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Abstract

Large language models (LLMs) have shown
promising efficacy across various tasks, becom-
ing powerful tools in numerous aspects of hu-
man life. However, Transformer-based LLMs
suffer a performance degradation when model-
ing long-term contexts due to they discard some
information to reduce computational overhead.
In this work, we propose a simple yet effective
method to enable LLMs to take a deep breath,
encouraging them to summarize information
contained within discrete text chunks. Specifi-
cally, we segment the text into multiple chunks
and insert special token <SR> at the end of each
chunk. We then modify the attention mask to
integrate the chunk’s information into the cor-
responding <SR> token. This facilitates LLMs
to interpret information not only from histor-
ical individual tokens but also from the <SR>
token, aggregating the chunk’s semantic infor-
mation. Experiments on language modeling
and out-of-domain downstream tasks validate
the superiority of our approach. 1

1 Introduction

In recent years, Transformer-based large language
models (LLMs) have become a focal point of re-
search, leading to the emergence of numerous pow-
erful models such as ChatGPT (OpenAI, 2022),
GPT-4 (OpenAI, 2023), LLaMA (Touvron et al.,
2023a,b) and Mistral (Jiang et al., 2023). However,
in mainstream decoder-only models, subsequent
tokens can only attend to preceding historical indi-
vidual tokens without acquiring information from
aggregated local contexts, thereby limiting the lan-
guage modeling capability of LLMs.

To tackle this problem, existing studies have ex-
plored various approaches to compress contexts,

∗Corresponding author.
1The code for conducting the experiments is released at

https://github.com/WeiyaoLuo/Taking_a_Deep_Breath.

Figure 1: The modified attention mask is illustrated in
the figure, where cell (r, c) signifies whether token r can
attend to token c. chunk2,1 represents the first token of
the second chunk, with similar patterns for other chunks.

such as sentinel tokens (Ren et al., 2023), mem-
ory slots (Ge et al., 2023), and summary vec-
tors (Zhang et al., 2024; Chevalier et al., 2023).
However, these methods may lose useful context
information during the compression process, lead-
ing to performance degradation. Besides, some
of these compression and accumulation strategies
still exhibit quadratic computing complexity of self-
attention (Zhang et al., 2024).

In this work, we introduce a simple yet effective
method that allows LLMs to take a deep breath,
enabling them to gather information not only from
preceding historical individual tokens but also from
special tokens that encapsulate the holistic infor-
mation of chunks. Specifically, we propose a strat-
egy to insert new tokens denoted as <SR> (Sentinel
Right) at the end of each chunk. During training,
the <SR> corresponding to each chunk is capable of
attending to the entire content of the chunk. That
is to say, after processing each chunk, the LLMs
are prompted to summarize key information within
this chunk. Consequently, subsequent tokens can
acquire information not only from the preceding
individual tokens as in the original approach, but
also from the sentinel token <SR> which aggregates
the holistic information of the chunk. As a result,
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when generating the next token, tokens can harness
both local information (individual tokens within
a chunk) and relatively holistic information (the
<SR> that represents the entire chunk’s context). By
prompting the LLMs to take a deep breath, we en-
able them to obtain richer semantic information
during decoding, thereby enhancing its language
modeling capability.

We conducted experiments on the Wikitext-2 lan-
guage modeling benchmark using models ranging
from 1.3B to 13B in size, employing diverse posi-
tional encoding strategies (Devlin et al., 2018; Su
et al., 2024). The experimental results demonstrate
that the introduction of sentinel tokens enhances
the language modeling capabilities of LLMs. Addi-
tionally, we further demonstrated the effectiveness
of our method on out-of-domain downstream tasks.

2 Related Work

Attention Mask A number of architectural mod-
ifications have been proposed to constrain and spar-
sify the attention window (Dai et al., 2019; Child
et al., 2019; Luo et al., 2024). Ainslie et al. (2023)
introduced conditional computation. Beltagy et al.
(2020) and Zaheer et al. (2020) introduced some
sparse attention mechanisms to reduce computa-
tional complexity. However, most of these archi-
tectures require expensive training from scratch.
Our approach modifies the attention mask while
requiring only a small amount of fine-tuning.

