
Findings of the Association for Computational Linguistics: EACL 2024, pages 4138–4151
November 12-16, 2024 ©2024 Association for Computational Linguistics

Deeper Insights Without Updates:
The Power of In-Context Learning Over Fine-Tuning

Qingyu Yin1 Xuzheng He2 Luoao Deng3 Chak Tou Leong4

Fan Wang1 Yanzhao Yan1 Xiaoyu Shen5* Qiang Zhang1*
1Zhejiang University, 2Peking University, 3Wuhan University,

4 The Hong Kong Polytechnic University,
5 Digital Twin Institute, Eastern Institute of Technology, Ningbo

Corresponding: {qingyu.yin, qiang.zhang}@zju.edu.cn xyshen@eit.edu.cn

Abstract

Fine-tuning and in-context learning (ICL) are
two prevalent methods in imbuing large lan-
guage models with task-specific knowledge. It
is commonly believed that fine-tuning can sur-
pass ICL given sufficient training samples as it
allows the model to adjust its internal param-
eters based on the data. However, this paper
presents a counterintuitive finding: For tasks
with implicit patterns, ICL captures these pat-
terns significantly better than fine-tuning. We
developed several datasets featuring implicit
patterns, such as sequences determining an-
swers through parity or identifying reducible
terms in calculations. We then evaluated the
models’ understanding of these patterns under
both fine-tuning and ICL across models ranging
from 0.5B to 7B parameters. The results indi-
cate that models employing ICL can quickly
grasp deep patterns and significantly improve
accuracy. In contrast, fine-tuning, despite utiliz-
ing thousands of times more training samples
than ICL, achieved only limited improvements.
We also proposed circuit shift theory from a
mechanistic interpretability’s view to explain
why ICL wins 1.

1 Introduction

Adapting pre-trained models to specific tasks or
domains is commonly achieved through fine-tuning
(Hu et al., 2023; Peters et al., 2019) or in-context
learning (Gan and Mori, 2023). Fine-tuning, a
well-established method, involves further training
a pre-trained model on a smaller, domain-specific
dataset, directly updating the model’s parameters
to retain improvements across various contexts and
scenarios. In contrast, in-context learning (ICL)
enhances task performance by incorporating task-
specific examples into prompts, guiding the model
in task completion without altering its parameters
during training.

1Code is available at here

3×(1+2)-(2-2)×(4+1) 3×(1+2)-(2-2)×(4+1) 3×3-0×5 9

Solution with formal computation

3×(1+2)-(2-2)×(4+1)
Ignore terms that
multiplied by zero

Solution with implicit pattern

93×3-0

3×(1+2)-(2-2)×(4+1) LLM

example × n

4×(1+3)-(4-4)×(5+2) Acc

3×(1+2)-(2-2)×(4+1) LLM 4×(1+3)-(4-4)×(5+2) Acc

Full-Param Fine-tuning PEFT (e.g. LoRA, QLoRA)

(a)

(b)

Figure 1: (a) A simple example of an implicit pattern de-
tection task. The given problem (arithmetic expression
calculation task in this figure) can be solved in either a
formal way, e.g., directly calculating, or by exploiting
the detected implicit pattern as a shortcut. (b) Illustra-
tion of implicit pattern detection for in-context learning
and fine-tuning. For ICL, several examples with an-
swers are given in context, and a further new question is
used to test accuracy. For fine-tuning, LLM learns from
single examples using parameter update methods like
full-parameter fine-tuning or PEFT methods.

There has been much debate about the pros and
cons of fine-tuning and in-context learning. Fine-
tuning is praised for its ability to bring permanent
memorization to models (Hu et al., 2023), and it
can perform well even with a small amount of train-
ing data (Liu et al., 2022). However, critics argue
that fine-tuning demands substantial computational
resources (Hu et al., 2021) and can encounter issues
such as catastrophic forgetting (Zhai et al., 2023).
This conserves computational resources but neces-
sitates longer prompts and incurs higher inference
costs.

How about ICL? It is favored for its training-
free nature (Dong et al., 2022), allowing prompts
to be easily changed for adaptation to other do-
mains without re-training (Min et al., 2022). Other
works(Bhattamishra et al., 2023) showed that ICL

4138

https://github.com/MikaStars39/ICLvsFinetune

can help the model uniquely identify a discrete
function sample-efficiently. Reseach (Reddy, 2023)
showed that ICL is driven by the abrupt emergence
of an induction head, which subsequently com-
petes with in-weights learning. Other works(Shen
et al., 2024) observed that ICL and gradient descent
modify the output distribution of language models
differently. Despite these advantages, ICL is lim-
ited by context length restrictions and incurs higher
costs during each inference stage due to the longer
prompts required.

Essentially, the primary distinction between fine-
tuning and ICL lies in parameter updating; all fine-
tuning methods modify the model’s parameters. It
might seem, therefore, that ICL’s impact is less pro-
found. However, our research reveals a counterintu-
itive finding: for datasets with implicit patterns,
ICL is more adept at uncovering these latent
patterns than fine-tuning.

To investigate this phenomenon, we designed
datasets containing implicit patterns across various
domains, including two mathematical tasks: expres-
sion calculation and boolean function. One textual
task: relation reasoning, and one code reading task.
These domains share a common trait: the pres-
ence of implicit patterns that can simplify problem-
solving. We evaluated LLMs’ capability to recog-
nize such patterns with these datasets. Our findings
include: (1) Both fine-tuning and ICL could detect
and utilize implicit patterns, resulting in increased
test accuracy. (2) ICL performed much better than
fine-tuning in implicit pattern detection, e.g., ICL-
based models enjoyed higher test accuracy. (3) ICL
also showed strong performance in robustness tests
and OOD data tests. Our experiments demonstrate
that the ability of LLMs to leverage implicit pat-
terns significantly enhances their problem-solving
capabilities, providing a clear advantage for tasks
involving complex data structures.

