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Abstract

Generating well-structured long music com-
positions, spanning several minutes, remains
a challenge due to inefficient representation
and the lack of structured representation. In
this paper, we propose PyramidCodec, a hier-
archical discrete representation of audio, for
long audio-domain music generation. Specifi-
cally, we employ residual vector quantization
on different levels of features to obtain the hi-
erarchical discrete representation. The highest
level of features has the largest hop size, re-
sulting in the most compact token sequence.
The quantized higher-level representation is up-
sampled and combined with lower-level fea-
tures to apply residual vector quantization and
obtain lower-level discrete representations. Fur-
thermore, we design a hierarchical training
strategy to ensure that the details are gradu-
ally added with more levels of tokens. By
performing hierarchical tokenization, the over-
all token sequence represents information at
various scales, facilitating long-context mod-
eling in music and enabling the generation of
well-structured compositions. The experimen-
tal results demonstrate that our proposed Pyra-
midCodec achieves competitive performance
in terms of reconstruction quality and token per
second (TPS). By enabling ultra-long music
modeling at the lowest level, the proposed ap-
proach facilitates training a language model
that can generate well-structured long-form
music for up to 3 minutes, whose quality is
further demonstrated by subjective and objec-
tive evaluations. The samples can be found at
https://pyramidcodec.github.io/.

1 Introduction

With the advancement of language models, audio
generation has achieved significant success, encom-
passing various domains such as common sound
(Borsos et al., 2023; Kreuk et al., 2023; Huang
et al., 2023b), speech (Wang et al., 2023; Copet
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et al., 2024; Zhang et al., 2024; Yang et al., 2023b),
and music (Agostinelli et al., 2023; Donahue et al.,
2023; Lam et al., 2024; Dhariwal et al., 2020).
In these frameworks, audio tokenizers (Zeghidour
et al., 2021; Défossez et al., 2022; Yang et al.,
2023a; Kumar et al., 2024; Zhang et al., 2024) are
employed to obtain discrete representations of au-
dio, which are then used by transformer-based lan-
guage modeling. In this paper, we focus on music
generation in the audio domain, which is challeng-
ing due to the complexity and long-form nature of
music.

The most dominant idea for audio tokeniza-
tion is applying vector quantization (VQ). By per-
foming VQ in a residual manner, residual vec-
tor quantization (RVQ) (Zeghidour et al., 2021)
based high-fidelity universal neural audio compres-
sion methods, such as Encodec (Défossez et al.,
2022), DAC (Kumar et al., 2024), are proposed,
which exploit multiple codebooks to gradually cap-
ture the acoustic-level audio information from the
most important to the least important. In (Yang
et al., 2023a), the Hifi-codec is further proposed
to balance the information of different levels of
codec by using a group-residual vector quantiza-
tion (GRVQ) method, which divides features into
multiple groups and applies RVQ to each group of
features. However, to ensure high fidelity, these
methods require a large number of codebooks, re-
sulting in excessively long sequences for long-form
music. In addition to applying RVQ compression
to the audio waveform, CLAM-TTS (Kim et al.,
2024) obtains the discrete representation of Mel
spectrogram, achieving a high compression rate at
approximately 10 Hz. However, to ensure audio fi-
delity, they still employ 32 codebooks, which leads
to a high token per second (TPS) rate.

Although the RVQ enables audio modeling using
codebooks at different levels, in fact, they are only
focusing on the “acoustic-level” modeling within a
fixed time span, rather than “temporal-level” mod-
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eling at different spans. Therefore, regardless of the
strategy to improve RVQ, the long-term modeling
capacity of conventional methods is limited by the
time span for modeling. For instance, some meth-
ods (Agostinelli et al., 2023; Borsos et al., 2023;
Donahue et al., 2023) generate coarse acoustic to-
kens (first several RVQ tokens), and the fine acous-
tic tokens are generated conditioning on coarse
acoustic tokens in an auto-regressive manner. We
also notice that (Zhang et al., 2024) seeks to inte-
grate semantic information into the first codebook,
hoping to generate conceptual outputs. However,
for all these methods, tokenizers at all levels are
still generated with the same compression rate and
token length, hindering the long-term structural
modeling of music. It is well-known that music has
a hierarchical structure, in which high-level abstrac-
tions are the skeleton of music, containing the struc-
ture, theme, and rhythm of music, and the low-level
information is the detailed high-frequency fluctu-
ations of music. Therefore, to generate structural
long music, a hierarchical framework is needed to
capture both high-level abstractions and low-level
details. Such hierarchical framework has also been
applied to image generation such as VQ-VAE-2
(Razavi et al., 2019) and VAR (Tian et al., 2024).