Context Distillation Various strategies (Askell
et al., 2021; Snell et al., 2022) have been pro-
posed for prompt compression and context distil-
lation. Ren et al. (2023) adopted a random parti-
tioning approach to compress random contiguous
tokens into a single token, resulting in a signifi-
cant performance degradation. The AutoCompres-
sors (Chevalier et al., 2023) compress context into
summary vectors, exhibiting quadratic complex-
ity. Mu et al. (2023) compressed instructions into
short prefixes, a method similar to the memory
slots introduced by Ge et al. (2023), which may
lead to the loss of some useful information. Our
method prompts LLMs to take a deep breath, yield-
ing richer semantic information.

3 Approach

In this section, we will present our approach which
integrating the comprehensive information of each
chunk into the sentinel <SR>. This is achieved by
strategically placing sentinel token <SR> at the right

flank of a chunk and modifying the attention mask
rules accordingly.

3.1 Adding Sentinel Tokens

Assuming there is a text segment that has been di-
vided into multiple chunks, to enable subsequent
tokens to extract information not only from indi-
vidual tokens in the preceding text but also from
the collective information from the aggregated se-
mantic content of a chunk, we introduce the special
sentinel token: <SR>, which represents sentinel
right. The sentinel token is inserted at the end of a
chunk to mark its boundary, and it is also added to
the model’s vocabulary.

Specifically, to absorb the information of a chunk
into the <SR> sentinel, we implement a modified
causal attention mask, as illustrated in Figure 1.
The strategy for ordinary tokens (excluding <SR>)
is the same as that of a standard causal attention
mask, where they can attend to all preceding to-
kens. For <SR>, which is the crux of our method,
to enable it to encapsulate the semantic informa-
tion of the corresponding chunk, <SR> can attend
to the ordinary tokens within the chunk. Through
this modification of the mask strategy, in conjunc-
tion with fine-tuning, we promote the condensation
of semantic information from a chunk of tokens
into the sentinel token at the end, allowing <SR> to
become an aggregator capable of selecting and re-
trieving information from the corresponding chunk.

3.2 Adapting Model Inputs for Sentinel
Integration

For the general next token prediction task, the com-
putation of the loss relies on labels corresponding
to each token. With the introduction of sentinel
tokens, these labels must be adjusted accordingly.
Specifically, if the current token is a sentinel token,
identified by <SR>, the label for the subsequent po-
sition should be uniquely designated to ensure that
the location corresponding to the current sentinel
token is excluded from the loss calculation.

Conversely, if the next token is a sentinel, its
label should be set to that of the subsequent non-
sentinel token. Moreover, the position ids of sen-
tinel tokens should be congruent with the position
id of the last non-sentinel token preceding the cur-
rent position.
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Table 1: Perplexity (the lower, the better) of six LLMs on the WikiText-2 language modeling benchmark.

Method OPT-1.3B OPT-2.7B RedPajama-3B Mistral-7B Llama-2-7b Llama-2-13b

Origin 14.044 12.416 10.557 6.408 6.235 5.709
Sentinel 12.664 11.313 9.387 6.176 6.01 5.512

4 Experiments

4.1 Models and Data
To validate the effectiveness of our method, we
selected models of various sizes and position
encoding methods, including OPT-1.3B, OPT-
2.7B (Zhang et al., 2022), RedPajama-3B (Com-
puter, 2023), Mistral-7B (Jiang et al., 2023), Llama-
2-7B, and Llama-2-13B (Touvron et al., 2023b).

We choose the Wikitext-2 dataset (Merity et al.,
2016), which is composed of Wikipedia articles
and widely used for evaluating language modeling.
By fine-tuning on Wikitext-2, we report perplexity
(PPL) on the test set as an evaluation metric. It is
noteworthy that sentinel tokens are not included
in the computation of PPL, as discussed in Sec-
tion 3.2.

