
Findings of the Association for Computational Linguistics: EACL 2024, pages 4552–4572
November 12-16, 2024 ©2024 Association for Computational Linguistics

WavLLM: Towards Robust and Adaptive Speech Large Language Model

Shujie Hu1* Long Zhou2† Shujie Liu2 Sanyuan Chen2 Lingwei Meng1 Hongkun Hao2

Jing Pan2 Xunying Liu1 Jinyu Li2 Sunit Sivasankaran2 Linquan Liu2 Furu Wei2
1The Chinese University of Hong Kong

2Microsoft Corporation
sjhu@se.cuhk.edu.hk

Abstract

Recent advancements in large language models
(LLMs) have expanded their scope in natural
language processing (NLP) to encompass mul-
timodal functions. However, integrating listen-
ing capabilities effectively remains a significant
challenge for generalization and complex audi-
tory task execution. In this work, we introduce
WavLLM, a robust and adaptive speech large
language model featuring dual encoders—a
Whisper encoder for semantics and a WavLM
encoder for speaker characteristics. Within
the two-stage curriculum learning framework,
WavLLM first builds its foundational capabili-
ties by optimizing on mixed elementary single
tasks, followed by advanced multi-task train-
ing on more complex tasks combining elemen-
tary ones. To enhance the flexibility and ad-
herence to different tasks and instructions, a
prompt-aware LoRA weight adapter is intro-
duced in the second advanced multi-task train-
ing stage. We validate the proposed model on
universal speech benchmarks and also apply it
to specialized speech-question-answer (SQA)
dataset, and speech Chain-of-Thought (CoT)
evaluation set. Experiments demonstrate that
the proposed model achieves state-of-the-art
performance across a range of speech tasks in
the setting of the same model size, exhibiting
robust generalization capabilities in executing
complex tasks using CoT approach. The codes,
models, audio samples, and SQA evaluation
set can be accessed at https://github.com/
microsoft/SpeechT5/tree/main/WavLLM.

1 Introduction

Large language models (LLMs) have witnessed a
meteoric rise in advancement within the last cou-
ple of years, reaching or even exceeding the profi-
ciency of humans in a myriad of natural language
processing (NLP) tasks (OpenAI, 2023; Touvron
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et al., 2023; Anil et al., 2023). With large language
models attaining substantial breakthroughs, the fo-
cus is increasingly shifting towards the capabilities
and advancements of multi-modal large language
models (MLLMs), which possess the ability to lis-
ten (Tang et al., 2024; Deshmukh et al., 2023),
speak (Rubenstein et al., 2023; Hao et al., 2023),
see (Huang et al., 2023; OpenAI, 2023), and create
content (Pan et al., 2023; Brooks et al., 2024).

Amidst the broadening scope of abilities, speech
stands out as a crucial form of human communica-
tion, prompting extensive research to equip large
language models (LLMs) with speech perception
capabilities (Shu et al., 2023; Wu et al., 2023; Wang
et al., 2023; Tang et al., 2024; Chu et al., 2023;
Ma et al., 2024). Typically, LLMs are augmented
with an auxiliary audio encoder designed to pre-
process audio signals, transforming them into the
same input space as that of the LLMs, enabling
them to achieve various speech tasks, such as auto-
matic speech recognition (ASR), speech question
answering (SQA), and so on. However, previous
research has yet to overcome significant challenges
in achieving effective generalization due to two
main issues: (1) specialized tasks are highly sen-
sitive to prompt design, resulting in performance
degradation when confronted with unseen or com-
plex instructions; (2) there is an absence of speech
Chain-of-Thought (CoT) (Wei et al., 2022) capa-
bility, which is essential for addressing complex
tasks.

In this work, we propose a robust and adaptive
speech large language model, WavLLM, aiming
at enhancing the generalization capabilies, follow-
ing speech instruction effectively, and processing
the given speech in accordance with provided tex-
tual prompts, as well as supporting multi-round
dialog. Specifically, to distinguish various types
of speech information, we utilize a Whisper (Rad-
ford et al., 2023) encoder to encode the semantic
content of the speech, and a WavLM (Chen et al.,
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2022) encoder to capture the acoustic information,
like unique characteristics of the speaker’s identity.