In this paper, we propose PyramidCodec, a hi-
erarchical codec specifically designed generating
of well-structured long-form music in the audio
domain. PyramidCodec introduces an encoding
scheme that operates across multiple scales. By in-
corporating a hierarchical framework, our codec ef-
fectively captures the essence of music at different
levels of complexity. At the highest level, Pyramid-
Codec captures the overall structure and essence of
the music, producing a temporally compact repre-
sentation enriched with abstract or skeletal infor-
mation. As the scale level decreases within Pyra-
midCodec, the temporal resolution of the features
increases, enabling the encoding of more intricate
and nuanced aspects of the music. RVQ is adopted
to quantize the features at all levels, resulting in a
multi-scale hierarchical codec.

Following the hierarchical codec design, we fur-
ther develop a hierarchical training strategy to pro-
gressively enhance the codec’s ability to recon-
struct music at varying scales. Given the ground-
truth audio, multi-scale ground-truth targets and
loss functions are proposed, following the same
idea of hierarchical modeling. The model is trained
to perform audio-form reconstruction at different
scales. By employing the hierarchical training strat-

egy, we can achieve comparable reconstruction
quality at similar compression rates.

Based on the resulting codec, a language model-
based abstract-to-detail framework is finally pro-
posed for long-form music generation. The main
contributions are summarized as:

• We propose PyramidCodec, a hierarchical dis-
crete representation of audio, specifically de-
signed for long-form music generation. The hi-
erarchical structure allows for efficient represen-
tation of both abstractions and details, enabling
the generation of well-structured compositions
spanning several minutes.

• We introduce a hierarchical training strategy for
PyramidCodec, which ensures that the details
are gradually added with more levels of tokens.
This strategy enables fine reconstruction using
full-level codecs and coarse reconstruction by
removing some low-level codecs, achieving com-
parable reconstruction quality at similar compres-
sion rates.

• We explore long-form music generation using
an abstract-to-detail framework, leveraging Pyra-
midCodec to train an audio language model. This
language model is capable of generating well-
structured compositions up to 3 minutes in length,
whose effectiveness is demonstrated by both ob-
jective and subjective evaluations.

2 Related Works

2.1 Audio Tokenizer

Audio tokenizer discretizes audio waveform into
tokens, which can be generally divided into two cat-
egories: acoustic tokenizer and semantic tokenizer.

Acoustic Tokenizer Acoustic tokenizer aims
to achieve a high compression rate while main-
taining high reconstruction fidelity. The dominant
paradigm for tokenization of image and audio is
VQ-VAE (Van Den Oord et al., 2017). This ap-
proach has been successfully applied to speech
codecs, such as the VQ-VAE based codec proposed
in (Gârbacea et al., 2019) operating at 1.6kbps.
Other codecs, including Soundstream (Zeghidour
et al., 2021), Encodec (Défossez et al., 2022), and
DAC (Kumar et al., 2024), also employ residual
vector quantization (RVQ) to achieve high-fidelity
reconstruction at high TPS. Hifi-codec (Yang et al.,
2023a) introduces a group-RVQ technique to bal-
ance the information of different levels of the
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Figure 1: The illustration of pyramid encoding, which takes multi-scale features as input and outputs
discrete hierarchical codecs and continuous hierarchical features after quantization. The base feature
is extracted through an encoder taking audio waveform as input. Hierarchical codecs is acquired by
employing RVQ on multi-scale features. The outputs are discrete hierarchical codecs and continuous
hierarchical features after quantization.

codec, operating at considerable TPS. Additionally,
scalar quantization technology has been explored in
works such as FAQ (Mentzer et al., 2023), (Brendel
et al., 2024), and (Ballé et al., 2020).