4.2 Experimental Setup
We treat each individual sentence as a chunk, more
details in 4.4. For training, the LoRA (Hu et al.,
2021) technique was adopted for fine-tuning dur-
ing training, with all parameters of the LLM frozen
except for the embeddings of the special sentinel
tokens and the LoRA matrices. In our approach,
the LoRA module is applied to all attention layers,
typically comprising the q_proj, k_proj, v_proj,
and o_proj parts. The rank of the LoRA is set to
16. We used the AdamW (Loshchilov and Hut-
ter, 2018) with a learning rate of 5e-5. The batch
size is set to 12. The entire experiment, including
modifications to the attention mask, was based on
the Huggingface transformers library (Wolf et al.,
2020).

4.3 Results
The experimental results are shown in Table 1,
where Origin represents the results of the original
model after standard fine-tuning without any spe-
cial modifications, and Sentinel denotes the results
fine-tuning the model after adding the special sen-
tinel token <SR>. Notably, the methods in Section 2
center on context compression, trading off infor-
mation for reduced computation and, consequently,
lower performance. Given their predictable inferi-
ority to Origin, it is superfluous to include these
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Figure 2: An example of DocumentQA illustrating the
attention between each position in the question and sen-
tinel tokens, where correct <SR> index is 2. More de-
tailed explanation provided in Section 4.5.3.

results in Table 1. Our work stands as a pioneering
exploration of this method in language modeling.

It can be observed that our method achieved no-
table performance enhancements across all mod-
els, as evidenced by a reduction in perplexity. In
the OPT series models and the RedPajama-3B
model, perplexity significantly decreased by ap-
proximately 10% compared to the vanilla method.
In the Llama series and Mistral-7B, perplexity also
decreased by about 3.5%.

4.4 Analysis

These results suggest that our approach effectively
assists LLMs with the ability in acquiring informa-
tion from diverse perspectives during next token
prediction. By prompting LLMs to take a deep
breath, they not only obtain information from each
individual token, similar to general LLMs, but also
capture more holistic information. This is achieved
through the use of the special sentinel token <SR>,
which represents the entire chunk of information.
By incorporating, the model can take a deep breath
to access richer semantic information during de-
coding, thereby enhancing its language modeling
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Table 2: Perplexity (the lower, the better) when a chunk contains different numbers of sentences.

#Sentences OPT-1.3B OPT-2.7B RedPajama-3B Mistral-7B Llama-2-7b Llama-2-13b

1 12.664 11.313 9.387 6.176 6.01 5.512
2 13.637 12.113 10.026 6.438 6.278 5.756
3 14.078 12.509 10.309 6.550 6.412 5.852
4 14.181 12.605 10.385 6.591 6.404 5.863

capability.

Breath Length Analysis To explore the optimal
interval for taking a breath to achieve the best
results, we conducted experiments with chunks
containing 1 to 4 sentences, as shown in Table 2.
The findings indicate that the best performance is
achieved when the chunk contains only one sen-
tence, and a decrease in performance is observed
across all models as the number of sentences in-
creases. Therefore, in the main results presented
in Table 1, we adopted the strategy of allowing the
model to take a deep breath after every sentence to
achieve the best effect.

4.5 Generalization of Model Performance on
Out-of-Domain

4.5.1 Data
We select 1,105 samples of the MLQA
dataset (Lewis et al., 2019) for DocumenQA task
evaluation. Additionally, we choose 1,120 samples
of MultiNews (Fabbri et al., 2019) to assess the
model’s performance on summarization. More
details can be found in Appendix A.