Understanding the operational principles of
LLMs is crucial for their safety and ethical im-
plications and can further promote improvements.
Therefore, we delved deeper into the mechanisms
behind this phenomenon. From a mechanistic in-
terpretability perspective (Reddy, 2023), we pro-
posed the Circuit Shift theory. Circuits are certain
groups of attention heads and MLP layers (Conmy
et al., 2023). A shift in circuits typically represents
the model adopting a different method in problem-
solving. Our findings indicated that ICL resulted in
a larger-scale circuit shift compared to fine-tuning,
which means that with ICL, the model changed

its problem-solving method more significantly for
implicit pattern detection and utilization. We also
provided a visualized heatmap of circuits for de-
tailed observation. In summary, our contributions
are threefold:

Implicit Pattern Detection dataset. We defined
and illustrated the implicit pattern detection task,
then developed a dataset across mathematics (ex-
pression calculation, boolean function), textual rea-
soning (relation test) and code (output guessing).

Ability Comparison. We presented a counter-
intuitive finding: LLMs with in-context learning
detected implicit patterns much better than fine-
tuned ones. We extensively tested this capability
on models ranging from 0.5B to 7B parameters.

Mechanism explanation. We analyzed the prin-
ciples behind the implicit finding mechanism. And
we proposed circuit shift theory to explain why ICL
finds implicit patterns better than fine-tuning.

2 Background

Transformer. Transformer (Vaswani et al., 2017)
is the cornerstone architecture for LLMs nowadays,
with its breathtaking ability in parallel training
and SOTA performance. One Transformer model
ftrf usually consists multiple of Transformer lay-
ers flayer and an embedding layer femb. For an
input sequence (typically IDs after tokenization)
X0 ∈ Rn×1 with length n, it first passes through
an embedding layer femb with hidden state size
d, then passes all the Transformer layers, and fi-
nally gets an output Ol ∈ Rn×d with l layers:
Ol = ftrf(X0) =

(
⃝l

i=1f
(i)
layer

)
(X0), where for

each layer flayer, it usually contains an Attention
block and an MLP block:

Oatt
i = Xi +Attn(Norm(Xi)), (1)

Oi = Oatt
i +MLP(Norm(Oatt

i)). (2)

Here, Oatt
i is the output of the attention block, and

O
mlp
i is the output of the MLP block for layer i,

with residual connections preventing it from vanish-
ing gradient and normalization (typically pre-norm)
for stabilizing the training process.

Fine-tuning. Fine-tuning is a process where a
pre-trained LLM is further trained on a specific task
or dataset to improve its performance for that partic-
ular application. Suppose there exists a pre-trained
Transformer model ftrf with learnable parameters

4139

3×(1+2)-(2-2)×(4+1) 3×(1+2)-0
Find the

zero term
9

 import

Function 1

Function 2

print(Function_1(x))

 import

Function 1

print(Function_1(x))

Find the unused
function

only calculate Function 1

A - B, B - C, D - F, F - E,
E - K, K - L, L - S, B - G

if A, B and G are connected?
Find the

simplified path
Yes

True or (False and True)
or (True or False)

if there is a "True or"
or "False and"?

Find the
decisive term

True

(a) Expression Calculation

(b) Code Reading

(c) Relation Reasoning

(d) Boolean Function

Figure 2: Examples of implicit pattern detection for four reasoning tasks. The implicit pattern, once detected, can
reward the model with reduced computation to arrive at the answer.

θpre. The goal of fine-tuning is to adjust these pa-
rameters to minimize a task-specific loss function
Ltask on a new dataset Dtask. During fine-tuning,
the parameters θfine of the model are updated using
gradient descent or one of its variants. The update
rule for the parameters at each iteration t can be
expressed as:

θ
(t+1)
fine = θ

(t)
fine−η∇θLtask(ftrf(Xt; θ

(t)
fine),Yt), (3)

where η is the learning rate, Xt represents the input
data in iteration t, Yt represents the target labels in
iteration t, and ∇θfineLtask denotes the gradient of
the loss function with respect to the model parame-
ters. Fine-tuning typically requires substantial com-
putational resources. For instance, full-parameter
fine-tuning of LLaMA-3 with 8 billion parame-
ters and an 8K context using the Adam optimizer
and gradient checkpointing demands a minimum
of 152 GB of VRAM (Rasley et al., 2020), which
equates to at least two A100 80 GB GPUs with
parallel training. While parameter-efficient fine-
tuning (PEFT) is less resource-intensive compared
to full-parameter fine-tuning, it still requires 16 GB
of VRAM (QLoRA with a 1K context (Dettmers
et al., 2024)), necessitating at least one RTX 3090
GPU. Additionally, some studies have shown that
PEFT can result in a noticeable drop in the model’s
performance (Pu et al., 2023; Zou et al., 2023).

In-Context Learning In-Context Learning (ICL)
in LLMs is an emergent capability where the model
uses the provided context to perform tasks. Given
a special task F and a series of prompt inputs
x1, · · · ,xn, ICL happens when these inputs and
their answers y1 = F (x1) are given in multi-shot,
i.e., (x1,y1, · · · ,yn,xn+1). In this scenario, the

goal for LLM to do ICL is to learn the task F
and accurately predict yn+1. This phenomenon
allows the model to adaptively handle a variety
of tasks, such as translation, question-answering,
and more, simply through appropriate prompt en-
gineering. ICL happens in inference-stage without
explicit re-training, thus resulting in more friendly
requirements for GPUs (Yin et al., 2024; Hong
et al., 2023). Even LLaMA-3 70B could run on
a single 3090 GPU with PowerInfer (Song et al.,
2023).

3 Implicit Pattern Detection Test

Through detailed observation and thinking, humans
can detect some underlying, non-explicit patterns
within the data. This enables us to solve problems
more efficiently. Implicit pattern detection refers
to the ability of models to recognize underlying,
non-explicit patterns within data, enabling them
to solve problems more efficiently. This concept
is illustrated through tasks such as arithmetic cal-
culations, where the model can bypass complex
operations by identifying simplifying patterns. For
instance, in mathematical expressions (see Figure 1
and Figure 2), a model might detect that certain
terms have negligible impact and can be ignored,
leading to quicker computations. We will give a
detailed description of our dataset design and ex-
perimental settings in the following sections.