Semantic Tokenizer: The goal of a semantic
tokenizer is to provide discrete tokens with seman-
tic information. These tokens are often used as
conditions for acoustic tokens in a two-stage gener-
ation framework (Borsos et al., 2023; Agostinelli
et al., 2023; Donahue et al., 2023). One approach
to acquiring semantic tokens is to use k-means clus-
tering on semantic features extracted from large-
pretrained models, such as Hubert (Hsu et al.,
2021), w2v-BERT (Chung et al., 2021), and MERT
(Li et al., 2023). Another method, proposed by
(Zhang et al., 2024), involves obtaining semantic
tokens through semantic distillation, which intro-
duces a distillation loss and allows for end-to-end
training. (Ye et al., 2024) proposed X-codec which
incorporates semantic features from a pre-trained
semantic encoder before the Residual Vector Quan-
tization (RVQ) stage and introduces a semantic
reconstruction loss after RVQ.

2.2 Music Generation

Music can be represented in two formats: symbolic
music and audio music. Symbolic music genera-
tion has been extensively studied in works such as
(Huang et al., 2018), (Yu et al., 2022), (Hsiao et al.,
2021), (Muhamed et al., 2021), and (Mittal et al.,
2021). Based on the language model (LM) gener-
ation framework, symbolic music is first flattened
into tokens, such as MIDI (Huang et al., 2018) or
REMI (Huang and Yang, 2020), similar to text.
Transformers are then used to predict the next to-
kens. However, this approach can be highly com-
plex, resulting in extremely long token lengths and
potentially broken music structures.

Alternatively, audio-domain music generation,
including LM-based methods such as (Agostinelli
et al., 2023), (Copet et al., 2024), (Lam et al., 2024),
and (Donahue et al., 2023), as well as diffusion-
based methods like (Schneider et al., 2023), (Huang
et al., 2023a), and (Chen et al., 2024), has achieved
great success in recent years. These methods heav-
ily rely on pre-trained high-quality audio codecs
in the LM-based approach. Our work provides a
kind of hierarchical codec which enables efficient
hierarchical music generation.
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Figure 2: The illustration of pyramid decoding and multi-scale ground truth construction for hierarchical training.

3 Proposed Method

In this section, we propose PyramidCodec, a hierar-
chical codec designed for efficient long-form music
generation. The key problem is how to develop a
framework that can jointly learn both high-level ab-
stractions and low-level details, which differs from
conventional audio codecs that generally adopt a
fixed time span for tokenization at all levels.

The proposed PyramidCodec involves pyramid
encoding which gradually constructs the tokens
at different time spans along with a series of up-
sampling, pyramid decoding which reconstructs
the audio waveform from the tokens, and a hier-
archical training strategy that enforces the details
to be added gradually with more levels of tokens.
The hierarchical codecs can be used to train an
abstract-to-detail language model for music genera-
tion. The proposed method is illustrated in Figure2.
It is named PyramidCodec since the stack of tok-
enizers at different levels forms a pyramid structure.
Details of different parts are explained as follows.

3.1 Pyramid Encoding

Given input audio, we select a sufficiently long time
span and use an encoder, similar to that in DAC,
to extract the primary acoustic embedding, which
captures the overall information. We then apply
a series of down-sampling operations to obtain a
set of multi-scale embeddings with different time
resolutions. The highest (last) level of embedding
represents the most compact information.

To tokenize the embeddings, we start by per-
forming RVQ on the highest level of embedding,
resulting in a pair of codec and quantized embed-

Algorithm 1: Pyramid Encoding.

