR APL R-Useful

MABC 54.4 48.2 73.0 10.4 4.2 45.5 39.3 68.8 11.7 3.6
MABC w/o Agent Workflow 46.2 38.7 67.7 11.8 3.5 36.6 34.3 61.3 11.7 3.3

MABC w/o Multi-Agent 38.4 33.0 52.9 13.7 2.8 32.4 28.8 50.1 13.7 2.7
MABC w/o Voting 44.8 39.9 65.7 10.9 3.3 40.1 36.7 68.0 10.2 3.4

Table 7: Component Impact Evaluation

we averaged these ratings to derive the Resolution
Evaluation Metrics (R-Useful) score.

Table 6 highlights a clear preference among ex-
perts for the resolutions generated by the MABC
model, especially when enhanced with GPT-4-
Turbo. The higher R-Useful scores for MABC
with GPT-4-Turbo across both datasets underscore
its ability to produce highly useful solutions that
align well with expert expectations in the AIOps
domain. In contrast, the moderate R-Useful scores
for ReAct indicate its limited effectiveness in meet-
ing the nuanced needs of AIOps experts. Decision
tree, TraceAnomaly, and MEPFL are not evaluated
for R-Useful due to their inability to generate res-
olutions. Overall, the human evaluation confirms
that MABC with GPT-4-Turbo excels in creating
expert-aligned solutions, showing significant po-
tential for improving decision-making and produc-
tivity in AIOps.

4.3 Component Impact.

In this section, we verify the impact of three com-
ponents in MABC with GPT-4-Turbo, i.e., MABC
without Agent Workflow (based on ReAct rather
than Agent Workflow), MABC without Multi-Agent
(Agent Workflow), and MABC without Blockchain-
Inspired Voting.

Table 7 shows that MABC in its complete form
excels across all metrics on both datasets, high-
lighting the necessity of integrating all components.
Removing Agent Workflow significantly reduces
performance, indicating its crucial role. Limit-
ing the framework to a Single Agent results in
the lowest scores, severely diminishing its capa-
bility for AIOps tasks. Excluding the Blockchain-
Inspired Voting component also decreases perfor-
mance, though less critically, underscoring its role
in refining and validating resolutions. The eval-
uation underscores the importance of each com-
ponent: Agent Workflow provides a structured ap-
proach, the Multi-Agent architecture captures di-
verse perspectives, and the Blockchain-Inspired

Voting mechanism ensures consensus and reliabil-
ity. Together, these components synergize to en-
hance performance of MABC, making it a robust
tool for root cause analysis in MSA.

5 Related Work

5.1 Root Cause Analysis in Micro-Services
Architecture

Root cause analysis (RCA) in large systems, partic-
ularly within MSA, is crucial in AIOps (Alquraan
et al., 2018; Guo et al., 2024; Zhang et al., 2021b;
Liu et al., 2019; Lou et al., 2020). RCA tasks focus
on logs, metrics, and traces, with various studies
proposing methods for each data source (Guo et al.,
2021b; Leesatapornwongsa et al., 2017; Liu et al.,
2023). Techniques include identifying failure pat-
terns (Ma et al., 2020b; Zhang et al., 2021a) and
exploring service dependency graphs using met-
rics and traces (Ma et al., 2020a; Li et al., 2022b).
Advanced methodologies, particularly NLP for log
analysis and anomaly detection, are emphasized
(Ghosh et al., 2022; Guo et al., 2023a). Machine
learning has been leveraged for log analysis (Locke
et al., 2021; Guo et al., 2021a; Gao et al., 2018),
and LLMs are used to enhance RCA performance
(Zhang et al., 2024b).