3.1 Tasks

To effectively assess the ability of LLMs to iden-
tify implicit patterns in data, we have constructed
a variety of questions that frequently arise in real-
world application scenarios. When the same type

4140

of question recurs, we can discover a specific im-
plicit pattern within it to simplify the computational
process.

Task 1: Expression Calculation (Imani et al.,
2023; Yuan et al., 2023; Yue et al., 2023; He-
Yueya et al., 2023) In the arithmetic calculation
task, the primary focus is on determining whether
certain operations within a given expression can be
disregarded to reduce the complexity of the compu-
tation. The operations considered for these simpli-
fications are limited to addition(+), subtraction(−),
multiplication(×), and division(/). By exploring
these operations, the model may find that several
terms are multiplied by a continued-to-be-zero
term, and ignoring them could simplify the cal-
culation process and improve the accuracy.

Task 2: Code Reading (Fang et al., 2024) In
the code reading task, LLMs need to analyze and
predict the output of a given piece of code without
executing it, where multiple functions are defined.
Some functions will not influence the final output,
so the key challenge is to determine which func-
tions are essential for producing the output and
which can be disregarded without affecting the re-
sult.

Task 3: Boolean Functions (Zhang et al., 2024)
In the Boolean functions task, the primary objec-
tive is to optimize logical expressions to simplify
their structure without altering the resultant truth
value. The expressions involve logical operators
such as AND (∧), OR (∨), and NOT (¬). Within
these scenarios, there are specific segments that are
either tautologies, i.e., always true, or contradic-
tions, i.e., always false. The model must identify
these segments and bypass their computation.

Task 4: Relation Reasoning (Li et al., 2024) In
the task of relation reasoning, the focus is on de-
termining the relationships between multiple enti-
ties, such as reachability and relative magnitude.
Although the set of relationships involved can be
complex, all queries target fixed entities whose rela-
tionships are relatively straightforward. Therefore,
most of the complex relationships can be disre-
garded, simplifying the problem-solving process.

3.2 Settings
Accuracy. Our tasks were constructed such that
implicit patterns can help solve problems more
easily. For example, if an LLM identifies a term
that continues to be zero in arithmetic calculations,

it can ignore terms multiplied by it, thereby saving
computation. Therefore, we evaluate the model’s
performance with Accuracy.

Misleading Data. LLMs can detect the inner im-
plicit patterns in data and utilize them for simpli-
fying problem-solving. The misleading data is de-
signed to test if LLMs can tackle situations in the
absence of implicit patterns. While implicit pat-
terns are still provided in training or ICL data, mis-
leading data, i.e., , data with no implicit patterns,
is provided for testing accuracy. We name this ac-
curacy Misleading Accuracy, while the testing re-
sults of data with implicit patterns are named Clean
Accuracy. Detailed experimental procedures can
be found in Appendix B.

Out-Of-Distribution Data. The training data are
sampled from a certain distribution, e.g., , for ex-
pression tasks, there are no more than 10 terms in
each expression. Our out-of-distribution (OOD)
data are designed to evaluate the model’s perfor-
mance when encountering OOD data during the
evaluation phase. Detailed experimental proce-
dures can be found in Appendix C.

Models. We select open-sourced models in sizes
of 0.5B level e.g., Qwen1.5-0m5B, 1B level
e.g., GPTNeo-1.3B (Black et al., 2021), Pythia-
1.4B (Biderman et al., 2023), Qwen1.5-1.8B (Bai
et al., 2023), and 7B level e.g., Mistral-7B (Jiang
et al., 2023), Qwen1.5-7B (Bai et al., 2023), Yi-
6B (Young et al., 2024). Model weights are down-
loaded from Huggingface and follow the official
implementations.

Data Format. For fine-tuning, the data is pro-
vided in a single example without supervised in-
struction. A simple description, the question, and
the answer are given in order. We prepared 1,600
data points for fine-tuning. For in-context learn-
ing, we constructed the input in multi-shot, ranging
from 0-shot, i.e., directly answer one question, to
32-shot i.e., 32 examples with their answers first
given, then a new question in the same kind re-
quired to answer. The detailed example of our data
format could be found in Appendix A.

Training Details. The training process was con-
ducted using a sequence length of 512 and a batch
size of 8 with a total of 1 epoch. A warmup phase of
20 steps was implemented, starting with a learning
rate of 1e-6 and peaking at 2e-5, followed by a lin-
ear decay. The AdamW optimizer was used. This

4141

Model Expression Code Relation Boolean

Baseline Full-ft ICL Baseline Full-ft ICL Baseline Full-ft ICL Baseline Full-ft ICL

0.5B level
Qwen1.5-0.5B 22.2% 88.4% 50.1% 16.6% 2.0% 32.2% 48.8% 48.5% 60.1% 54.8% 51.7% 65.3%
1B level
GPTNeo-1.3B 24.3% 46.6% 55.6% 27.6% 17.7% 44.5% 20.5% 34.7% 37.4% 53.8% 53.7% 54.3%
Qwen1.5-1.8B 16.2% 89.9% 63.4% 54.3% 53.7% 58.2% 20.1% 21.3% 35.6% 66.3% 66.3% 68.1%
Pythia-1.4B 5.0% 45.4% 53.7% 37.6% 46.5% 53.1% 20.5% 31.3% 44.4% 61.3% 63.7% 68.5%
7B level
Yi-6B 12.5% 88.2% 48.2% 51.2% 78.7% 80.9% 48.0% 52.5% 98.0% 55.7% 64.1% 68.3%
Qwen1.5-7B 78.0% 89.3% 67.9% 57.6% 72.0% 86.8% 48.0% 78.8% 98.0% 71.9% 41.7% 79.8%
Mistral-7B 32.6% 75.2% 76.3% 14.1% 72.0% 82.8% 48.5% 72.5% 90.9% 45.7% 54.5% 74.3%

Table 1: Experimental results of implicit pattern detection tasks. We conducted experiments from 0.5B to 7B across
6 models. The highest accuracy was highlighted with boldsymbol.