1 Pyramid Encoding (F);
Input :Multi-scale embedding set F, from

high level to low level
Output :Hierarchical codec set C, and

quantized embedding set Q
Initial :buffer B ← None,

Q← EmptyList(),
C← EmptyList()

2 for F in F do
3 Q,C ← RVQ(F + U(B))
4 B ← Q
5 Q.append(Q),C.append(C)

6 end
Return :C,Q

ding. We then upsample the quantized embedding
and combine it with the next level of embedding.
RVQ is performed on the combined embedding,
and this process is repeated until the lowest level
of embedding is reached. The outputs of the pyra-
mid encoding are hierarchical codecs C and cor-
responding quantized hierarchical embeddings Q.
The complete process is outlined in Algorithm 1.

It is important to note that at each level, the em-
beddings are upsampled and added back to the next
higher-resolution embedding successively. This
step is crucial as it reintegrates the quantized resid-
ual details back into the primary signal pathway,
ensuring that each successive embedding level re-
fines its predecessor. This reintegration helps in
recovering the finer temporal details that may have
been lost during the initial down-sampling phases.
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3.2 Pyramid Decoding
The quantized hierarchical embeddings Q obtained
from pyramid encoding differ in time resolution
across different levels. The pyramid decoding aims
to transform the embeddings Q back into a set of
new embeddings R, such that at all levels they have
the same time resolution as the lowest (first) level
of embedding. These resulting embeddings can
then be fed into a decoder, similar to the one used
in DAC, to reconstruct the audio waveform.

To achieve this, an incremental decoding strategy
is proposed, which is expressed by:

R(i) = UN−i−1[

i∑

k=0

U i−k(Q(i))], (1)

where N is the total number of levels, and U j(x)
denotes the upsampling of x by j times. This strat-
egy ensures that the embeddings at different levels
are mixed in an incremental manner, allowing the
coarse audio waveform to be reconstructed by re-
moving some low-level features. The complete pro-
cess of the pyramid decoding module is outlined in
Algorithm 2.

Algorithm 2: Pyramid Decoding.

1 Pyramid Decoding (Q);
Input :Quantized embedding set Q, from

high level to low level
Output :Embedding set R for waveform

reconstruction.
Initial :R← List(Q[0])

2 for Q in Q[1 :] do
3 for i = 0 to len(R) do
4 R← U(R[i])
5 end
6 F ← Q+Rs[−1]
7 R.append(F )

8 end
Return :R

An illustration of the pyramid decoding is shown
in the upper part of Figure 2. It is expected that the
resulting embedding set R will correspond to audio
waveforms with varying frequency components.

3.3 Hierarchical Training Strategy
Given the reconstructed audio components at dif-
ferent frequencies, the overall audio waveform is
finally generated by gradually adding the signal
components from the most compact level to the

most detailed level. Specifically, denoting the tar-
get audio as X , a set of target signal components
X can be defined, and the i-th level target signal
component X[i] is approximated by Y[i], based
on from Q[0] to Q[i]. To ensure that all levels
of PyramidCodec effectively learn the hierarchi-
cal structure of the audio, a hierarchical training
strategy is proposed.

Based on the input audio X , the i-th level target
signal component X[i] is defined as

X[i] = U(D(X, 2N−i), 2N−i) (2)

where N is the total number of scales, D(x, r) de-
notes the down-sampling of x by a factor of r, and
U(x, r) denotes the up-sampling of x by a factor
of r. We note that by performing downsampling
and upsampling, the target signal components X
are obtained at different frequencies.

Finally, the hierarchical training losses Ls are
defined as follows:

Ls[i] = loss(Ys[i],X[i]),∀i = 0, 1, ..., N − 1
(3)

In our approach, we utilize the Mel spectrogram
loss and discriminator loss, similar to the DAC
framework (Kumar et al., 2024).

3.4 Abstract-to-Detail Music Generation
In this section, we propose an abstract-to-detail
framework to generate long-term audio music.

In the proposed framework, the PyramidCodec is
used to encode abstraction information into a com-
pact token sequence, which represents the structure,
theme, and rhythm of the music. The generation
starts by producing the abstraction tokens, which
define the basic structure of the music. Then, low-
level tokens, which include more intricate and nu-
anced details such as chords and high-frequency
components, are generated conditioned on the ab-
straction tokens. This incremental generation pro-
cess continues by generating lower-level tokens
conditioned on all higher-level tokens. We flatten
all the tokens and finally train a transformer-based
language model for music generation.