During the model training phase, we develop a
curriculum learning method that progressively fine-
tune LLMs to follow instructions for understand-
ing and processing speech, starting from simple
tasks and advancing towards more complex ones.
In the initial mixed single-task training stage, we
leverage a substantial dataset of synthesized spoken
question-answering content generated by GPT-4
and tailored to various speech-centric tasks such
as automatic speech recognition (ASR), speech-
to-text translation (ST), emotion recognition (ER),
speaker verification (SV), and so on, to fine-tune
the WavLLM with Low Rank Adaptation (LoRA)
techniques (Hu et al., 2022). To enhance the gen-
eralization on the unseen or complex instructions1,
we introduce an advanced multi-task training stage,
incorporating a specially constructed prompt-aware
multi-task speech processing dataset combining the
elementary tasks. Furthermore, we design a novel
prompt-aware LoRA weight adapter for this stage,
capable of adaptively tuning the LoRA weights ac-
cording to varying prompts, thereby improving the
model’s generalization capacity and robustness.

We evaluate the proposed model on 1) single
tasks, including a) universal speech benchmark,
including ASR, SV, ER and ST; b) spoken-query-
based question answering and English Listening
Comprehension test in Chinese National College
Entrance Examination, which presents a spoken
dialogue, and requires to answer text-based choice
questions related to the conversation, and 2) multi-
ple tasks, consisting of c) instruction-independent
multi-tasks dataset that combines multiple indepen-
dent prompts in a single instruction; d) speech CoT
evaluation set that decomposes a complex task into
multiple sub-tasks. Extensive evaluations demon-
strate that our proposed model exhibits robust gen-
eralization and CoT capabilities, consistently sur-
passing strong baselines across a broad spectrum
of speech-related tasks.

In summary, the contributions of this paper can
be categorized as follows:
1) Equipped with the proposed prompt-aware
LoRA weight adapter, a curriculum learning
method is leveraged for model training, by incre-
mentally fine-tuning large language models with
robustness and generalization capabilities, begin-
ning with simple tasks and progressing to complex

1Please find detailed motivations in Section 2.

ones.
2) Our proposed model employs a decoupling strat-
egy for speech information, utilizing the Whis-
per encoder to capture semantic content and the
WavLM encoder for acoustic features, thereby en-
riching speech representation and improving per-
formance on downstream tasks.
3) WavLLM demonstrates exceptional general-
ization capabilities when responding to diverse
prompts and completing complex tasks. It exhibits
impressive capabilities in zero-shot SQA such as
English listening comprehension, and shows strong
proficiency in CoT-based tasks, delivering perfor-
mance gains over non-CoT tasks.

2 Related Work
The exploration of multi-modal large language
models involves the integration of diverse data
types including text, images, video, speech, audio,
and more. This represents a natural progression
from text-based large language models, designed
to enable the perception of the world and the cre-
ation of content (OpenAI, 2023; Huang et al., 2023;
Hao et al., 2023). For instance, Kosmos-1 (Huang
et al., 2023) and GPT-4V (OpenAI, 2023) are able
to perceive general modalities beyond text, and fol-
low instruction provided by users to process and
analyze image inputs. Another research direction
focuses on improving the multi-modal generative
abilities of language models, enabling them to pro-
duce visual content like images or videos, as ex-
emplified by MiniGPT-5 (Zheng et al., 2023) and
Sora (Brooks et al., 2024). Related research to this
work focuses on speech-enhanced large language
models that aim to endow LLMs with the capability
to perceive and process speech signal (Zhang et al.,
2023; Shu et al., 2023; Wu et al., 2023; Tang et al.,
2024; Chu et al., 2023; Wang et al., 2023).

