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Abstract

Large language models are typically fine-tuned
to align with human preferences, but tuning
large models is computationally intensive and
complex. In this work, we introduce Integrated
Value Guidance (IVG), a method that uses im-
plicit and explicit value functions to guide lan-
guage model decoding at token and chunk-
level respectively, efficiently aligning large lan-
guage models purely at inference time. This ap-
proach circumvents the complexities of direct
fine-tuning and outperforms traditional meth-
ods. Empirically, we demonstrate the versatil-
ity of IVG across various tasks. In controlled
sentiment generation and summarization tasks,
our method significantly improves the align-
ment of large models using inference-time
guidance from gpt2-based value functions.
Moreover, in a more challenging instruction-
following benchmark AlpacaEval 2.0, we show
that both specifically tuned and off-the-shelf
value functions greatly improve the length-
controlled win rates of large models against
gpt-4-turbo (e.g., 19.51% → 26.51% for
Mistral-7B-Instruct-v0.2 and 25.58% →
33.75% for Mixtral-8x7B-Instruct-v0.1
with Tulu guidance).

1 Introduction

Learning-based algorithms have become the stan-
dard for aligning large language models (LLMs)
with human preferences, as evidenced by numerous
studies (Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022; Rafailov et al., 2024b; Azar
et al., 2024). Despite their success, fine-tuning
LLMs is notably resource-intensive and poses im-
plementation challenges (Rafailov et al., 2024b).
These challenges have catalyzed the development
of inference-time alignment methods that main-
tain LLMs in a frozen state and guide their decod-
ing during testing (Mitchell et al., 2023; Liu et al.,
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Figure 1: Illustration of Integrated Value Guidance
(IVG) with parameters W,K,L = 2, 2, 30. Weak-to-
Strong Search (Zhou et al., 2024c) denotes the results
with the same parameters. BoNe denotes Best-of-N
Sampling (N = 4) with explicit values.

2024; Mudgal et al., 2023; Kim et al., 2023; Huang
et al., 2024; Gao et al., 2023; Beirami et al., 2024).

Value functions, which assess the quality or
alignment of generated text with desired criteria,
have proven effective for inference-time alignment
in two primary forms: (1) implicit value functions,
represented by the log-probability differences be-
tween fine-tuned and base models (Rafailov et al.,
2024a; Mitchell et al., 2023; Liu et al., 2024; Zhou
et al., 2024a; Liu et al., 2021), and (2) explicit value
functions, developed through direct training (Mud-
gal et al., 2023; Yang and Klein, 2021). Our em-
pirical analysis reveals a significant performance
discrepancy between these functions at different
granularity levels of inference alignment (Section
5): explicit value functions excel at chunk-level
evaluation, whereas implicit value functions are
more effective at the token-level manipulation.

Recognizing this performance discrepancy, we
introduce a novel algorithm called Integrated Value
Guidance (IVG) to harness the strengths of both
value function types. IVG combines the strengths
of implicit and explicit value functions by apply-
ing implicit value functions to token-level sam-
pling and explicit value functions to chunk-level
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beam search (Mudgal et al., 2023; Zhou et al.,
2024c). IVG offers two significant advancements:
(1) It integrates the distinctive performances of the
two value function types across different granular
strategies, thereby validating our theoretical models
through empirical tests. (2) It introduces a robust
inference-time alignment method, outperforming
similar existing techniques in various evaluations.
Figure 2 illustrates the IVG method.

Empirically, IVG demonstrates its versatility
in tasks such as controlled-sentiment genera-
tion (Maas et al., 2011a) and summarization (Sti-
ennon et al., 2020), where using small models like
gpt2 with 124M parameters is effective in guiding
larger models from the GPT-2 series (Radford et al.,
2019) to achieve competitive results. Further, in
challenging instruction-following benchmarks such
as AlpacaEval 2.0 (Dubois et al., 2024), both open-
source models (e.g., Tulu guidance) and our fully
trained models (e.g., Ultra guidance) significantly
enhance the length-controlled win rates of larger
models against competitors like gpt-4-turbo
(e.g., Mistral-7B-Instruct-v0.2 (Jiang et al.,
2023) from 19.51 to 26.51 and Mixtral-8x7B-
Instruct-v0.1 (Mistral AI team, 2023) from
25.58 to 33.75).