With hierarchical modeling, we can control the
level of detail in the generated music by using dif-
ferent numbers of high-level tokens, providing a
trade-off between computational complexity and
quality. Even with the highest-level tokens alone,
at a token per second (TPS) rate of 10, the gener-
ated music still exhibits a coherent structure and
harmonious rhythms.
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Model Meldis(↓) STFTdis(↓) Waveformdis(↓) SI-SDR(↑) TPS(↓)
DAC-16k-n12-q12 1.096 1.334 0.021 -8.662 600
DAC-16k-n12-q2 2.419 2.009 0.020 -12.944 100
Encodec-24k-n8-q8 1.552 2.288 0.009 4.319 600
Encodec-24k-n8-q2 1.938 2.458 0.015 -1.722 150
DAC-22k-n9-q9 (*) 0.756 1.149 0.004 12.277 388
Pyramid-22k-p555 (*) 0.811 1.235 0.005 10.142 350
DAC-22k-n2-q2 (*) 0.929 1.204 0.007 7.153 86
Pyramid-22k-p111 (*) 0.953 1.247 0.008 6.613 70

Table 1: Results on reconstruction evaluation. It includes randomly selected 10,000 10-second audio samples from
our testing dataset. Models trained on our dataset are denoted with an asterisk (*). The notation follows a standard
rule, such as DAC-16k-n12-q2 for DAC pretrained models operating at a 16,000 sampling rate with 12 codebooks
(n12), using only the first 2 codebooks for reconstruction (q2). Pyramid models are represented by notations like
Pyramid-22k-p111, indicating a 22,050 sampling rate and three levels with one codebook per level (p111).

4 Experiments

4.1 Dataset

We use the Lakh MIDI (LMD) dataset (Raffel,
2016) for both the PyramidCodec and music gen-
eration experiments. The LMD dataset consists
of approximately 160,000 multi-track MIDI music
files. To simplify the dataset, we merge similar
tracks into a single basic track, resulting in five
tracks: square synthesizer, piano, guitar, string,
bass, and drum. This preprocessing follows (Yu
et al., 2022) and (Ren et al., 2020).

Further, we utilized FluidSynth 1 and the sound-
Font 2 sound bank file TimGM6mb.sf2 from the
pretty-midi library 2 to synthesize the audio wave
files. The resulting dataset consists of approxi-
mately 5,000 hours of audio files, all sampled at
a rate of 22,050Hz. We randomly split the audio
dataset into training, validation, and testing sets
with a ratio of 8:1:1, respectively.

4.2 PyramidCodec Evaluation

4.2.1 Implementation and Baselines

The encoder, which is used to obtain the primary
acoustic embedding in Section 3.1, and the decoder,
which is used to recover the audio waveform, are
similar to the DAC implementation 3. We set the
encoder rates and decoder rates to be [4, 4, 4, 4,
2] and [2, 4, 4, 4, 4], respectively, resulting in a
stride length of 512. For all experiments, the sam-
pling rate is set to 22,050 Hz. The codebook size
is set to 1024, the same as DAC. Our approach

1https://www.fluidsynth.org/
2https://github.com/craffel/pretty-midi/tree/main/pretty-

midi
3https://github.com/descriptinc/descript-audio-codec

utilizes a single decoder for audio waveform decod-
ing, with different scales of tokens being selectively
integrated through a lightweight pyramid decoding
module. The model size and inference speed are
comparable to those of DAC. To prevent the code-
book from collapsing, we adjust the weight of the
Mel loss to have less or more impact relative to the
codebook loss. During the warming-up stage, the
weight of the Mel loss is set to 2.0, and later it is
increased to 10.0.