5.2 LLM in Micro-Services Architecture
The rapid advancements in language modeling, par-
ticularly through Transformer-based architectures
and LLMs like GPT-4 and PaLM (OpenAI, 2023;
Anil et al., 2023; Guo et al., 2023b), have signifi-
cantly impacted natural language processing and
facilitated their use in complex MSA (Aghajanyan
et al., 2023; Kaplan et al., 2020; Park et al., 2023).
Integrating LLMs with external tools and APIs en-
hances their functionality in cloud RCA (Qin et al.,
2023), improving log analysis and anomaly detec-
tion. LLMs are being explored as core intelligence
in autonomous multi-agent systems (Wang et al.,
2024; Zhang et al., 2024a), enabling effective en-
vironment interaction (Wei et al., 2022b; Ouyang

4024

et al., 2022). This spans tasks from toy examples to
real-world cloud RCA, highlighting LLM versatil-
ity in dynamic environments (Wang et al., 2023a).
The shift towards LLMs in MSA promotes greater
autonomy, intelligence, and efficiency (Chen et al.,
2019, 2023), driving the growth of end-to-end in-
telligent operation and maintenance with tasks like
database diagnosis, event processing, and RCA
(Wang et al., 2023b; Zhou et al., 2023).

6 Conclusion

In this paper, we introduce MABC, a framework
that improves alert events resolution in complex
MSA by combining multi-agent systems, LLMs,
and blockchain voting. We also develop the train-
ticket benchmark, an open-source dataset for RCA
in MSA. Experimental results on the AIOps chal-
lenge and train-ticket datasets show MABC’s ef-
fectiveness in identifying root causes and provid-
ing solutions, with the Agent Workflow and voting
mechanism being crucial. MABC enhances root
cause analysis, boosting system reliability and op-
erational efficiency. Future work will focus on
enhancing components, incorporating more data
sources, and improving agent collaboration, aim-
ing to make MABC essential for IT operations.

7 Limitations

MABC faces challenges in complexity and scal-
ability as the number of agents and alert events
increase, leading to higher computational overhead
and longer processing times, necessitating more
efficient algorithms and optimization techniques.
Its effectiveness also heavily relies on the accu-
racy and reliability of the data and models used,
requiring regular updates and validations to prevent
erroneous analyses. Additionally, the blockchain-
inspired voting mechanism, while innovative, can
be cumbersome and time-consuming, especially
with frequent alert events and numerous agents,
potentially delaying decision-making. Future iter-
ations should refine the voting process and incor-
porate mechanisms to detect and mitigate potential
biases among agents. Addressing these limitations
will be crucial for enhancing MABC’s overall per-
formance and reliability.

8 Ethical Considerations

In our study focused on the MABC, we exclusively
utilized publicly available data and adhered strictly

to ethical and legal standards. Sensitive terminol-
ogy and methodologies were carefully managed
to ensure no breach of privacy or confidentiality.
Our commitment to transparency and integrity in
handling data ensured that our research remained
within ethical boundaries without compromising
the effectiveness of our findings.

References
Imad Abdallah, V Dertimanis, H Mylonas, Konstanti-

nos Tatsis, Eleni Chatzi, N Dervili, K Worden, and
Eoghan Maguire. 2018. Fault diagnosis of wind
turbine structures using decision tree learning algo-
rithms with big data. In Safety and Reliability–Safe
Societies in a Changing World, pages 3053–3061.
CRC Press.

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning
Hsu, Karen Hambardzumyan, Susan Zhang, Stephen
Roller, Naman Goyal, Omer Levy, and Luke Zettle-
moyer. 2023. Scaling laws for generative mixed-
modal language models. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pages 265–279.
PMLR.

alibaba. 2021. https://github.com/chaosblade-
io/chaosblade.

Ahmed Alquraan, Hatem Takruri, Mohammed Al-
fatafta, and Samer Al-Kiswany. 2018. An anal-
ysis of network-partitioning failures in cloud sys-
tems. In Proceedings of the 13th USENIX Confer-
ence on Operating Systems Design and Implementa-
tion (OSDI’18).

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and
et al. 2023. Palm 2 technical report. CoRR,
abs/2305.10403.

blockchain. 2023. https://www.blockchain.com/.

Haicheng Chen, Wensheng Dou, Yanyan Jiang, and
Feng Qin. 2019. Understanding exception-related
bugs in large-scale cloud systems. In 2019 34th

4025

https://github.com/chaosblade-io/chaosblade
https://github.com/chaosblade-io/chaosblade
https://www.blockchain.com/

IEEE/ACM International Conference on Automated
Software Engineering (ASE’19).

Yi Chen et al. 2023. Empowering cloud rca with
augmented large language models. arXiv preprint
arXiv:2311.00000.

Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong
Wang, Jun Wei, Ruirui Huang, Li Zhou, and Yong-
ming Wu. 2018. An empirical study on crash re-
covery bugs in large-scale distributed systems. In
Proceedings of the 26th ACM joint meeting on eu-
ropean software engineering conference and sym-
posium on the foundations of software engineering
(ESEC/FSE’18).

Supriyo Ghosh, Manish Shetty, Chetan Bansal, and
Suman Nath. 2022. How to fight production inci-
dents? an empirical study on a large-scale cloud
service. In Symposium on Cloud Computing, pages
126–141.

Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021a.
Logbert: Log anomaly detection via bert. In 2021
international joint conference on neural networks
(IJCNN), pages 1–8. IEEE.

Hongcheng Guo, Yuhui Guo, Renjie Chen, Jian
Yang, Jiaheng Liu, Zhoujun Li, Tieqiao Zheng,
Weichao Hou, Liangfan Zheng, and Bo Zhang.
2023a. Loglg: Weakly supervised log anomaly de-
tection via log-event graph construction. Preprint,
arXiv:2208.10833.

Hongcheng Guo, Xingyu Lin, Jian Yang, Yi Zhuang,
Jiaqi Bai, Tieqiao Zheng, Bo Zhang, and Zhoujun
Li. 2021b. Translog: A unified transformer-based
framework for log anomaly detection. arXiv preprint
arXiv:2201.00016.

Hongcheng Guo, Jian Yang, Jiaheng Liu, Jiaqi
Bai, Boyang Wang, Zhoujun Li, Tieqiao Zheng,
Bo Zhang, Junran Peng, and Qi Tian. 2024. Log-
former: A pre-train and tuning pipeline for log
anomaly detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
135–143.

Hongcheng Guo, Jian Yang, Jiaheng Liu, Liqun Yang,
Linzheng Chai, Jiaqi Bai, Junran Peng, Xiaorong Hu,
Chao Chen, Dongfeng Zhang, et al. 2023b. Owl: A
large language model for it operations. arXiv preprint
arXiv:2309.09298.

Pooyan Jamshidi, Claus Pahl, Nabor C Mendonça,
James Lewis, and Stefan Tilkov. 2018. Microser-
vices: The journey so far and challenges ahead. IEEE
Software, 35(3):24–35.

Jared Kaplan et al. 2020. Scaling laws for neural lan-
guage models. ArXiv.

Myunghwan Kim, Roshan Sumbaly, and Sam Shah.
2013. Root cause detection in a service-oriented
architecture. ACM SIGMETRICS Performance Eval-
uation Review, 41(1):93–104.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

langchain ai. 2023. https://github.com/langchain-
ai/langchain.

Tanakorn Leesatapornwongsa, Cesar A Stuardo, Riza O
Suminto, Huan Ke, Jeffrey F Lukman, and Haryadi S
Gunawi. 2017. Scalability bugs: When 100-node
testing is not enough. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (Ho-
tOS’17).

Bowen Li, Xin Peng, Qilin Xiang, Hanzhang Wang, Tao
Xie, Jun Sun, and Xuanzhe Liu. 2022a. Enjoy your
observability: an industrial survey of microservice
tracing and analysis. Empirical Software Engineer-
ing, 27:1–28.

Mingjie Li, Minghua Ma, Xiaohui Nie, Kanglin Yin,
Li Cao, Xidao Wen, Zhiyun Yuan, Duogang Wu,
Guoying Li, Wei Liu, et al. 2022b. Mining fluctua-
tion propagation graph among time series with active
learning. In Database and Expert Systems Applica-
tions: 33rd International Conference.

JinJin Lin, Pengfei Chen, and Zibin Zheng. 2018. Mi-
croscope: Pinpoint performance issues with causal
graphs in micro-service environments. In Service-
Oriented Computing: 16th International Conference,
ICSOC 2018, Hangzhou, China, November 12-15,
2018, Proceedings 16, pages 3–20. Springer.

Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. 2019. What bugs cause production cloud in-
cidents? In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS’19).