2 Related Work

Large unsupervised language models, trained on
vast internet-scale datasets, have demonstrated re-
markable capabilities (Chowdhery et al., 2023;
Brown et al., 2020; Touvron et al., 2023a).
Nonetheless, aligning these models with human val-
ues remains challenging. Traditionally, alignment
is achieved through fine-tuning based on human
evaluations of model-generated responses (Ziegler
et al., 2019; Stiennon et al., 2020; Ouyang et al.,
2022; Rafailov et al., 2024b; Touvron et al., 2023b;
AI@Meta, 2024; Bai et al., 2022a,b). While ef-
fective, this method demands significant computa-
tional and engineering resources. Moreover, the
diversity of human values complicates the creation
of universally aligned models (Ouyang et al., 2022;
Zhou et al., 2024b; Mudgal et al., 2023; Rame et al.,
2024; Jang et al., 2023; Wang et al., 2024).

In response to these challenges, we propose
an inference-time alignment approach that freezes
pre-trained models while modulating their outputs
through a decoding phase managed by smaller, spe-
cialized models. This strategy minimizes the need
for extensive retraining and adapts more readily to

individual preferences.
The conceptual framework for aligning language

models at inference time is rooted in the use of
value functions. Implicit value functions, as de-
scribed by Rafailov et al. (2024a), proposed a
token-level Markov Decision Process to adjust lan-
guage model outputs based on the log-likelihood
differences between fine-tuned and base models.
Mudgal et al. (2023) introduced a method that
leverages explicit value functions trained through
a KL-regularized reinforcement learning objective,
which acts as a prefix scorer. Our empirical find-
ings, detailed in Section 5, underscore that while
implicit value functions excel at refining token-
level nuances, explicit value functions provide su-
perior sequence-level contextual understanding.

These insights motivate our method, which in-
tegrates these value functions to enhance model
alignment with human preferences during the de-
coding phase of model output generation.

3 Preliminaries

In this section, we introduce the mathematical for-
mulation of aligning large language models (LLMs)
with human preferences and then describe the im-
plicit and explicit value functions used in our ap-
proach.

3.1 Large Language Model Alignment with
Human Preferences

Aligning large language models is commonly for-
mulated as a Kullback-Leibler (KL)-constrained
optimization problem (Ziegler et al., 2019):

argmax
π

Ex∼p(x),y∼π(y|x)
[
r(x,y)

− DKL (π(y | x)∥πref(y | x))
]
,

(1)

where p(x) denotes the distribution of prompts, y
denotes the responses generated by the language
model, r is the preference reward function induced
from a preference datasets D = {(x,yw,yl)}, and
DKL denotes the KL-divergence that constrains de-
viations from a reference model πref .

3.2 Implicit and Explicit Value Functions

The value function estimates the expected terminal
reward r(x,y) when following the policy π from
a given state (x,y≤t):

V (x,y≤t) = Ey∼π(·|x,y≤t) [r(x,y)] . (2)
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y′ ∘ yL: I can't believe how 
amazing this film was!

y′ ∘ yL: I can't believe I 
loved this movie so much

y′: I can't believe how

y′ : I can't believe I

yL: disappointing this 
film turned out

yL: amazing this film was!

yL: wasted two hours on 
this

yL : loved this movie so 
much

x: Here is a movie review from imdb: 

Score(y|x)

1.9

5.1

2.4
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Sampled i.i.d. from

W Beams W BeamsTopW

K successors per state;

Figure 2: Illustration of Integrated Value Guidance (IVG) with beam width W = 2, successors per state K = 2,
and chunk length L = 5.

Different forms of the value function and opti-
mization objectives lead to various interpretations.
In this work, we demonstrate both the implicit and
explicit forms:

Implicit Value Function. The implicit value
function is defined under the optimal policy π∗

and is derived from the differences in log proba-
bilities between the tuned model π∗ and the ref-
erence model πref, as achieved by an alignment
algorithm such as Direct Preference Optimization
(DPO) (Rafailov et al., 2024b). Specifically, the im-
plicit value function evaluating a partial response
sequence y≤t is given by:

V ∗(x,y≤t)− V ∗(x) = log
π∗(y≤t | x)
πref(y≤t | x)

. (3)

Explicit Value Function. The explicit value
function is a directly trained prefix scorer, which
can be approximated via maximum likelihood es-
timation on the offline preference dataset. Specifi-
cally, the explicit value function is represented as:

V ∗(x,y≤t) = Vθ(x,y≤t), (4)

where Vθ is the value function parameterized by θ.

4 Method

In this section, we introduce our proposed method,
Integrated Value Guidance (IVG). First, we discuss
how to utilize the value function in two distinct
ways: token-wise sampling (Mudgal et al., 2023)
and chunk-level beam search (Zhou et al., 2024c).

Next, we explain how to train the implicit and ex-
plicit value functions on the preference dataset. Fi-
nally, we present the overall inference-time align-
ment process and analyze the computational effi-
ciency of our method.

4.1 Value Function Guided Sampling and
Search Strategies

Given a value function, we can guide the sampling
and search strategies in two ways: token-wise sam-
pling and chunk-level beam search.