In our implementation, the up-sampling opera-
tion used in Algorithm 1 and Algorithm 2 is per-
formed using the learnable "ConvTranspose1d" 4

layer. On the other hand, the down-sampling and
up-sampling operations described in Section 3.3
for constructing multi-scale ground truth utilize
"julius.resample_frac" 5, which is based on Julius
O. Smith’s resampling algorithm. This algorithm,
often referred to as the "polyphase filter bank" ap-
proach, is a well-established method in digital sig-
nal processing for changing the sample rate of a sig-
nal. It is known for its efficiency and high-quality
results.

There are high-fidelity pre-trained codecs trained
on large datasets, which are used by many gener-
ation works. We have designed two types of base-
lines: weak baselines and strong baselines. For the
weak baselines, we use the pre-trained Encodec 6

and DAC 3 as they were not trained on our dataset.
For the strong baselines, we trained a revised ver-
sion of DAC from scratch on our dataset with two
settings: 1) high-fidelity setting, where the number
of codebooks is 9; 2) efficient setting, where the

4https://pytorch.org/docs/2.2/generated/torch.nn.ConvTra
nspose1d

5https://adefossez.github.io/julius/julius/resample.html
6https://github.com/facebookresearch/encodec
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number of codebooks is 2.

4.2.2 Evaluation Metrics
We evaluate the reconstruction quality of our mod-
els and baseline model using the following objec-
tive metrics:

Mel distance: The L1 distance between the Mel
spectrograms with window lengths of [32, 64, 128,
256, 512, 1024, 2048], a hop size equal to a quar-
ter of the window length, and the number of Mel
frequency banks set to [5, 10, 20, 40, 80, 160, 320].

STFT distance: The L1 distance between the
log magnitude spectrograms with window lengths
of [2048, 512].

Waveform distance: The L1 distance between
the ground truth audio waveforms and the recon-
structed ones.

Scale-invariant source-to-distortion ratio (SI-
SDR) (Le Roux et al., 2019): This metric provides
a signal-to-noise ratio that is invariant to scale dif-
ferences, indicating the quality of phase reconstruc-
tion compared to spectral metrics.

Tokens per second (TPS): We calculate the
number of tokens per second, which indicates the
compactness of tokens and is essential for the lan-
guage model.

4.2.3 Results
Reconstruction Quality. Comparison results are
shown in Table 1. Existing codecs, such as DAC-
16k and Encodec-14k, achieve high TPS values
reaching 600. However, for our goal of performing
long-sequence music generation, a lower TPS is
preferred. When decreasing the TPS, we observe a
considerable degradation in reconstruction quality.

To improve the performance of DAC, we train
it on the dataset described in Section 4.1. We find
that there is a trade-off between audio quality and
TPS in DAC, where increasing the TPS leads to
better audio quality. We also implement the Pyra-
midCodec to approximate the TPS of DAC by a
proper choice of TPS at each level. We observe
that with lower TPS, the PyramidCodec achieves
slightly worse reconstruction quality compared
to DAC, indicating that the reconstruction perfor-
mance of PyramidCodec is actually comparable
to DAC. However, as will be shown later, the pro-
posed PyramidCodc could generate better music
pieces than conventional codecs.

We specifically note that in order to per-
form long-term audio generation, two effi-
cient codecs, DAC-22k-n2-q2 at 86 TPS and

[10] 
TPS

[10+20] 
TPS

[10+20+40] 
TPS

Reconstruction Ground Truth

Figure 3: Hierarchical reconstruction results.

Pyramid-22k-p111 at 70 TPS are trained, and the
music generation experiments will be conducted
on these two codecs.

Hierarchical Reconstruction. Here we further
illustrate the intermediate reconstruction results of
PyramidCodec. For Pyramid-22k-p111, the TPS
can be 70, 30, and 10 when using all levels, the first
two levels, and the first level of codes, respectively.
The reconstruction Mel spectrograms are shown
in Figure 3. The highest level of code is responsi-
ble for a quarter of the low-frequency components,
while half of the frequency components are recon-
structed using the first two levels of codes. The full
frequency components are reconstructed using all
levels of codes.