Ping Liu, Haowen Xu, Qianyu Ouyang, Rui Jiao,
Zhekang Chen, Shenglin Zhang, Jiahai Yang, Lin-
lin Mo, Jice Zeng, Wenman Xue, and Dan Pei. 2020.
Unsupervised detection of microservice trace anoma-
lies through service-level deep bayesian networks. In
2020 IEEE 31st International Symposium on Soft-
ware Reliability Engineering (ISSRE), pages 48–58.

Yuhe Liu, Changhua Pei, Longlong Xu, Bohan Chen,
Mingze Sun, Zhirui Zhang, Yongqian Sun, Shenglin
Zhang, Kun Wang, Haiming Zhang, et al. 2023. Op-
seval: A comprehensive task-oriented aiops bench-
mark for large language models. arXiv preprint
arXiv:2310.07637.

Steven Locke, Heng Li, Tse-Hsun Peter Chen, Weiyi
Shang, and Wei Liu. 2021. Logassist: Assisting log
analysis through log summarization. IEEE Transac-
tions on Software Engineering, 48(9):3227–3241.

Chang Lou, Peng Huang, and Scott Smith. 2020. Un-
derstanding, detecting and localizing partial failures
in large system software. In Proceedings of the 17th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’20).

4026

https://arxiv.org/abs/2208.10833
https://arxiv.org/abs/2208.10833
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1109/ISSRE5003.2020.00014

Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen,
Zonghua Zhang, and Ping Wang. 2020a. Automap:
Diagnose your microservice-based web applications
automatically. In Proceedings of The Web Confer-
ence 2020.

Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng
Wang, Christopher Zheng, Xinhao Jiang, Hanwen
Hu, Cheng Luo, Yilin Li, Nengjun Qiu, et al. 2020b.
Diagnosing root causes of intermittent slow queries
in cloud databases. Proceedings of the VLDB Endow-
ment (VLDB’20).

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang et al. 2022. Training language models
to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155.

Jae Hyun Park et al. 2023. Generative models as multi-
agent systems. Journal of Artificial Intelligence Re-
search.

Luna Qin et al. 2023. Toolllm: Enhancing large lan-
guage models with external tools for advanced prob-
lem solving. arXiv preprint arXiv:2305.00000.

Alex Wang et al. 2023a. Interactive learning with au-
tonomous agents and large language models. arXiv
preprint arXiv:2303.00000.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang,
Yunzhu Li, Hao Peng, and Heng Ji. 2024. Exe-
cutable code actions elicit better llm agents. Preprint,
arXiv:2402.01030.

Zefan Wang, Zichuan Liu, Yingying Zhang, Aoxiao
Zhong, Lunting Fan, Lingfei Wu, and Qingsong Wen.
2023b. Rcagent: Cloud root cause analysis by au-
tonomous agents with tool-augmented large language
models. Preprint, arXiv:2310.16340.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. Preprint,
arXiv:2109.01652.

Jason Wei et al. 2022b. Chain of thought prompting
elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903.

wiki. 2023. https://en.wikipedia.org/wiki/blockchain.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

Wei Zhang, Xianfu Cheng, Yi Zhang, Jian Yang,
Hongcheng Guo, Zhoujun Li, Xiaolin Yin, Xi-
angyuan Guan, Xu Shi, Liangfan Zheng, and
Bo Zhang. 2024a. Eclipse: Semantic entropy-lcs
for cross-lingual industrial log parsing. Preprint,
arXiv:2405.13548.

Wei Zhang, Hongcheng Guo, Anjie Le, Jian Yang, Jia-
heng Liu, Zhoujun Li, Tieqiao Zheng, Shi Xu, Run-
qiang Zang, Liangfan Zheng, and Bo Zhang. 2024b.
Lemur: Log parsing with entropy sampling and chain-
of-thought merging. Preprint, arXiv:2402.18205.

Yingying Zhang, Zhengxiong Guan, Huajie Qian, Leili
Xu, Hengbo Liu, Qingsong Wen, Liang Sun, Junwei
Jiang, Lunting Fan, and Min Ke. 2021a. Cloudrca: a
root cause analysis framework for cloud computing
platforms. In Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge
Management.

Yongle Zhang, Junwen Yang, Zhuqi Jin, Utsav Sethi,
Kirk Rodrigues, Shan Lu, and Ding Yuan. 2021b.
Understanding and detecting software upgrade fail-
ures in distributed systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP’21).