4.1.1 Token-wise Sampling
In the token-wise sampling strategy, we use the
value function to adjust the sampling distribution
of the next token. Specifically, we sample the next
token yt according to the following distribution:

π(yt | x,y≤t−1) ∝
πbase(yt | x,y≤t−1) exp(β(V (x,y≤t)−

β(V (x,y≤t−1))),

(5)

where πbase(yt | x,y≤t−1) is the base distribution
of the next token, and β is a hyperparameter that
controls the strength of the value function guidance.

For the implicit value function, we have:

πi(yt | x,y≤t−1) ∝

πbase(yt | x,y≤t−1)

(
π∗(yt | x,y≤t−1)

πref(yt | x,y≤t−1)

)β

.

(6)
For the explicit value function, we have:

πe(yt | x,y≤t−1) ∝
πbase(yt | x,y≤t−1) exp (βVθ(x,y≤t)) .

(7)
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4.1.2 Chunk-level Beam Search
For search-based generation, the chunk-level beam
search strategy is effective for value function-
guided sampling. Previous research (Zhou et al.,
2024c) has shown that chunk-level beam search out-
performs best-of-N (BoN) sampling and requires
an effective value function to rank candidate se-
quences. Specifically, we rank candidate sequences
according to the following score:

r(y≤t|x) ∝ V ∗(x,y≤t)− V ∗(x), (8)

where r(y≤t|x) is the score of the candidate se-
quence y≤t, and V ∗(x,y≤t) and V ∗(x) are the
expected value of the candidate sequence and the
prefix, respectively.

For the implicit value function, we have:

ri(y≤t|x) = log
π∗(y≤t|x)
πref(y≤t|x)

. (9)

For the explicit value function, we have:

re(y≤t|x) = Vθ(x,y≤t). (10)

4.2 Training the Implicit and Explicit Value
Functions

There are various methods to train the implicit and
explicit value functions on the preference dataset.
For the implicit value function, we derive it from
the difference in log probabilities between the
tuned and untuned models, regardless of how the
model was trained. For the explicit value func-
tion, we can employ any reinforcement learning
algorithm.

In this work, we use Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024b) to train the
implicit value function and FUDGE (Mudgal et al.,
2023; Yang and Klein, 2021) to train the explicit
value function.

For the implicit value function, we
have (Rafailov et al., 2024b):

ℓF (x,yw,yl) = − log σ

(
β log

πθ(y
w | x)

πref(yw | x)

−β log
πθ(y

l | x)
πref(yl | x)

)
.

(11)
For the explicit value function, we have (Mudgal

et al., 2023):

ℓF (x,y; θ) =
1

2

∑

t∈[|y|]
(Vθ(x,y≤t)− r(x,y))2 .

(12)

4.3 Integrated Value Guidance

The token-wise sampling and chunk-level beam
search strategies can be combined to enhance the
alignment of large language models with human
preferences. Specifically, token-wise sampling ad-
justs the sampling distribution of the next token
using the implicit value function, while chunk-level
beam search ranks candidate sequences using the
explicit value function.

The IVG algorithm is illustrated in Figure 2. The
key insight is that by applying the implicit value
function at the token level and the explicit value
function at the chunk level, we effectively lever-
age the strengths of both. Compared to Weak-to-
Strong Search (Zhou et al., 2024c), we sample to-
kens from a policy adjusted by the implicit value
function rather than the base policy and use the
explicit value function to rank candidate sequences.
Empirically, we find that this combination leads
to better alignment with human preferences. We
demonstrate the effectiveness of IVG in the follow-
ing sections.

4.4 Implementation and Complexity

We analyze the implementation efficiency and com-
putational complexity of the IVG method. At each
time step, the main components contributing to
the time complexity of IVG include: (1) The base
model performs a forward pass to compute the
probability distribution of the next token based on
the given context. (2) The implicit value functions
(including π∗ and πref) perform forward passes to
compute the probability distributions for the next
token and calculate their difference. This difference
is then combined with the base model’s probability
distribution to obtain the final next token distribu-
tion. (3) When the current chunk reaches the length
L, we compute the value of all candidate sequences
using the explicit value function Vθ, and select the
top-W sequences.

Consider the complexity of a single decoding
step with a context of length t tokens. The com-
plexity is:

• If the current chunk length ̸= L:

T (t) = Tbase(t) + Tπ∗(t) + Tπref(t).

• If the current chunk length = L:

T (t) = Tbase(t)+Tπ∗(t)+Tπref(t)+TVθ
(t).
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To simplify, consider the case where L = 1. The
total time complexity becomes:

T (t) = Tbase(t) + Tπ∗(t) + Tπref(t) + TVθ
(t).