4.2.4 Discussion about the Number of Levels
We fixed the number of levels in our model at 3
to balance complexity and quality, as discussed in
Table 1, with levels operating at 10 TPS (highest)
and 40 TPS (lowest). While we also tested 5 levels
([5, 10, 20, 40, 80] TPS), we found that the highest
level (5 TPS) lacked information and the lowest
(80 TPS) was inefficient for long-form generation.
Thus, three levels were chosen. Reconstruction
quality for partial levels showed Mel distances of
0.66, 0.89, and 0.95 for the first level, first two
levels, and all levels, respectively, as described in
Section 3.3. The ground truth of each level for
these measurements is described in Equation 2 in
Section 3.3.

4.3 Music Generation Evaluation
We employ GPT-2 (Radford et al., 2019) as the
underlying language model for our music gener-
ation experiments. These experiments are con-
ducted using two different codecs: the DAC
DAC-22k-n2-q2 with 86 TPS and the Pyramid-
Codec Pyramid-22k-p111 with 70 TPS, which
represent the coarse-to-fine and abstract-to-detail
generation frameworks, respectively. We will
denote the two methods as “DAC-TPS86” and
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Model FADVGGish(↓) FADMERT(↓) FADMERT-11(↓) FADCLAP-MUSIC(↓) FADCLAP-AUDIO(↓) FADEncodec(↓)
DAC-TPS86t=1.0 0.1814 2.1496 1.2682 0.0271 0.0348 1.4392
Pyramid-TPS70t=1.0 0.1678 2.1041 1.0308 0.0309 0.0403 1.0914
DAC-TPS86t=1.3 0.2609 2.3116 1.2239 0.0306 0.0339 1.0931
Pyramid-TPS70t=1.3 0.1576 2.0936 1.0856 0.0257 0.0319 1.0763
DAC-TPS86t=0.8 0.2811 2.2511 1.2281 0.0546 0.0643 3.5865
Pyramid-TPS70t=0.8 0.1518 2.4011 1.4553 0.0346 0.0428 1.2259
AudioLM(Encodec) 1.6642 9.5679 5.0767 0.1823 0.2163 7.2886

Table 2: Objective evaluation on music continuation. We randomly pick 500 samples from the testing set.
DAC-TPS86 is re-trained on our dataset with two codebooks. t=1.0 means the sampling temperature is 1.0.

“PyramidCodc-TPS70” respectively. Additionally,
we have implemented AudioLM (Borsos et al.,
2023) as a baseline for music continuation.

4.3.1 Implementation and Baselines
We train our language model using the codebase
nanoGPT 7. Our model consists of 6 layers, each
with 8 attention heads, and an embedding dimen-
sion of 768. We modify the original vocabulary size
to 1028, with 1024 tokens for the codebook and 4
tokens for special purposes. The total number of
trainable parameters in our model is approximately
40 million.

The maximum audio duration of training sam-
ples is 163 seconds (14,000 tokens) for the DAC-
TPS86 and 200 seconds (14,000 tokens) for the
PyramidCodc-TPS70 framework. The training is
performed on a single 32G V100 GPU with a batch
size of 6 for approximately 500,000 steps. All mod-
els are trained using bfloat16 precision.

We follow the codebase8 to train AudioLM. The
pre-trained Encodec-16k is used as the tokenizer,
and we follow the instructions to train the semantic
model, coarse model, and fine model. The length
of the audio waveform is set to 15 seconds, and
each model is trained on a single 32G V100 GPU.

Two types of tasks are designed: 1) Music contin-
uation: Given the previous 10 seconds as a prompt,
the task is to compose the remaining 30 seconds of
music. 2) Long-form music generation: The task
is to generate 3 minutes of music from scratch.