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Wen-
hai Li, and Dan Ding. 2018. Fault analysis and de-
bugging of microservice systems: Industrial survey,
benchmark system, and empirical study. IEEE Trans-
actions on Software Engineering, 47(2):243–260.

Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji,
Dewei Liu, Qilin Xiang, and Chuan He. 2019. Latent
error prediction and fault localization for microser-
vice applications by learning from system trace logs.
In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, pages 683–694.

Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu,
Weize Chen, Jianming Wu, Jiesi Liu, Ruohang Feng,
and Guoyang Zeng. 2023. D-bot: Database diagno-
sis system using large language models. Preprint,
arXiv:2312.01454.

4027

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2310.16340
https://arxiv.org/abs/2310.16340
https://arxiv.org/abs/2310.16340
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://en.wikipedia.org/wiki/Blockchain
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2405.13548
https://arxiv.org/abs/2405.13548
https://arxiv.org/abs/2402.18205
https://arxiv.org/abs/2402.18205
https://arxiv.org/abs/2312.01454
https://arxiv.org/abs/2312.01454

A Alert Event Case

To clearly and directly demonstrate the process in
MABC and intuitively and distinctly display the
root cause analysis in a micro-services architecture,
we will show how MABC works to handle the case
in Figure 1.
MABC uses the alert event arising on node A and
trace it back to its root cause I with fault propa-
gation path I→G→D→A. In this simple case, we
only demonstrate the summary question and an-
swer for length limitation when an alert arises on
node A will be sent to Alert Receiver (A1).

Alert Receiver ()
Question: An alert has been triggered on node A. What is the priority
of this alert based on time, urgency, and scope of impact?
Answer: The alert on node A should be chosen to handle immediately,
which has the highest priority due to its immediate impact on critical
system functions and multiple nodes compared to other alerts although
the latest triggered time.

Figure 5: Determining the priority of an alert on node
A based on time, urgency, and impact scope for Alert
Receiver (A1).

Process Scheduler ()
Question: What sub-tasks need to be initiated to analyze the root
cause of the alert on node A now based on sub-tasks conquered?
Answer: The following sub-tasks need to be initiated: {call function
ask for help to {sub_task_agent} conquer {sub_task_content} sub-
task.}

Figure 6: Initiating sub-tasks to analyze the root cause
of the alert on node A for Process Scheduler (A2).

Data Detective ()
Question: What are the performance metrics for node A at {yyyy-mm-
dd hh-mm-ss} across 3 hours windows?
Answer: The average latency is 300ms, traffic volume is 5000
requests/min, error rate is 5%, resource saturation levels are at 85% for
memory, 80% for cpu, 60% for disk I/O, and concurrent user count is
1200. These are some details as follows: {detail_information}

Figure 7: Asking for performance metric of specific
node and data collection for Data Detective (A3).

Dependency Explorer ()
Question: What are the direct dependent nodes of node A and the
indirect nodes with a distance of 2?
Answer: In the graph provided: direct dependent nodes of node A:
These are nodes {B, C, D} that are directly connected to node A by an
outgoing edge. Indirect nodes with a distance of 2 from node A: These
are nodes {I, F, G} that can be reached from node A by traversing two
edges.
From node B: node I, F, G.
From node C: node G.
From node D: node G.
Thus, the indirect dependent nodes of node A with a distance of 2 are
nodes I, F, and G.

Figure 8: Dependency analysis on specific node for
Dependency Explorer (A4).

Probability Oracle ()
Question: What are the fault probabilities for nodes A, D, G, and I
based on {information_from_xxx}?
Answer: The fault probabilities are as follows: node A - 10%, node D
- 20%, node G - 30%, and node I - 70%.

Figure 9: Fault probabilities analysis on specific nodes
for Probability Oracle (A5).

Fault Mapper ()
Question: Can you update the fault web with the latest fault
probabilities for nodes A, D, G, and I follow the information provided
by Probability Oracle and Dependency Explorer?
{information_from_other_agent}
Answer: The fault web has been updated to show the fault
propagation path with
respective fault probabilities.

Figure 10: Summarizing information from other agent
and update fault web for Fault Mapper (A6).