Here, Tbase(t) and other terms represent the infer-
ence time of the respective models for a sequence
of length t. Initially, due to pairwise attention com-
putations, T (t) = O(t2). However, during genera-
tion, we can cache previous computations, reduc-
ing the complexity to O(t). Therefore, the per-step
inference complexity is:

T (t) = O(t)× (Cbase + Cπ∗ + Cπref + CVθ
),

where Cbase, Cπ∗ , Cπref , and CVθ
are constants rep-

resenting the computational costs of each model.
In summary, while IVG does not change the

asymptotic time complexity of the generation pro-
cess, it introduces additional computational over-
head due to multiple forward passes and increased
memory usage. We will empirically evaluate the
computational complexity of different methods in
the experimental section.

5 Experiments

In this section, we empirically evaluate the ability
of the proposed IVG to align large language mod-
els with human preferences using only inference-
time guidance from small language models. First,
in controlled-sentiment generation (Maas et al.,
2011a) and summarization (Stiennon et al., 2020),
we tune gpt2 to model the desired behaviors in
each task to get the implicit value function and
train the explicit value function based on the same
base model. Then, we use the trained implicit and
explicit value functions to steer larger models of
various scales (Section 5.1).

Next, in a more difficult instruction-following
benchmark, AlpacaEval 2.0 (Dubois et al., 2024),
in addition to tuning small models, we reuse the
off-the-shelf open-source 7B models and their un-
tuned versions as the implicit value function and
train the explicit value function by one of the best-
performance sequence-wise reward models evalu-
ated by RewardBench (Lambert et al., 2024a). We
then use them to steer a series of large models.

Baselines. Considering that some existing meth-
ods could be represented as special cases of the
combinations of implicit and explicit value func-
tions for token-wise sampling and chunk-level
beam search, we compare the proposed IVG and

different combinations of implicit and explicit
value functions with the following baselines: (1)
Base: the base model without any value function
guidance; (2) Best-of-N Sampling (BoN): BoNi
uses r = log π∗(y | x)−log πref(y | x) as rewards
and BoNe uses r = Vθ(x,y) as rewards to select
the highest-scoring responses among the N inde-
pendent response from the frozen base language
model; (3) FT: fine-tuning the base model on the
preference dataset.

Note that many existing methods can be repre-
sented by the framework: Emulator Fine-Tuning
(EFT) (Mitchell et al., 2023) can be viewed as ap-
plying only the implicit value function in token-
wise sampling. Weak-to-strong search can be
viewed as applying only the implicit value func-
tion in chunk-level beam search. We use the EFTi,
EFTe, CBSi and CBSe to represent the correspond-
ing combination. For example, EFTi denotes apply-
ing implicit value function for token-wise sampling,
and CBSe denotes applying explicit value function
for chunk-level beam search.

5.1 Controlled-Sentiment Generation &
Summarization

Setup. For these two tasks, we follow the syn-
thetic setups from (Gao et al., 2023; Lightman
et al., 2023; Rafailov et al., 2024b), assuming ac-
cess to a gold reward model rgold. For controlled-
sentiment generation, rgold encourages positive con-
tinuations of movie reviews, while for summa-
rization, it encourages high-quality summaries of
Reddit posts. We generate synthetic preference
datasets D = {(x,yw,yl)i}Ni=1 from rgold with
p(y1 ≻ y2 | x) = σ(rgold(x,y

1)−rgold(x,y
2)) to

mimic human feedback (Bradley and Terry, 1952).
To obtain the implicit value function, we opti-

mize gpt2 (124M parameters) using the standard
DPO pipeline (Rafailov et al., 2024b): (1) we first
obtain the reference model πref through supervised
fine-tuning on both chosen and rejected responses
from the synthetic preference dataset, then (2) we
apply DPO on the synthetic preference dataset with
πref as the reference policy to obtain the optimal
language model π∗.

To obtain the explicit value function, we train
a prefix scorer Vθ using the FUDGE(Mudgal et al.,
2023; Yang and Klein, 2021) algorithm on the syn-
thetic preference dataset. (1) we first train the
sequence-wise reward model r(x,y) on the syn-
thetic preference dataset, then (2) we apply the
FUDGE algorithm to train the prefix scorer Vθ with
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Figure 3: The gold reward achieved for different large pre-trained models under the gpt2 guidance. We
show the mean reward across three random seeds. BoNi and BoNe denote BoN (N = 16) with implicit and
explicit rewards, respectively; EFT (β∗) denotes the best EFT results among β ∈ {0.25, 0.5, 1, 2}; CBS denotes the
results with W,K,L = 4, 4, 5 and implicit rewards; IVG denotes the best results with W,K,L = 4, 4, 5 among
β ∈ {0.25, 0.5, 1, 2}.