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Expression

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Code

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Boolean

0.00 0.25 0.50 0.75 1.00
Accuracy (Clean)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(M

is
le

ad
in

g)

Relation

Mistral-7B (FT)
Qwen-1.5-7B (FT)

Yi-6B (FT)
Qwen-1.5-1.8B (FT)

GPTNeo-1.3B (FT)
Pythia-1.4B (FT)

Qwen-1.5-0.5B (FT)
Mistral-7B (ICL)

Qwen-1.5-7B (ICL)
Yi-6B (ICL)

Qwen-1.5-1.8B (FT)
GPTNeo-1.3B (FT)

Pythia-1.4B (FT)
Qwen-1.5-0.5B (FT)

Figure 3: Robustness test of implicit pattern detection test. The horizontal axis represents the accuracy under clean
input, and the vertical axis represents the accuracy under misleading input. Relatively speaking, the closer the
results are to the bottom right corner, the worse the method’s resistance to misleading data. The closer the results
are to the top left corner, the better it is.

configuration ensured the model’s performance and
stability, allowing it to effectively learn and identify
hidden patterns in the data.

4 Results and Analysis

In this section, we present our results for the im-
plicit pattern finding tasks following the experi-
mental setting in Section 3.2. We show that ICL
achieved an overall higher level of accuracy over
fine-tuning on these four tasks. We also show
that the improvement of accuracy with ICL mainly
comes from the detection of those implicit patterns
in Section 5 and refsec:circuit.

4.1 ICL v.s. Fine-tuning: Accuracy

The results of accuracy test are shown in Table 1
and Table 2. Both ICL and fine-tuning(including
full-param fine-tuning and PEFT methods) bring
improvements to the performace of each task. How-
ever, it is easily noticed that ICL wins at most terms
like relation, code reading and boolean functions,
with 2% to even more than 30% improvements

Method Type Expression Code Relation Boolean

Baseline 27.5% 54.3% 20.1% 66.3%

Full-Param FT 89.9% 53.7% 21.3% 66.3%
LoRA 46.5% 53.3% 20.1% 64.3%
QLoRA 46.2% 51.6% 20.5% 61.3%
GaLoRA 47.1% 52.5% 20.5% 66.4%

ICL 63.4% 58.2% 35.6% 68.1%

Table 2: Experimental comparison of different PEFT
methods. We compared the results on Qwen1.5-1.8B. It
is obvious that PEFT shows no significant improvement
compared to full-param fine-tuning and seems to have
limited performance.

at most. On the flip side, fine-tuning only shows
slight advantages in expression calculations in only
Qwen-series models. As for different model size2,
we found that a larger model seems be able to evoke
stronger ICL ability above linearly growth (see
Table 1), where the scaling of fine-tuning perfor-
mance is limited.

2See Qwen1.5 series in Table 1 from 0.5B to 7B

4142

OOD Type Expression Code Relation Boolean

Baseline 27.5% 54.3% 20.1% 66.3%

FT 89.9% 53.7% 21.3% 66.3%
FT + Test OOD 32.1% 34.2% 0.1% 0.1%
(FT+Test) OOD 88.2% 42.7% 11.3% 12.4%

ICL 63.4% 58.2% 35.6% 68.1%
ICL + Test OOD 34.5% 44.2% 12.3% 24.7%
(ICL+Test) OOD 62.3% 51.7% 34.5% 71.4%

Table 3: Experimental comparison of different PEFT
methods. Here FT/ICL + Test OOD means we only
applied OOD data in test phase, while (FT/ICL) OOD
represents that both training/in-context learning and test
phase were using OOD data.

4.2 ICL v.s. Fine-tuning: Robustness without
Implicit Pattern

In Section 3.2, we introduced the metrics of clean
accuracy and misleading accuracy by adding mis-
leading data to test both ICL and fine-tuning’s ro-
bustness against general data without implicit pat-
terns. The results are shown in Figure 3. For each
task, we draw a scatter plot where the x- and y-axis
represent the clean accuracy and the misleading ac-
curacy, respectively. The results show that ICL can
better exploit the implicit patterns in the demonstra-
tion data, while at the same time not compromising
general reasoning abilities.

4.3 ICL v.s. Fine-tuning: Out-Of-Distribution
Implicit Patterns

Out-of-Distribution (OOD) data is a widely exam-
ined problem nowadays. The training data of our
implicit pattern detection tasks also samples from
certain distributions (see Appendix C for details).
In this subsection, we hope to compare how ICL
and fine-tuning perform if we provide cases outside
of the training distribution. For ICL, all examples
given are divided into two types: in-distribution
examples and OOD examples. For fine-tuning, we
directly provide OOD problems to test the accuracy.
We performed this experiment on Qwen1.5-1.8B
and the results are demonstrated in Table 3. It is
worth noticing that fine-tuning generally performs
worse when the test data is OOD, while ICL per-
forms fairly well comparing to the baseline method.

4.4 How Much Fine-tuning Do We Need?

In this experiment, we hope to figure out whether
fine-tuning has reached its limit for implicit pattern
detection or there will still be improvement if more
data is utilized for fine-tuning. Therefore, we visu-

0 50 100 150 200 250
Time Step

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Va
lu

e

Loss and Accuracy Over Time

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Real Loss Values
Smoothed Loss Values
Accuracy

Figure 4: The progression of loss and accuracy over
time during the fine-tuning of implicit pattern tasks.
The Real Loss Values (dashed blue line) show the loss
during training. To mitigate this noise, the Smoothed
Loss Values (solid blue line) provide a clearer trend of
the overall loss reduction. We also show the average
test accuracy over all tasks (solid green line).

alized the fine-tuning process of Qwen1.5-1.8B. At
the onset of training, there is a steep decline in the
loss value, suggesting that the model quickly learns
basic patterns in the data. This rapid improvement
is typical, as the model captures the most evident
features. The Accuracy (solid green line) also in-
creases sharply, corroborating the initial learning
phase where the model transitions from random
guessing to meaningful predictions. However, after
around 50 time steps, both the loss and accuracy
curves begin to stabilize. This period of stabiliza-
tion suggests diminishing returns from further train-
ing, as the fine-tuned model failed to capture further
implicit patterns. After 100 time steps, the curves
indicate that the model has reached a plateau. The
accuracy remains relatively constant, and the loss
value shows minimal fluctuations around a stable
trend. This behavior signifies that the model has
learned the underlying patterns to a satisfactory
extent, and additional fine-tuning yields marginal
improvements.