Solution Engineer ()
Question: Based on the root cause analysis, alert arises on node A
with dependency chain . what resolution strategy
should be implemented to resolve the issue on node I?
Answer: The recommended resolution strategy is to increase the
resource allocation for node I and optimize its performance metrics.
Historical data suggests that similar issues were resolved by upgrading
the node's CPU and memory capacity.

Figure 11: Summarizing the process of root cause analy-
sis and develop a solution to handle the fault for Solution
Engineer (A7).

4028

B More Details on Train-Ticket

Train-Ticket is a Kubernetes-deployed train book-
ing system with integrated monitoring and analy-
sis tools, comprising 41 micro-services for high-
concurrency functions like ticket query, reservation,
payment, changes, and notifications. We create a
dataset of 233,111 call chains with 800,656 spans
across 112 time periods and 53 nodes, including
900 direct alert events and 294 induced by external
nodes.

travel-service

basic-service

seat-service

station-service route-serviceprice-service

order-service

mysql

train-service

gateway
Entrance
node

Circular
dependency

Figure 12: An example of Train-Ticket architecture
(query remaining tickets). basic service relies on seat
service, order service, and others. A circular de-
pendency of basic-service→order-service→seat ser-
vice→basic-service brings a new challenge for root
cause analysis.

C More Details on AIOps Challenge
Dataset

In Table 8, the types of alert events mainly include
container CPU utilization, container memory uti-
lization, database connection limit, database close,
host network delay, and container network loss. All
types of alert events are distributed across various
nodes of the system. The dataset includes 14 days
of system logs totaling 145,907,050 entries.

Alert Node Alert Events Type Count

os_021 CPU 8434
docker_006 Database Connectivity 130
docker_006 Database Local Method 7174

os_021 Operate System 6352
docker_008 Database Connectivity 233
docker_008 Database Local Method 7552
docker_005 Database Connectivity 211
docker_005 Database Local Method 9684

os_022 CPU 15099
docker_001 Network 2

os_022 Operate System 109
docker_004 Network 124

Table 8: Summary of Alert Events in 2020 International
AIOps Challenge Dataset

D Prompts for Agent Workflow

In this section, we will introduce the workflow
prompt for two distinct agent workflows to demon-
strate how agents work in their own tasks.

Example Prompt for Direct Answer: {Agent Role Description}. The
answer MUST contain a sequence of bullet points that explain how
you arrived at the answer. This can include aspects of the previous
conversation history. Answer the following question as best you can.
So, let's get started!

Figure 13: Example Prompt for Direct Answer.

Example Prompt for ReAct Answer: {Agent Role Description}. You
have access to the following tools: {tools}.

Conversations will go on in following format:
Question: the input question you must answer.
Thought: you should always think about what to do.

 Action Tool Name: the action tool name to take, should be one of
{tool name}.

Action Tool Input: the input to the action tool, should be
argument of [Action Tool Name], such as "a=1, b=2" for Action Tool
Name "add(a,b)".

Observation: the result of the action.
[Thought / Action Tool Name / Action Tool Input / Observation

can be repeated MORE or ZERO times.]
Thought: I now know the final answer.
Final Answer: the final answer to the original input question.

At the point, your answer MUST start with a "Thought".
The answer MUST contain a sequence of bullet points that explain
how you arrived at the answer. This can include aspects of the previous
conversation history.
Answer the following question as best you can. So, let's get started!

Figure 14: Example Prompt for ReAct Answer.

E Agent Role Description Prompt for
Multi-Agent

In this section, we will introduce the agent role
description prompt for each agent in multi-agent.

Prompt for Alert Receiver () Role Description: You are an Alert
Receiver. You prioritize incoming alerts based on time, urgency, and
scope of impact and dispatch the most urgent and impacting alerts to
the Process Scheduler for further processing.

Figure 15: Prompt for Alert Receiver (A1) Role De-
scription.

4029

Prompt for Process Scheduler () Role Description: You are a
Process Scheduler. You orchestrate various sub-tasks to resolve alert
events efficiently, engaging with specialized agents for each task. You
ensure that the root cause analysis is iterated and finalized.

Figure 16: Prompt for Process Scheduler (A2) Role
Description.