none implicit explicit
Token Wise Sampling Type

ex
p

li
ci

t
im

p
li

ci
t

n
on

e
C

hu
n

k-
L

ev
el

B
ea

m
S

ea
rc

h
T

yp
e

4.903 5.416 4.909

4.569 5.249 4.838

1.802 4.479 2.725

gpt2-medium

none implicit explicit
Token Wise Sampling Type

5.083 5.442 5.067

4.822 5.314 4.958

1.977 4.687 2.914

gpt2-large

none implicit explicit
Token Wise Sampling Type

4.839 5.412 4.808

4.540 5.250 4.784

1.665 4.467 2.567

gpt2-xl

none implicit explicit
Token Wise Sampling Type

0.630 0.692 0.530

-0.968 -1.771 -1.021

-2.672 -2.627 -2.632

gpt2-medium

none implicit explicit
Token Wise Sampling Type

1.074 1.330 1.049

0.044 -0.377 0.070

-1.859 -1.470 -1.777

gpt2-large

none implicit explicit
Token Wise Sampling Type

1.477 1.570 1.461

0.528 0.228 0.506

-0.888 -0.597 -0.843

gpt2-xl

Controlled-Sentiment Generation Summarization

Figure 4: The performance of different combinations of implicit and explicit value functions for token-wise
sampling and chunk-level beam search in controlled-sentiment generation and summarization. "implicit"
and "explicit" denotes applying implicit and explicit value functions. "none" denotes the base model without any
guidance. The number denotes the gold reward for the corresponding combination.

the sequence-wise reward model r as the reward
function.

Given the implicit and explicit value functions,
we use them to steer the large pre-trained lan-
guage models without additional training. Since
token-wise sampling only supports steering the
model sharing the same vocabulary as the base
model, here we only study on the gpt2 family
models with different scales: gpt2-mudium (345M
parameters), gpt2-large (774M parameters) and
gpt2-xl (1.5B parameters). Eventually, since we
have access to the gold reward model, responses
can be fairly evaluated on the test split of prompts
using this gold reward model.

Results. Figure 3 demonstrates IVG’s outstand-
ing performance in both controlled-sentiment gen-

eration and summarization tasks. We find that IVG
achieves the best performance among all the
baselines, showing the effectiveness of the pro-
posed method. To assess the effectiveness of IVG,
we examined how different combinations of im-
plicit and explicit value functions perform in two
tasks, as depicted in Figure 4. In chunk-level beam
search, the explicit value function significantly en-
hances performance in both tasks, whereas the im-
plicit value function shows lesser improvements.
Conversely, in token-wise sampling, the implicit
value function notably boosts performance in the
controlled-sentiment generation task, but the ex-
plicit value function has a minimal impact. This
distinction likely arises because the controlled-
sentiment generation task primarily requires ad-
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and EFTe are not shown due to their weak performance. More results are shown in appendix B.

justments at the token level (e.g., "dislike" →
"like"), whereas summarization demands a focus
on broader contextual information. The results
suggest that the explicit value function excels in
chunk-level beam search, while the implicit value
function performs better in token-wise sampling.
By integrating both value functions, IVG achieves
superior performance in both tasks.

5.2 Instruction-Following

Setup. We evaluate IVG on AlpacaEval
2.0 (Dubois et al., 2024), a single-turn instruction-
following benchmark comprising 805 prompts
from various open-source datasets. Here, unlike
steering pre-trained models (e.g., Llama-2-7b),
we utilize instruction-tuned models (e.g., Llama-2-
7b-chat) due to their need for additional alignment
as per (Ji et al., 2024).

For smaller models, we adopt two strategies to
derive implicit and explicit value functions: (1)
Tulu guidance: Utilizing tulu-2-dpo-7b and
its baseline tulu-2-7b for the implicit function,
and training FsfairX-LLaMA3-RM-v0.1 on the
UltraFeedback dataset for the explicit function.
(2) Ultra guidance: Fine-tuning Llama-2-7b via
Direct Preference Optimization (DPO) (Rafailov
et al., 2024b) on UltraFeedback for both implicit
and explicit functions. All the models use the

Llama-2 tokenizer.
Target instruction-tuned models include

Llama-2-7b-chat-hf, Llama-2-70b-chat-hf,
Mistral-7B-Instruct-v0.2 and Mixtral-
8x7B-Instruct-v0.1. To manage computational
costs, we refrained from directly fine-tuning large
models. We explored various valid combinations
of implicit and explicit value functions, such as
CBSe for chunk-level beam search with explicit
value function. Language model responses are
evaluated by their length-controlled win rates (LC
WR) against gpt-4-turbo, with gpt-4-turbo
serving as the judge.