Among these studies, SpeechGPT (Zhang et al.,
2023) empowers large language models with cross-
modal conversational abilities by three-stage train-
ing stages, using hidden units as the discrete rep-
resentation of speech. LLaSM (Shu et al., 2023)
builds a large Chinese/English speech language
model that can understand and follow instructions,
through pre-training and cross-modal instruction
fine-tuning stages. BLSP (Wang et al., 2023) boot-
straps Language-Speech Pre-training via behavior
alignment of continuation writing. SALMONN
(Tang et al., 2024), named from a speech audio
language music open neural network, boosts large
language models with generic hearing abilities with
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a activation tuning stage by playing with the LoRA
scaling factor. Qwen-audio (Chu et al., 2023)
scales up audio-language pre-training to cover over
30 tasks and various audio types, including human
speech, natural sounds, music, and songs.

Motivation Previous research on Speech Large
Language Models (Speech LLMs) has primarily
concentrated on executing a single speech task in
response to a given instruction, while the feasibil-
ity of using a single instruction to simultaneously
complete multiple and complex speech tasks has
remained unexplored. The employment of multi-
task instructions allows for the efficient completion
of several tasks at once and improves performance
by dividing complex tasks into logical, related sub-
tasks, such as CoT tasks. Such capabilities also
suggest the robustness and generalizability of the
Speech LLM.

Our initial experiments indicate that (1) prior
open-source speech LLMs underperformed in
multi-task scenarios, demonstrating these models’
limited ability to generalize to complex instruc-
tions; (2) reducing the LoRA scaling factor can
be beneficial for multi-task instructions, but leads
to a substantial degradation of the results of train-
ing tasks (Tang et al., 2024), which suggests that
single and multiple tasks might benefit from dis-
tinct LoRA scaling factors; (3) there is a notable
decline in performance when the model encoun-
ters unseen or diverse prompts as opposed to seen
prompts (3.5% vs. 2.1%, see Section 4.3), when
employing various prompts to evaluate the ASR
performance of the open-source model. Conse-
quently, we introduce a curriculum learning ap-
proach that progresses from simple to complex
instruction tasks, propose a prompt-aware LoRA
weight adapter which dynamically adjusts the am-
plitude of the LoRA output according to the in-
struction, and further enhance the generalization
by utilizing a diverse array of prompts generated
by GPT-4 across all training tasks.

3 Method

The WavLLM is optimized by maximizing the fol-
lowing probability:

p(Y |[X,T ];Θ) =

TY∏

t=0

p(yt|[X,T ,Y<t];Θ) (1)

where X and T are the speech input and text
prompt respectively. Y = [y1,y2, ...,yTY

] is the
target text output. Θ denotes the parameters of

WavLLM. The detailed template of WavLLM’s
training data can be found in Appendix D.

3.1 Model Architecture

The model architecture of our framework is shown
in Figure 1, which consists of speech encoders
(i.e., Whisper (Radford et al., 2023) and WavLM
(Chen et al., 2022)) as well as modality adapters, a
large language model (i.e., LLaMA (Touvron et al.,
2023)) and a proposed prompt adapter.

Speech Encoders and Modality Adapters In
order to extract both the semantic and acoustic
information in the speech, we utilize two state-
of-the-art speech encoders, namely Whisper and
WavLM. Whisper is trained for ASR and ST tasks
in a weakly supervised fashion on a massive 680k-
hour speech corpus recorded in diverse conditions,
making it well suited for encoding semantic infor-
mation in speech. WavLM is a predictive based
self-supervised learning (SSL) pre-trained model.
During its pre-training stage, WavLM mixes each
utterance with signals from multiple speakers in
the same batch, yet selectively predicts only the tar-
gets associated with the utterance’s original speaker.
Such training method allows WavLM to better ex-
tract speaker-related acoustic information. In our
work, the 32-layer transformer-based encoder of
Whisper-large-v2 and WavLM-base are utilized.
Both modality adapters have three components,
including two 1-D convolution layers to down-
sample and align the output of both encoders within
the temporal domain, a down-up bottleneck adapter
(Houlsby et al., 2019), and a final linear projec-
tor. The semantic adapter receives its input from
the Whisper encoder’s output, while the acoustic
adapter takes a weighted sum of the hidden states
from all layers of WavLM, where the weights are
learnable. The outputs of both adapters are con-
catenated together at the dimension level before
feedforwarding into the linear projector.