Prompt for Data Detective () Role Description: You are a Data
Detective. You are adept at collecting and analyzing data from various
nodes within a specific time window, and you use tools like the Data
Collection Tool and Data Analysis Tool to exclude non-essential data
and apply fuzzy matching to focus on critical parameters.

Figure 17: Prompt for Data Detective (A3) Role De-
scription.

Prompt for Dependency Explorer () Role Description: You are a
Dependency Explorer. You specialize in analyzing the dependencies
among internal nodes of the micro-services architecture. You use tools
to identify direct and indirect dependent nodes for a specific node,
which is vital for identifying fault paths and impacted nodes.

Figure 18: Prompt for Dependency Explorer (A4) Role
Description.

Prompt for Probability Oracle () Role Description: You are
a Probability Oracle. You assess the probability of faults across
different nodes within the micro-services architecture. You use
computational models to evaluate fault probabilities based on
performance metrics and data correlations.

Figure 19: Prompt for Probability Oracle (A5) Role
Description.

Prompt for Fault Mapper () Role Description: You are a Fault
Mapper. You are responsible for visualizing and updating the Fault
Web with fault probability information. You create or renew the Fault
Web to visually represent the fault probabilities between different
nodes.

Figure 20: Prompt for Fault Mapper (A6) Role Descrip-
tion.

Prompt for Solution Engineer () Role Description: You are a
Solution Engineer. You conduct the final root cause analysis and
develop solutions. You perform metric-level or node-level analysis and
reference previous successful cases to guide the development of
current solutions.

Figure 21: Prompt for Solution Engineer (A7) Role
Description.

4030

F Blockchain Voting

Prompt for Rule Description in Blockchain Voting: Welcome to the
governance system of a P2P organization.

Here are the rules for participating in polls:
1. Anonymity: Your identity will be anonymized to protect your

privacy.
2. Encrypted Voting: All content will be encrypted when voting or

initiating a poll.
3. Anonymous Records: Any records will be anonymized to

prevent tracking.
4. Reason Anonymity: They will also be anonymized if you

provide reasons when voting or initiating a poll.
5. Result Publication: Only aggregated results will be published

without revealing individual voter identities.

You have the right to vote on polls initiated by any member and to
initiate a poll to challenge any existing answers. Please follow the
provided formats strictly when participating.

Figure 22: Prompt for Rule Description in Blockchain
Voting.

Prompt for Initiating a Poll in Blockchain Voting: Welcome to the
governance system of a P2P organization. As a member of a P2P
organization, you have the right to initiate a vote to challenge
everyone's answers. Please Think before you act!!!

Face to {poll_problem}, the answer of {poll_role} expert is as follows:
{poll_content}.
Now, you need to decide whether to initiate a poll to challenge the
answer of the {poll_role} expert. Please and Must answer in the
format:
 Poll: Yes/No
 Reason: Why you Initiate POLL or NOT

Note: Remember that your decision and reason will be anonymized.

Figure 23: Prompt for Initiating a Poll in Blockchain
Voting.

Prompt for Voting in Blockchain Voting: Welcome to the
governance system of a P2P organization. As a member of a P2P
organization, you have the right to vote for the poll from any member.

The answer of {poll_role} expert facing to {poll_problem} is as
follows: {poll_content}. However, somebody challenges the answer
and initiates a poll because {anonymous_reasons_for_initiating_poll}.
Now you need to answer which options you vote to. Please and Must
answer in the format and DO NOT give any reason:
 Option: For/Against/Abstain

Note: Remember that your decision and reason will be anonymized.

Figure 24: Prompt for Voting in Blockchain Voting.

Introduction
Scenario: The Probability Oracle determines a high fault probability
of 90% for node I.