4.3.2 Evaluation Metrics
Objective Evaluation. We follow (Chen et al.,
2024) and (Gui et al., 2024) to use FAD as ob-
jective metrics for music evaluation. Here, we
incorporate three types of embedding extractors:
VGGish (Hershey et al., 2017), MERT (Li et al.,
2023), clap-laion (Wu et al., 2023), and Encodec

7https://github.com/karpathy/nanoGPT
8https://github.com/lucidrains/audiolm-pytorch

Model MOS(↑)
Ground Truth 4.18
DAC-TPS86 3.35
PyramidCodec-TPS70 3.47
AudioLM 2.43

Table 3: Subjective evaluation on music continuation.
All samples are generated with temperature 1.0.

Model Coherence(↑) Rhythms(↑) Convention(↑)
Ground Truth 4.11 3.71 4.43
DAC-TPS86 3.25 2.52 3.63
PyramidCodec-TPS70 3.43 2.97 3.83

Table 4: Subjective evaluation of long-form music gen-
eration from scratch. All samples are generated with
temperature 1.0.

(Défossez et al., 2022). This results in the metrics
FADVGGish, FADMERT, FADCLAP-MUSIC, FADCLAP-AUDIO,
and FADEncodec.

Subjective Evaluation. To assess the quality
of the generated music, we employ Mean Opinion
Score (MOS) through human evaluation. We use
MTurk9 for subjective evaluation. For music con-
tinuation, we ask the testers to evaluate the overall
quality of 200 samples for each method. Each sam-
ple is evaluated by 2 testers. For long-form music
generation, we evaluate the music subjectively on
50 samples for each method in three dimensions:
coherence of music structure, rhythms, and music
convention. Each sample is evaluated by 3 testers.

4.3.3 Results
Music Continuation. The results are shown in Ta-
ble 2. Continuing to compose 30 seconds of music
based on a 10-second prompt requires the model to
handle at least 40-second audio windows. However,
AudioLM (Borsos et al., 2023), which employs an
inefficient codec and is trained with a window size
of 15 seconds, requires multiple rounds to gener-
ate 30 seconds of music, with 15 seconds for each
round. As shown in Table 2, AudioLM performs

9https://www.mturk.com/
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poorly in the 30-second continuation task due to its
inefficient coarse-to-fine generation process.

On the other hand, both DAC and PyramidCodec
are efficient codecs trained on our dataset. Among
them, PyramidCodec generally performs better
across different sampling temperature parameters.
The objective evaluation results, shown in Table 3,
indicate that PyramidCodec outperforms AudioLM,
while DAC performs comparably. These results are
consistent with the subjective evaluation, where
PyramidCodec is rated the highest and AudioLM
is rated the lowest.

In summary, both objective and subjective evalu-
ations demonstrate the superiority of the proposed
framework for music continuation.

Long-form Music Generation. Our two effi-
cient codecs can handle 3 minutes of music within
a single model during both the training and infer-
ence stages. We generated 3 minutes of music
from scratch using the re-trained DAC-TPS86 and
PyramidCodec-TPS70. Table 4 presents the sub-
jective evaluation results, indicating that the mu-
sic generated with the PyramidCodec outperforms
DAC in terms of coherence of music structure,
rhythms, and adherence to musical conventions.

5 Conclusion

In this paper, we introduce PyramidCodec, a hierar-
chical codec designed for long-form music genera-
tion in the audio domain. We propose a hierarchical
training strategy for PyramidCodec, where details
are progressively incorporated using multiple lev-
els of tokens. Through PyramidCodec, we inves-
tigate the abstract-to-detail generation framework
for music, and our experimental results highlight
its effectiveness.

In future work, we plan to explore the perfor-
mance of PyramidCodec and the abstract-to-detail
generation framework on real audio data, including
speech, singing, music, and audio effects. Addi-
tionally, we aim to explore conditional generation
tasks, such as text to music.

6 Limitation

Our study, while providing an insight for long-form
music generation, has several limitations. Firstly,
our method has been solely validated using syn-
thetic music datasets obtained from MIDI. It is
important to recognize that real complex music
may require a more extensive representation, which
could potentially impede long-form generation.

Secondly, we have not validated the effectiveness
on other types of audio, such as speech and audio
effects. Thirdly, we have not yet explored the do-
main of multi-modal long music generation, which
involves incorporating multiple modalities such as
text-to-music.
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