@inproceedings{chen-etal-2024-pyramidcodec,
title = "{P}yramid{C}odec: Hierarchical Codec for Long-form Music Generation in Audio Domain",
author = "Chen, Jianyi and
Dai, Zheqi and
Ye, Zhen and
Tan, Xu and
Liu, Qifeng and
Guo, Yike and
Xue, Wei",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.246/",
doi = "10.18653/v1/2024.findings-emnlp.246",
pages = "4253--4263",
abstract = "Generating well-structured long music compositions, spanning several minutes, remains a challenge due to inefficient representation and the lack of structured representation. In this paper, we propose PyramidCodec, a hierarchical discrete representation of audio, for long audio-domain music generation. Specifically, we employ residual vector quantization on different levels of features to obtain the hierarchical discrete representation. The highest level of features has the largest hop size, resulting in the most compact token sequence. The quantized higher-level representation is up-sampled and combined with lower-level features to apply residual vector quantization and obtain lower-level discrete representations. Furthermore, we design a hierarchical training strategy to ensure that the details are gradually added with more levels of tokens. By performing hierarchical tokenization, the overall token sequence represents information at various scales, facilitating long-context modeling in music and enabling the generation of well-structured compositions. The experimental results demonstrate that our proposed PyramidCodec achieves competitive performance in terms of reconstruction quality and token per second (TPS). By enabling ultra-long music modeling at the lowest level, the proposed approach facilitates training a language model that can generate well-structured long-form music for up to 3 minutes, whose quality is further demonstrated by subjective and objective evaluations. The samples can be found at \url{https://pyramidcodec.github.io/}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2024-pyramidcodec">
<titleInfo>
<title>PyramidCodec: Hierarchical Codec for Long-form Music Generation in Audio Domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jianyi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheqi</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qifeng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yike</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Generating well-structured long music compositions, spanning several minutes, remains a challenge due to inefficient representation and the lack of structured representation. In this paper, we propose PyramidCodec, a hierarchical discrete representation of audio, for long audio-domain music generation. Specifically, we employ residual vector quantization on different levels of features to obtain the hierarchical discrete representation. The highest level of features has the largest hop size, resulting in the most compact token sequence. The quantized higher-level representation is up-sampled and combined with lower-level features to apply residual vector quantization and obtain lower-level discrete representations. Furthermore, we design a hierarchical training strategy to ensure that the details are gradually added with more levels of tokens. By performing hierarchical tokenization, the overall token sequence represents information at various scales, facilitating long-context modeling in music and enabling the generation of well-structured compositions. The experimental results demonstrate that our proposed PyramidCodec achieves competitive performance in terms of reconstruction quality and token per second (TPS). By enabling ultra-long music modeling at the lowest level, the proposed approach facilitates training a language model that can generate well-structured long-form music for up to 3 minutes, whose quality is further demonstrated by subjective and objective evaluations. The samples can be found at https://pyramidcodec.github.io/.</abstract>
<identifier type="citekey">chen-etal-2024-pyramidcodec</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.246</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.246/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>4253</start>
<end>4263</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PyramidCodec: Hierarchical Codec for Long-form Music Generation in Audio Domain
%A Chen, Jianyi
%A Dai, Zheqi
%A Ye, Zhen
%A Tan, Xu
%A Liu, Qifeng
%A Guo, Yike
%A Xue, Wei
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F chen-etal-2024-pyramidcodec
%X Generating well-structured long music compositions, spanning several minutes, remains a challenge due to inefficient representation and the lack of structured representation. In this paper, we propose PyramidCodec, a hierarchical discrete representation of audio, for long audio-domain music generation. Specifically, we employ residual vector quantization on different levels of features to obtain the hierarchical discrete representation. The highest level of features has the largest hop size, resulting in the most compact token sequence. The quantized higher-level representation is up-sampled and combined with lower-level features to apply residual vector quantization and obtain lower-level discrete representations. Furthermore, we design a hierarchical training strategy to ensure that the details are gradually added with more levels of tokens. By performing hierarchical tokenization, the overall token sequence represents information at various scales, facilitating long-context modeling in music and enabling the generation of well-structured compositions. The experimental results demonstrate that our proposed PyramidCodec achieves competitive performance in terms of reconstruction quality and token per second (TPS). By enabling ultra-long music modeling at the lowest level, the proposed approach facilitates training a language model that can generate well-structured long-form music for up to 3 minutes, whose quality is further demonstrated by subjective and objective evaluations. The samples can be found at https://pyramidcodec.github.io/.
%R 10.18653/v1/2024.findings-emnlp.246
%U https://aclanthology.org/2024.findings-emnlp.246/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.246
%P 4253-4263
Markdown (Informal)
[PyramidCodec: Hierarchical Codec for Long-form Music Generation in Audio Domain](https://aclanthology.org/2024.findings-emnlp.246/) (Chen et al., Findings 2024)
ACL
- Jianyi Chen, Zheqi Dai, Zhen Ye, Xu Tan, Qifeng Liu, Yike Guo, and Wei Xue. 2024. PyramidCodec: Hierarchical Codec for Long-form Music Generation in Audio Domain. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 4253–4263, Miami, Florida, USA. Association for Computational Linguistics.