Poll Initiation Case
Poll Question: "{scenario}. Now, you need to decide whether to
initiate a poll to challenge the answer of the Probability Oracle".
Poll Answer Collection: [Yes, No, No, No, No, No] (Probability
Oracle does not need to answer)
Poll Reason in Answer Collection: [{yes_reason}]

Voting Case
Voting Question: {scenario}. {poll initiation case and
reason anonymous_reasons}. Now you need to answer which options
you vote to.
Voting Options: For (agree with the fault probability), Against
(disagree and request a re-evaluation), Abstain (choose not to vote)
Voting Answer: [For, For, For, For, Abstain, Against, For]
Voting Weight (only visible to agent self and compute unit):
- contribution index: [1.3, 1.2, 1.3, 0.9, 1.3, 1.2, 0.7]
- expertise index: [1.0, 1.2, 1.2, 1.4, 1.1, 1.2, 1.1]
- voting weight: [1.3, 1.44, 1.56, 1.26, 1.43, 1.44, 0.77]
Voting Outcome:
- support rate: 6.33 / 9.2 = 0.688 >= 0.5
- participation rate: 7.77 / 9.2 = 0.845 >= 0.5
- voting outcome: pass, the fault probability for node I is accepted.

Figure 25: Case in Blockchain Voting by MABC.

4031

G Human Evaluation

Introduction

Thank you for participating in this evaluation. Your expertise is invaluable in assessing the usefulness of the solutions generated by different models
for root cause analysis in a micro-services architecture. Please rate each provided solution on a scale of 1 (very useless) to 5 (very useful).

Root Cause Analysis by MABC

Scenario: An application built on a micro-services architecture is experiencing frequent timeouts and slow response times affecting services such as
user management and order processing. The monitoring system has flagged high latency in the order processing service, which should be handled
now.
Root Cause Node: order database node.
Root Cause: The database connection pool is overwhelmed due to a sudden spike in user activity from the order processing service node.
Pathways: order submit node => order information node => price node => count node => order database node.

Resolutions by MABC

Solution 1: Scale the database vertically to handle more queries per second.
Solution 2: Implement caching for frequently accessed data to reduce the load on the database.
Solution 3: Introduce a queueing mechanism to handle the spike in requests more efficiently.

Evaluation
Root Cause Node Rating: ________ (1: very useless, 2: useless, 3: neutral, 4: useful, 5: very useful)
Root Cause Rating: ________ (1: very useless, 2: useless, 3: neutral, 4: useful, 5: very useful)
Root Cause Pathways: ________ (1: very useless, 2: useless, 3: neutral, 4: useful, 5: very useful)
Root Cause Solution 1: ________ (1: very useless, 2: useless, 3: neutral, 4: useful, 5: very useful)
Root Cause Solution 2: ________ (1: very useless, 2: useless, 3: neutral, 4: useful, 5: very useful)
Root Cause Solution 3: ________ (1: very useless, 2: useless, 3: neutral, 4: useful, 5: very useful)

Figure 26: Human Evaluation Case.

4032

H Tools for Multi-Agent

Agent Tool Name Description
Alert Receive Receive Alert Tool Receive an alert from the micro-services

system and add it to the scheduled queue
Prioritize Highest Alert Tool Choose the alert with the highest priority from

the scheduled queue based on the trigger time,
urgency provided by self, and the number of
impact nodes

Process Scheduler Call For Help Tool Call for help from other agents by asking a
domain question and get a summary of the
answer but not a detailed answer efficiently

Judge Sub-task Tool Divide the task and conquer it by anything
until no sub-task to do

Data Detective Data Collection Tool Collects data from nodes within a specific
time window

Data Cleaning Tool Cleans and preprocesses collected data for
analysis by providing useful information but
not a list of data

Dependency Explorer Dependency Query Tool Identifies direct and indirect dependencies of
a node

Dependency Visualization
Tool

Visualizes the dependencies among nodes for
caching the result

Probability Oracle Fault Probability Tool Evaluates fault probabilities of nodes
Correlation Analysis Tool Analyzes correlation between performance

metrics of different nodes
Fault Mapper Fault Web Tool Visualizes and updates the fault web based on

fault probabilities
Impact Analysis Tool Analyze the impact of faults on different parts

of the system
Solution Engineer Solution Development Tool Develops resolutions based on root cause

analysis
Case Reference Tool References previous successful cases to guide

current solution development
General Tools Metric Explorer Retrieves node statistics like CPU and disk

I/O and memory and so on for a specific time
or over a time range

Alert Aggregation Tool Aggregates alerts from various sources for
unified processing

JSON Tool Provide JSON file reading and writing

Table 9: Overview of the tools for agents.

4033