4.5.2 Models and Metrics
We utilize OPT-1.3B and OPT-2.7B (Zhang et al.,
2022), which were previously fine-tuned on the
Wikitext-2 dataset, for out-of-domain Documen-
tQA and summarization tasks, respectively. The
evaluation follows LongBench (Bai et al., 2023)
methodologies. For DocumentQA, the model gen-
erates an output based on the given context and
question, and the F1 score is calculated by com-
paring the predictions with ground-truth references.
For summarization, the model generates summaries
from a simple prompt and the provided article, with
Rouge-L scores (Lin, 2004) computed between the
generated and reference summaries.

4.5.3 Out-of-domain Results and Analysis
Table 3 presents the experimental results, show-
ing that compared to the original models, adding
sentinels significantly improved the performance

Task OPT-1.3B OPT-2.7B

Origin Sentinel Origin Sentinel

DocumentQA 3.97 19.89 17.41 21.78
Summarization 2.77 7.69 7.58 11.02

Table 3: Experimental results for OPT-1.3B and OPT-
2.7B on two out-of-domain tasks. We show the F1-
Score for the DocumentQA task and Rouge-L for the
Summarization task, respectively.

on both out-of-domain tasks, particularly for OPT-
1.3B on the DocumentQA task, where it nearly
quadrupled the F1 score. Additionally, the larger
OPT-2.7B with more parameters outperformed the
smaller OPT-1.3B, which is consistent with the
scaling law (Kaplan et al., 2020). These findings
further validate the effectiveness and robustness of
our approach across various out-of-domain tasks.

Figure 2 illustrates the attention distribution of
the question sequence towards the special token
<SR> in a DocumentQA task case. In this example,
the document contains 10 chunks, each followed
by an <SR> token. Therefore, the horizontal axis
displays the indices of these <SR> tokens, rang-
ing from 0 to 9. In this DocumentQA example, the
question segment has a length of 72, as indicated on
the vertical axis. This means that the vertical axis
represents the index of each position in the ques-
tion, and each position corresponds to the attention
scores for the 10 <SR> tokens in the document.

The index corresponding to the chunk that con-
tains the true answer to the question is 2. The figure
reveals that nearly every position within the ques-
tion segment exhibits a heightened attention value
for the token <SR> at index 2. This suggests that
the token <SR> encapsulates the semantic informa-
tion of its corresponding chunk, and this informa-
tion can be accurately captured during decoding,
thereby improving the model’s performance.

5 Conclusions

In this work, we introduce a novel approach that
prompts LLMs to take a deep breath after encoun-
tering each chunk. This strategy enables LLMs

4037



not only to extract information from individual to-
kens but also to be capable of selecting and retriev-
ing information from aggregators(denoted as <SR>)
corresponding to each chunk. Experiments on lan-
guage modeling and out-of-domain downstream
tasks demonstrate the effectiveness of our method.

Limitations

In this work, we only prompt Large Language Mod-
els (LLMs) to take a deep breath on OPT mod-
els with up to 2.7 billion parameters, RedPajama
model with 3 billion parameters, the Mistral-7B,
and Llama2 models with up to 13 billion parame-
ters. Future endeavors should be directed towards
establishing the efficacy of this approach on mod-
els of an even greater magnitude. Furthermore, the
exploration of a broader range of potential chunk
division strategies presents a valuable avenue for
further research.
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Appendix

A More Data Details

For the document question answering (Documen-
tQA) task, we selected the MLQA (Lewis et al.,
2019) dataset for evaluation. MLQA is a multilin-
gual QA task dataset, from which we choose the
English portion as the test set for our task.

DocumentQA refers to a task where a model is
provided with a Document, which contains several
sentences, along with a corresponding Question.
The expectation is that the model can process the
Document and output the correct answer to the
question. Evaluation is conducted by comparing
the model-generated results with the ground-truth
labels to judge the quality of the model’s output.

For the summarization task, we chose the Multi-
News (Fabbri et al., 2019) dataset and filtered it
based on example length, ultimately selecting 1120
data points for the evaluation of the summarization
task. The original MultiNews dataset includes over
5k examples, but we find that the length of some
examples might exceed the context length that our
evaluation model can handle, so we ultimately se-
lected 1120 examples for testing.
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