4.5 Comparison of Fine-tuning with PEFT
Methods

Lastly, we examine whether there is a significant
difference between various fine-tuning methods
e.g., vanilla full-parameter fine-tuning, and pa-
rameter efficient fine-tuning (PEFT) methods like
LoRA (Hu et al., 2021), QLoRA (Dettmers et al.,
2024) and GaLoRE (Zhao et al., 2024). Although
PEFT needs much less parameters for training, and
several studies criticized its ability (Pu et al., 2023;
Zou et al., 2023), there are still evidences that PEFT
sometimes achieves ICL-level performance. We

4143

LLM

Circuits A

Task w/ Implicit Patterns
Activation Patching Circuits Shift

Comparison

Clean Input Corrupted Input

LLM

FT/ICL

Circuits B

Figure 5: Illustration of circuit shift comparison. LLMs are first detected circuits with activation patching. Then we
compare how much their circuits changed after fine-tuning and in-context learning.

0 155 10

0

5

10

15

20

Head

La
ye
r

0 155 10

0

5

10

15

20

Head

La
ye
r

0 155 10

0

5

10

15

20

Head

La
ye
r

Figure 6: Visualization of attention head sensitivity in GPTNeo-1.3B. The more the color leans towards blue, the
more important a specific attention head is to the implicit pattern detection task. Left: baseline model. Middle:
fine-tuned model. Right: ICL model. It is clear that compared to fine-tuning, ICL brings significant circuit shifts.

followed the experimental settings in previous sec-
tions on Qwen1.5-1.8B with PEFT methods. The
experimental results can be found in Table 2. It
is clear that in the implicit pattern detection tasks,
PEFT methods show no obvious advantages com-
pared to full-param fine-tuning, thus they still failed
to win ICL in accuracy in all tests.

5 Explanation of ICL’s Victory: Circuits
Shift Theory

Understanding the inner mechanisms of LLMs
greatly benefits their ethical use and safety. We
have found that ICL performs much better than
fine-tuning on implicit pattern detection, and in
this section, we try to explain why.

From a mechanistic interpretability perspective,
we investigate this problem using circuits. Circuits
are specific pathways (typically combinations of
attention heads and MLP layers) within a model
responsible for processing and interpreting partic-
ular patterns or tasks. The change in circuits for
LLMs represents a shift in their inner mechanisms,
revealing that LLMs choose different ways to solve
problems. Based on this viewpoint, we propose a
theory: Circuits Shift, to explain this phenomenon.
We will first provide a method for probing circuits,
explaining what they are and the types of circuits

we found in ICL-based and fine-tuning-based mod-
els. Then we will show that the reason ICL per-
forms better than fine-tuning is that the circuits
in models experience a more significant shift. A
detailed explanation of circuits and experimental
settings can be found in Appendix D.

5.1 Method for Identifying Circuit Shift

In Figure 5, we present our framework and method-
ology for probing circuit shifts. We begin by se-
lecting an implicit pattern detection task (in this
study, we utilize an expression task). Subsequently,
we use models employing different methods, i.e.,
ICL or fine-tuning, for inference. During this pro-
cess, we introduce corrupt input to randomly dis-
rupt a portion of the activation to assess whether
the corresponding attention heads or MLP layers
significantly contribute to the final outcome. If a
significant contribution exists, the disruption will
result in considerable perturbation of the final log-
its, which is depicted as sensitivity in the figure.

5.2 Circuits Shift in LLMs for Implicit
Pattern Detection

We first visualized and ranked circuits in GPTNeo-
1.3B zero-shot, after fine-tuned, and ICL with 32-
shot with expression calculation task (see Figure 6

4144

Circuits Zero-shot Baseline ICL w/o Implicit Patterns ∆ After Fine-tuning ∆ After ICL ∆

L17 H12, L18 H0 L17 H12, L16 H1 L17 H12, L18 H0 L11 H5, L10 H6
Attention L22 H1, L16 H7 L18 H0, L15 H2 2 L22 H1, L16 H7 1 L11 H2, L15 H10 6

L18 H15, L14 H5 L18 H15, L22 H1 L18 H15, L12 H6 L17 H12, L 18 H5

L9 L9 L9 L17
MLP L17 L17 0 L18 0 L14 2

L18 L18 L17 L15

Table 4: Top 6 Rankings of Attention Heads and top 3 rankings of MLP Layers in baseline (zero-shot) model,
fine-tuned model, and ICL model. L is layer and H is head. ∆ shows how many different heads or MLPs changed
after fine-tuning or ICL. A larger ∆ represents a more significant circuit shift in certain processes.

and Table 4). In Figure 6, we use the heatmap
to illustrate the sensitivity of each attention head
in implicit pattern detection test. From the figure,
we can observe that, compared to the baseline and
fine-tuning scenarios, ICL exhibits a significant
shift when learning implicit patterns. Firstly, more
shallow heads are involved in the task. Secondly,
some deep heads that previously played a dominant
role have now lost their leadership positions. This
indicates that during the ICL process, the model
significantly transforms its approach to solving the
task, adapting to a form more suitable for implicit
patterns, a phenomenon not observed with other
methods.