Results. Figure 5 demonstrates that IVG consis-
tently performs well. Notably, applying an ex-
plicit value function to chunk-level beam search
significantly enhances outcomes, whereas an im-
plicit value function improves results when ap-
plied to token-wise sampling, albeit less effec-
tively for larger models such as Mixtral-8x7B-
Instruct-v0.1. These findings confirm the the-
oretical trade-offs between explicit and implicit
value functions.

Ablation. We present an ablation study evalu-
ating the inference speed of various methods ap-
plied to instruction-following tasks using a sin-
gle sample. We used TuluGuidance to guide the
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Llama-2-70B-chat-hf, and the results are illus-
trated in Figure 6. Our empirical findings corrob-
orate the theoretical analysis. The additional time
overhead associated with IVG is primarily due to
the extra inference steps required by both the im-
plicit and explicit reward models. Notably, the
implicit reward model incurs significantly higher
inference costs relative to the explicit model, which
can be attributed to the markedly higher forward
pass frequency inherent to the implicit approach.
The Chunk-level Beam Search (CBS) with hyper-
parameters W = 2, K = 2, and L = 30 demon-
strates a substantial efficiency advantage over Em-
ulator Fine-Tuning (EFT). CBS achieves superior
optimization results while incurring only few ad-
ditional time costs. In contrast, EFT, despite its
higher time overhead, yields only modest improve-
ments across certain models. Therefore, in practice,
employing Chunk-Level Beam Search alone may
represents a more efficient choice.
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Figure 6: Inference Speed Comparison for Llama-2-
70B-chat-hf. The figure illustrates the inference time
across various methods over a range of steps.

6 Discussion

We have presented Integrated Value Guidance
(IVG), a method that combines implicit and explicit
value functions, applied to token-wise sampling
and chunk-level beam search. We conducted exper-
iments on synthetic tasks and instruction-following
task and found that IVG achieved the best perfor-
mance in both tasks. We also explored the perfor-
mance of different combinations of implicit and
explicit value functions in the two tasks and found
that the explicit value function applied to chunk-
level beam search can significantly improve the
results, while the implicit value function applied to
token-wise sampling can improve the results. IVG
combines the advantages of both, so it achieves the

best performance in both tasks.

Limitations. Our work primarily focuses on en-
hancing the alignment capabilities of large lan-
guage models through the integration of implicit
and explicit value functions. This approach intro-
duces several complex questions that extend be-
yond the current scope of our research:

1. Our methodologies have been limited to us-
ing the DPO (Rafailov et al., 2024b) and
FUDGE (Mudgal et al., 2023; Yang and Klein,
2021) algorithms for training and deriving the
implicit and explicit value functions. It re-
mains unclear whether incorporating other
large model alignment strategies or offline
reinforcement learning algorithms for token-
wise sampling and chunk-level beam search
might influence our findings. This aspect war-
rants additional experimental investigation.

2. Although we have detailed the empirical out-
comes associated with the Implicit and Ex-
plicit Value Functions, a theoretical frame-
work that explicates these results is conspicu-
ously absent. Developing a theoretical under-
standing to underpin these empirical findings
is an essential next step for further research.
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A Experimental Setup Details

We adopt the experimental setup from Zhou et al.
(2024c).

A.1 Controlled-Sentiment Generation &
Summarization

A.1.1 Model Specification

The models are specified in the following table:

Models and Links

gpt2 (124M) (Radford et al., 2019)
https://huggingface.co/openai-community/gpt2

gpt2-medium (345M) (Radford et al., 2019)
https://huggingface.co/openai-community/gpt2-medium

gpt2-large (774M) (Radford et al., 2019)
https://huggingface.co/openai-community/gpt2-large

gpt2-xl (1.5B) (Radford et al., 2019)
https://huggingface.co/openai-community/gpt2-xl

Table 1: Models and their links

A.1.2 Hyperparameters Specification

In our approach, we use fixed hyperparameters
across all tested models to ensure consistency. Dur-
ing decoding, we set the temperature to T = 0.7,
with top-k = None and top-p = 1.0. For chunk-
level beam search, the parameters are configured
as follows: beam width W = 4, successors per
state K = 4, and chunk length L = 5. To
maintain computational fairness, we set the num-
ber of samples N to 16 for the BoN sampling.
For EFT, we report the best results obtained from
β ∈ {0.25, 0.5, 1, 2}.

A.1.3 Compute Resources

Evaluation occurs over 1000 test prompts using a
single NVIDIA A100 GPU.