We can further validate our hypothesis in Table 4.
We selected the six attention heads and MLP lay-
ers3 with the highest sensitivity, i.e., those that
contributed the most to the final result. Using the
baseline, which is the zero-shot approach for han-
dling implicit pattern detection tasks, as the stan-
dard, we counted how many new attention heads
entered the top six highest contributors when the
method changed, denoted by Delta. The results are
very clear: compared to fine-tuning, ICL exhibits
more significant changes, indicating a more thor-
ough Circuit Shift during ICL. This suggests that
ICL captures the characteristics of implicit patterns
better than fine-tuning and adapts its processing
method accordingly.

To rule out the inherent impact of ICL itself, we
also conducted multi-shot experiments on a set of
data without implicit pattern characteristics. The
results showed that it is not multi-shot alone that
induces this change, but rather the combined effect
of ICL and implicit patterns.

3See A Mathematical Framework for Transformer Circuits
for details.

6 Related Work

Implicit Pattern Discovery Previous works have
designed benchmarks to test the LLMs reasoning
ability (Barrett et al., 2018; Tang et al., 2023; Gen-
dron et al., 2024). However, the benchmarks rarely
include two-level questions where at one level, they
can be solved by brute force, at another level it can
be solved by exploiting implicit patterns. The clos-
est related work we know is Efrat et al. (2021),
which involves solving cryptic crossword puzzles.
To help the model find patterns in data, Prior work
Sun et al. (2024); Zhu et al. (2024) proposes a two-
stage induction-deduction process that first summa-
rizes the common patterns explicitly, then reasons
from the patterns.

ICL v.s. Fine-tuning Difference Previous works
have also compared fine-tuning and in-context
learning. Shen et al. (2024) shows that ICL is
likely not an algorithmic equivalence to gradient
descent for real LLMs. Reddy (2023) demonstrates
that ICL is implemented by an induction head and
analyzes its emergence phenomenon. Bhattamishra
et al. (2023) shows that ICL and vanilla training im-
plement two distinct algorithms that don’t transfer
to each other. However, it has been proven that fine-
tuning shows better performance in generalization
to OOD tasks than in-context learning (Mosbach
et al., 2023).

7 Conclusion

In conclusion, our research demonstrates that In-
Context Learning (ICL) significantly outperforms
fine-tuning in capturing implicit patterns within
specific tasks. Through our experimental evalu-
ations, we observed that ICL not only enhances
task performance more effectively but also exhibits
greater adaptability in problem-solving approaches,
as evidenced by the notable shifts in model circuits.

4145

https://transformer-circuits.pub/2021/framework/index.html

Limitations

Our study on the effectiveness of in-context learn-
ing in capturing implicit patterns compared to fine-
tuning faces several limitations. Primarily, the
generalizability of our findings is constrained by
the specific nature of the implicit pattern detec-
tion tasks, which are limited to certain domains
like arithmetic calculations, code reading, Boolean
functions, and relation reasoning. Additionally, our
analysis of Circuit Shift, which underpins the supe-
rior performance of ICL, relies on activation patch-
ing and sensitivity analysis, methods that, while
insightful, require further refinement and valida-
tion across different models and tasks to confirm
their robustness and applicability. Furthermore, the
computational resources required for fine-tuning,
especially with large models, may limit the feasi-
bility of such experiments in broader settings, and
a detailed cost-benefit analysis comparing ICL and
fine-tuning in terms of computational efficiency
and performance is needed.

Acknowledgement

This work is funded by the Zhejiang Provin-
cial “Jianbing” “Lingyan” Research and Develop-
ment Program of China (2024C01135), National
Natural Science Foundation of China (62302433,
U23A20496), Zhejiang Provincial Natural Science
Foundation of China (LQ24F020007) and CCF-
Tencent Rhino-Bird Fund (RAGR20230122).

References
Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,

Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

David G. T. Barrett, Felix Hill, Adam Santoro, Ari S.
Morcos, and Timothy Lillicrap. 2018. Measuring
abstract reasoning in neural networks. Preprint,
arXiv:1807.04225.

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and
Varun Kanade. 2023. Understanding in-context learn-
ing in transformers and llms by learning to learn dis-
crete functions. Preprint, arXiv:2310.03016.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adrià Garriga-Alonso.
2023. Towards automated circuit discovery for mech-
anistic interpretability. Advances in Neural Informa-
tion Processing Systems, 36:16318–16352.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Avia Efrat, Uri Shaham, Dan Kilman, and Omer Levy.
2021. Cryptonite: A cryptic crossword benchmark
for extreme ambiguity in language. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4186–4192, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin
Liu, Ruoyu Zhang, Ruijie Fang, Asmita, Ryan Tsang,
Najmeh Nazari, Han Wang, and Houman Homayoun.
2024. Large language models for code analysis: Do
llms really do their job? Preprint, arXiv:2310.12357.

Chengguang Gan and Tatsunori Mori. 2023. A few-
shot approach to resume information extraction via
prompts. In International Conference on Applica-
tions of Natural Language to Information Systems,
pages 445–455. Springer.

Gaël Gendron, Qiming Bao, Michael Witbrock, and
Gillian Dobbie. 2024. Large language mod-
els are not strong abstract reasoners. Preprint,
arXiv:2305.19555.

Joy He-Yueya, Gabriel Poesia, Rose E. Wang, and
Noah D. Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. Preprint, arXiv:2304.09102.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xi-
uhong Li, Jun Liu, Kangdi Chen, Hanyu Dong, and
Yu Wang. 2023. Flashdecoding++: Faster large
language model inference on gpus. arXiv preprint
arXiv:2311.01282.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

4146

https://arxiv.org/abs/1807.04225
https://arxiv.org/abs/1807.04225
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://arxiv.org/abs/2310.03016
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.18653/v1/2021.emnlp-main.344
https://doi.org/10.18653/v1/2021.emnlp-main.344
https://arxiv.org/abs/2310.12357
https://arxiv.org/abs/2310.12357
https://arxiv.org/abs/2305.19555
https://arxiv.org/abs/2305.19555
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102
https://arxiv.org/abs/2304.09102

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:
An adapter family for parameter-efficient fine-
tuning of large language models. arXiv preprint
arXiv:2304.01933.