A.1.4 Gold Reward Models

We follow a synthetic setup where gold reward
models simulate human evaluations by generating
binary preference labels (Gao et al., 2023; Light-
man et al., 2023; Rafailov et al., 2024b).

For controlled-sentiment generation, we utilize
the publicly accessible distilbert-imdb as our
gold reward model rgold. The distilbert-imdb is
a fine-tuned classifier p on the imdb dataset (Maas
et al., 2011b), designed to assess the sentiment
of movie reviews. We define the gold reward rgold

as log p(positive |x, y)−log p(negative |x, y), pro-
moting positive sentiment reviews. Synthetic pref-
erences are collected using the truncated movie
reviews as prompts x, and pairwise completions
from gpt2-imdb, ranked by p(y1 ≻ y2 | x) =
σ(rgold(x,y1)− rgold(x,y2)).

For the summarization task, we fit a re-
ward model on the summarize_from_feedback
dataset (Stiennon et al., 2020) as our gold reward
model rgold. This model is specifically fine-tuned
from Llama-2-7b with a linear projection head
and binary cross-entropy loss. The training param-
eters include a batch size of 32, a learning rate
of 1e-5 for the projection head, and 5e-6 for the
other parameters, conducted over one epoch with
a cosine learning rate schedule. Synthetic pref-
erences are generated by relabeling pairwise re-
sponses in the original dataset, using p(y1 ≻ y2 |
x) = σ(rgold(x,y1)− rgold(x,y2)).

Both gold reward models exhibit high validation
accuracies of 0.928 and 0.736, respectively, indi-
cating a strong alignment with human judgment.

A.1.5 Direct Tuning Details

Direct tuning on the synthetic preferences D =
{(x,yw,yl)i}Ni=1 involves two stages: Supervised
Fine-Tuning (SFT) and Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024b). During SFT,
models are trained on both selected and rejected
responses using a batch size of 64, a learning rate
of 2e-5, and a cosine learning rate schedule over
one epoch. During DPO, we use a β = 0.1, batch
size of 256, a learning rate of 1e-6, and a cosine
learning rate schedule over one epoch.

A.1.6 Prompt Template for Sampling from
Base Models

For sentiment-controlled generation, we use a zero-
shot prompt:

Here is a movie review from imdb: {prompt}

For summarization, we use a two-shot prompt
(the exemplars are selected arbitrarily):

{examplar[1].prompt}TL;DR: {examplar[1].
response}
{examplar[2].prompt}TL;DR: {examplar[2].
response}

{prompt}TL;DR:
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A.2 Instruction Following

A.2.1 Model Specification
The following table lists the models and their cor-
responding links.

Models and Links

tulu-2-dpo-7b (Ivison et al., 2023)
https://huggingface.co/allenai/tulu-2-dpo-7b

tulu-2-7b (Ivison et al., 2023)
https://huggingface.co/allenai/tulu-2-7b

Llama-2-7b-chat (Touvron et al., 2023b)
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

Llama-2-70b-chat (Touvron et al., 2023b)
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf

Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

Mixtral-8x7B-Instruct-v0.1 (Mistral AI team, 2023)
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2023; Xiong et al., 2024)
https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

Table 2: Models and their links

A.2.2 Hyperparameters Specification.
We use fixed hyperparameters across all tested mod-
els. We use temperature T = 0.7, top-k = 50 and
top-p = 1.0. For chunk-level beam search, the
parameters are configured as follows: beam width
W = 2, successors per state K = 2, and chunk
length L = 30. To maintain computational fairness,
we set the number of samples N to 4 for the BoN
sampling. For EFT, we report the results of fixed
βe, βi, which are the best parameters evaluated on
Llama-2-7b-chat-hf.

A.2.3 Compute Resources Specification.
Models are evaluated on 805 test prompts. Model
inference takes place on one single NVIDIA A100
GPU for 7B models and on four for others.

B Extended Experimental Results

Table 3 and Table 4 present complete experi-
mental results under the instruction following
task. EFT (Mitchell et al., 2023) represents ap-
plying token-wise sampling during generation and
CBS (Zhou et al., 2024c) represents applying
chunk-level beam search during generation. The
suffix "i" and "e" indicates that implicit and ex-
plicit value functions. Note that the proposed In-
tegrated Value Guidance (IVG) is shown as EFTi
(βi),CBSe.

In addition to gpt-4-turbo evaluations, we
evaluate response by using two top-rank re-
ward models from RewardBench (Lambert et al.,
2024b): UltraRM-13b (Cui et al., 2023) and
Starling-RM-34B (Zhu et al., 2023). SRM de-
notes the scores evaluated by Starling-RM-34B
and URM denotes the scores evaluated by
UltraRM-13b.
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Models SRM (↑) URM (↑) LC WR (%) WR (%)

Tulu Guidance

Llama-2-7b-chat

Base −5.83 1.24 10.04 10.16

EFTe (βe) −5.82 1.26 N/A N/A
EFTi (βi) −5.68 1.53 10.09 10.79

BoNe −5.53 2.04 12.00 12.82

CBSi −5.61 1.78 11.96 13.06

EFTi (βi),CBSi −5.56 1.86 11.76 12.82

CBSe −5.30 2.58 13.76 15.01

EFTi (βi),CBSe -5.18 2.95 16.46 18.00

Llama-2-70b-chat

Base −5.61 1.94 16.93 15.71

EFTe (βe) −5.57 1.87 N/A N/A
EFTi (βi) −5.47 2.16 16.07 15.44

BoNe −5.30 2.58 18.70 18.38

CBSi −5.43 2.29 18.57 17.97

EFTi (βi),CBSi −5.33 2.50 17.38 17.40

CBSe −5.26 2.79 19.32 19.06

EFTi (βi),CBSe -5.11 3.08 20.72 21.26

Mistral-7B-Instruct-v0.2

Base −5.72 2.05 19.51 16.27

EFTe (βe) −11.12 −8.01 N/A N/A
EFTi (βi) −5.64 2.27 19.62 16.52

BoNe −5.42 2.89 22.10 18.79

CBSi −5.47 2.74 22.77 19.34

EFTi (βi),CBSi −5.43 2.77 20.47 19.02

CBSe −5.19 3.54 27.50 24.21

EFTi (βi),CBSe -5.05 3.70 26.51 25.15

Mixtral-8x7B-Instruct-v0.1

Base −5.67 1.89 25.58 19.56

EFTe (βe) −8.85 −3.58 N/A N/A
EFTi (βi) −5.55 2.05 25.32 20.25

BoNe −5.33 2.68 28.71 23.61

CBSi −5.43 2.38 28.62 22.85

EFTi (βi),CBSi −5.33 2.56 27.67 22.50

CBSe −5.14 3.14 32.49 27.69

EFTi (βe),CBSe -5.12 3.21 33.75 28.30

Table 3: Instruction following performance under the Tulu guidance. βi, βe = 1.0, 1.0. All CBS shows the
results with W,K,L = 2, 2, 30. BoN shows the results with N = 4.
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Models SRM (↑) URM (↑) LC WR (%) WR (%)

Ultra Guidance

Llama-2-7b-chat

Base −5.83 1.24 10.04 10.16

EFTe (βe) −5.81 1.30 N/A N/A

EFTi (βi) −5.64 1.68 11.53 12.04

BoNe −5.61 1.83 12.51 12.78

CBSi −5.55 1.81 12.36 13.04

EFTi (βi),CBSi −5.42 2.23 13.58 14.49

CBSe −5.47 2.19 13.31 13.81

EFTi (βi),CBSe -5.29 2.71 15.92 16.70

Llama-2-70b-chat

Base −5.61 1.94 16.93 15.71

EFTe (βe) −5.62 1.89 N/A N/A

EFTi (βi) −5.49 2.16 17.85 17.07

BoNe −5.39 2.40 18.58 17.68

CBSi −5.35 2.47 18.20 17.70

EFTi (βi),CBSi −5.29 2.60 19.21 18.70

CBSe −5.36 2.57 19.82 18.54

EFTi (βi),CBSe -5.25 2.84 21.69 21.06

Mistral-7B-Instruct-v0.2

Base −5.72 2.05 19.51 16.27

EFTe (βe) −7.36 −0.85 N/A N/A

EFTi (βi) −5.62 2.25 19.64 17.70

BoNe −5.55 2.64 24.04 19.18

CBSi −5.44 2.81 22.78 19.70

EFTi (βi),CBSi −5.36 2.88 21.71 20.49

CBSe −5.38 3.12 26.78 22.23

EFTi (βi),CBSe -5.26 3.36 26.46 23.60

Mixtral-8x7B-Instruct-v0.1

Base −5.67 1.89 25.58 19.56

EFTe (βe) −5.78 1.74 N/A N/A

EFTi (βi) −5.59 2.02 25.11 20.25

BoNe −5.43 2.46 29.29 23.35

CBSi −5.40 2.54 28.76 23.09

EFTi (βi),CBSi −5.33 2.59 29.92 25.27
CBSe −5.33 2.78 31.57 25.18

EFTi (βi),CBSe -5.30 2.78 29.99 24.24

Table 4: Instruction following performance under the Ultra guidance. βi, βe = 1.5, 1.0. All CBS shows the
results with W,K,L = 2, 2, 30. BoN shows the results with N = 4.
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