Shima Imani, Liang Du, and Harsh Shrivastava. 2023.
Mathprompter: Mathematical reasoning using large
language models. Preprint, arXiv:2303.05398.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Zhiming Li, Yushi Cao, Xiufeng Xu, Junzhe Jiang,
Xu Liu, Yon Shin Teo, Shang wei Lin, and Yang
Liu. 2024. Llms for relational reasoning: How far
are we? Preprint, arXiv:2401.09042.

Ziquan Liu, Yi Xu, Yuanhong Xu, Qi Qian, Hao Li,
Xiangyang Ji, Antoni Chan, and Rong Jin. 2022. Im-
proved fine-tuning by better leveraging pre-training
data. Advances in Neural Information Processing
Systems, 35:32568–32581.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstra-
tions: What makes in-context learning work? arXiv
preprint arXiv:2202.12837.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. 2023. Few-shot
fine-tuning vs. in-context learning: A fair comparison
and evaluation. arXiv preprint arXiv:2305.16938.

Matthew E Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint
arXiv:1903.05987.

George Pu, Anirudh Jain, Jihan Yin, and Russell Ka-
plan. 2023. Empirical analysis of the strengths and
weaknesses of peft techniques for llms. Preprint,
arXiv:2304.14999.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Gautam Reddy. 2023. The mechanistic basis of data
dependence and abrupt learning in an in-context clas-
sification task. Preprint, arXiv:2312.03002.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi.
2024. Do pretrained transformers learn in-context by
gradient descent? Preprint, arXiv:2310.08540.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
2023. Powerinfer: Fast large language model serv-
ing with a consumer-grade gpu. arXiv preprint
arXiv:2312.12456.

Wangtao Sun, Haotian Xu, Xuanqing Yu, Pei Chen,
Shizhu He, Jun Zhao, and Kang Liu. 2024. Itd:
Large language models can teach themselves induc-
tion through deduction. Preprint, arXiv:2403.05789.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng,
Song-Chun Zhu, Yitao Liang, and Muhan Zhang.
2023. Large language models are in-context semantic
reasoners rather than symbolic reasoners. Preprint,
arXiv:2305.14825.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Qingyu Yin, Xuzheng He, Xiang Zhuang, Yu Zhao,
Jianhua Yao, Xiaoyu Shen, and Qiang Zhang. 2024.
Stablemask: Refining causal masking in decoder-
only transformer. arXiv preprint arXiv:2402.04779.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
and Songfang Huang. 2023. How well do large lan-
guage models perform in arithmetic tasks? Preprint,
arXiv:2304.02015.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist mod-
els through hybrid instruction tuning. Preprint,
arXiv:2309.05653.

Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing
Qu, Yong Jae Lee, and Yi Ma. 2023. Investigating the
catastrophic forgetting in multimodal large language
models. arXiv preprint arXiv:2309.10313.

Yu Zhang, Hui-Ling Zhen, Zehua Pei, Yingzhao Lian,
Lihao Yin, Mingxuan Yuan, and Bei Yu. 2024. Dila:
Enhancing llm tool learning with differential logic
layer. Preprint, arXiv:2402.11903.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient llm training
by gradient low-rank projection. arXiv preprint
arXiv:2403.03507.

Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou,
Jian Tang, Dale Schuurmans, and Hanjun Dai. 2024.
Large language models can learn rules. Preprint,
arXiv:2310.07064.

4147

https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2303.05398
https://arxiv.org/abs/2401.09042
https://arxiv.org/abs/2401.09042
https://arxiv.org/abs/2304.14999
https://arxiv.org/abs/2304.14999
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2310.08540
https://arxiv.org/abs/2310.08540
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2403.05789
https://arxiv.org/abs/2305.14825
https://arxiv.org/abs/2305.14825
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2402.11903
https://arxiv.org/abs/2310.07064

Wentao Zou, Qi Li, Jidong Ge, Chuanyi Li, Xiaoyu
Shen, Liguo Huang, and Bin Luo. 2023. A com-
prehensive evaluation of parameter-efficient fine-
tuning on software engineering tasks. Preprint,
arXiv:2312.15614.

A Data Format and Example

We provided examples of tasks and prompts. We
provided data as 2-shot (code in zero-shot to restrict
content length) for illustrating how ICL works. For
fine-tuning we will use the same format but zero-
shot in both training and inference.

Expression:

Now you need to calculate the answer of
some mathematic equations.
Here are some examples:
(1+6)+(-3+3)*(-1-3+9-5)=7
(2+3)+(-1-4+5)*(10+6+2-8)=5
(8)+(0)*(0-6+9-6)=

Code:

Now you need to give me the printed
result after running this python code.
Here are some examples:

label=code:implicit_pattern]
def function1(x):

y = x ** 9
for i in range(1, 13):

y = y * i - (y // (i + 9))
return y

def function2(z, a):
return z / 10

input_value = int(input())
result = function2(input_value, \
function1(input_value))
print(result)

The input is 10, so the output is

Relation:

Here are some cities expressed as A, B, C,
etc. I will show some connection
relations, and you need to tell me if
city A and city Z are connected
(Answer True or False).
Here are some examples:
A is connected with G
F is connected with J
J is connected with C
C is connected with B
B is connected with H
H is connected with E
E is connected with G
G is connected with I
I is connected with D
So 'the city A and Z is connected' is False

4148

https://arxiv.org/abs/2312.15614
https://arxiv.org/abs/2312.15614
https://arxiv.org/abs/2312.15614

Name Type Problem Example Answer Answer Type

Expression Mathematic Calculation (6− 1) + (6− 6) ∗ (−10 + 1 + 2 + 13) = 5 Number

Code Code Reading import math \n \n def function1(x): \n \n
[TRUNCATED] return result \n print(result)

3.5 Number

Relation Textual Reasoning A is connected with G\n F is connected[TRUNCATED]
connected with Z, ’the city A and Z is connected’ is False Boolean

Boolean Mathematical Reasoning (False or False) and (False or True) and False = False Boolean

Table 5: Examples of four implicit pattern detection tasks.

A is connected with B
H is connected with I
I is connected with G
G is connected with F
F is connected with E
E is connected with J
J is connected with B
B is connected with C
C is connected with D
B is connected with Z
So 'the city A and Z is connected' is True
A is connected with H
J is connected with I
I is connected with E
E is connected with F
F is connected with H
H is connected with G
G is connected with D
D is connected with C
C is connected with B
So 'the city A and Z is connected' is

Boolean:

Here are some boolean expressions,
you need to directly tell me the result.
If it is true, print True,
else print False. Here are some examples:
(True and False) and (True or False)
and (False and False)\n
The result is: False
(False and False) or (True and True)
and (False and False)\n
The result is: False
(True or True or True) and
(False and True) and (True or True)
\n The result is:

B Misleading Data Construction

Expression. For the expression task, the inherent
implicit pattern is an element that remains zero.
When constructing the misleading dataset, we set

this element to be non-zero. i.e.,

(3 + 2) + (4− 1 + 5− 6)× (23− 54 + 2) =?

we constructed it as misleading data as:

(3 + 2) + (4− 1 + 5− 7)× (23− 54 + 2) =?

Code. Here we provided two example about how
to construct misleading code.

def function1(x):
y = x ** 19
for i in range(1, 23):

y = y * i - (y // (i + 19))
return y

def function2(z, a):
return z / 20

input_value = int(input())
result = function2(

input_value,
function1(input_value)

)
print(result)

def function1(x):
y = x ** 19
for i in range(1, 23):

y = y * i - (y // (i + 19))
return y

def function2(z, a):
return z / 20

input_value = int(input())
result = function2(

function1(input_value),
function1(input_value)

)
print(result)

4149

Relation. In the relation task, we generate mis-
leading data by not setting shortcuts similar to A-G
or G-Z.

A is connected with B
D is connected with B
B is connected with H
H is connected with F
F is connected with J
J is connected with I
I is connected with C
C is connected with G
G is connected with E
B is connected with Z

Here A-B-Z is a implicit pattern as shortcut for
quick solving this problem. We remove this with a
complex one:

A is connected with B
D is connected with B
B is connected with H
H is connected with F
F is connected with J
J is connected with I
I is connected with C
C is connected with G
G is connected with E
F is connected with Z

Boolean. In the boolean task, we use combina-
tions of OR + true and AND + false for quick
evaluation. In the misleading data, we remove this
characteristic.

(False and True)
or (False or False)
or True

(False and True)
or (False or False)
and True

C OOD data Construction

Min Terms Max Terms Range (abs value)

baseline 1 3 10
OOD 2 4 20

Table 6: Expression OOD

D Circuits

Circuits In mechanistic interpretability, our goal
is to delineate how model components correlate
with human-understandable concepts, an endeavor

Functions Need Calculation Shortcut Nodes

baseline 1 3 (A to Any to G)
OOD 2 Unlimited

Table 7: Code OOD and Relation OOD

If All AND or OR Num of Terms

baseline Yes 4
OOD No 6

Table 8: Code OOD and Relation OOD

for which circuits provide a useful abstraction. Con-
ceptualizing a model as a computational graph M ,
where nodes represent components like neurons,
attention heads, and embeddings, and edges de-
note interactions such as residual connections and
projections, a circuit C is defined as a subgraph
of M responsible for a specific behavior, such as
performing a task. This is a more coarse-grained
approach compared to the feature-based.

Activation Patching Activation patching is a
technique used to determine the importance of spe-
cific components within a model by manipulating
their latent activations during model runs. The pro-
cess involves three key steps: first, a clean run
where the model processes a clean prompt, Xclean
(e.g., The Eiffel Tower is in), and associated answer
r (Paris), during which activations of critical com-
ponents such as MLP or attention heads are cached;
second, a corrupted run where the model is run on a
corrupted prompt, Xcorrupt (e.g., The Colosseum is
in), to record baseline outputs; and third, a Patched
run where the model is run on Xcorrupt again, but
with specific cached activations from the Xclean run
restored. This setup allows for the evaluation of the
patching effect, which measures the restoration of
model performance by comparing outputs from the
Corrupted and Patched runs. The patching effect is
quantitatively assessed using different metrics with
probability gap:

Ppatched(r)− Pcorrupt(r) (4)

and logit difference:

LD(r, r′) = log

(
P (r)

P (r′)

)

patched
−log

(
P (r)

P (r′)

)

corrupt
(5)

This technique is crucial for understanding and
improving model reliability and performance by
highlighting the roles of individual model compo-
nents.

4150

E A detailed Definition of Implicit
Pattern Detection

Consider a problem P characterized by a fixed
complexity function CP . For each input x in the
domain D, there exists a solution y. A implicit pat-
tern for problem P , denoted as Pshortcut, is defined
as follows:

• Pshortcut is either a subproblem of P or an inde-
pendent problem where the domain Dshortcut
is a subset of D (i.e., Dshortcut ⊆ D).

• For any input x in Dshortcut, the output yshortcut
of Pshortcut approximates the output y of P .

• The complexity of solving Pshortcut, CPshortcut ,
is significantly less than CP (i.e., CPshortcut ≪
CP).

If these conditions are met, then Pshortcut is consid-
ered a shortcut of P . We define its complexity Cf

in terms of the accuracy of a LLM performing on
f . Let Accf represent the accuracy of the LLM on
task f , then the complexity CT f can be defined as:
CT = 1−Accf The complexity Cf ranges from 0
(no complexity, as the task is perfectly solved) to 1
(maximum complexity, as the task is not solved at
all).

This definition implies that the higher the LLM’s
accuracy on a task, the lower the complexity of
the task. This measure allows us to quantify task
complexity based on the performance capabilities
of state-of-the-art language models.

4151