LLM, LoRA and Prompt Adapter Our frame-
work utilizes the LLaMA-2-7B-chat as the LLM
backbone, featuring a 32-layer Transformer de-
coder with an attention dimension of 4096, specifi-
cally optimized for dialogue-related use cases. To
integrate the speech modality within the LLM, we
employ the parameter-efficient fine-tuning method
known as LoRA, which is specifically applied to
the key, query, value, and output weight matrices
within the attention module of the LLaMA.
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Figure 1: Overview of the proposed WavLLM. The left part (a) is the two-stage curriculum learning. The right part
(b) is the model architecture. Two speech encoders and adapters with different focuses are utilized, where Whisper
is used for extracting semantic information, and WavLM for extracting acoustic information. Before being fed to
the LLM, these two representations are concatenated together and linearly transformed. Adaptive LoRA approach
is used for cross-modal efficient fine-tuning with online adaptation, where the prompt adapter is able to generate
prompt-dependent parameters to adjust the amplitude of LoRA in the second advanced multi-task training stage.

To enable adaptive LoRA scaling factors for dif-
ferent single-task and multiple-task instructions, in-
spired by adapter layer in (Houlsby et al., 2019), we
propose an online adaptation strategy by introduc-
ing a down-up prompt-aware LoRA weight adapter
(aka. prompt adapter) with attention weights, de-
signed to modulate the effect of LoRA on LLaMA,
as shown in Figure 1. Given the text-based prompts
T with length M , we can get the representation
t = [t1, ..., ti, ..., tM ] ∈ RD×M with LLaMA,
where D is the dimension of LLaMA hidden states
and t = f(T ;ΘLLaMA). This representation is fed
into the prompt adapter to get the LoRA scaling
factors, r = [r1, ..., ri, ..., rD] ∈ RD×1:

oi = P uGeLU(P dti) (2)

W = [WAo1, ...,WAoi, ...,WAoM ] (3)

Ŵ = Softmax(W ) = [ŵ1, ..., ŵi, ..., ŵM ] (4)

rj = g(t·j ;Θprompt_adapter) =
M∑

i=1

ŵioij (5)

where P u ∈ RD×K and P d ∈ RK×D are up-
linear projection and down-linear projection lay-
ers respectively, and GeLU is the GeLU activation
function (Hendrycks and Gimpel, 2016). oi ∈
RD×1,WA ∈ R1×D and WAoi ∈ R is a scalar.
Softmax is applied to W along the sequence length
dimension M to obtain the normalized weights.
The hidden states of an attention layer equipped
with adaptive LoRA are expressed by:

hi = W0xi + (BAxi)⊙ r (6)

where x = [x1, ...xi, ...,xN+M ] ∈ RD×(N+M)

is the input of the attention layer from the speech

input X with the length N and text prompt T . B ∈
RD×R and A ∈ RR×D are the LoRA parameters,
W0 ∈ RD×D is a weight matrix in the attention
layer.

3.2 Curriculum Learning
In this section, we present the two-stage
curriculum-learning (CL) based training method,
which facilitates a progression from learning sim-
ple data to understanding complex data, thereby
enhancing the model’s capacity for generalization.

3.2.1 Mixed Single-Task Training Stage
In the first stage, various single-task, cross-modal,
speech-text pairing datasets or text-only datasets
are utilized to endow the LLM with robust capabil-
ities in speech processing and comprehension. We
freeze the parameters of LLM, WavLM, and Whis-
per encoder, and optimize the modality adapters, a
linear layer and LoRA components.

Data Construction The first mixed single-task
training stage involves various speech tasks, includ-
ing automatic speech recognition (ASR), speech-
to-text translation (ST), speaker verification (SV),
emotion recognition (ER), spoken-based instruc-
tion tuning and text-based instruction tuning (IT)
tasks, as well as a large mount of GPT-generated
speech question answering (SQA). There are var-
ious questions within the SQA tasks, including
those related to the speaker and gender, as well
as continuation and summary tasks. Concurrently,
these tasks draw upon multiple datasets, including
LibriSpeech (Panayotov et al., 2015) with English
reading speech, AMI (Carletta et al., 2005) with
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multi-talker meeting recordings, as well as Fisher
(Cieri et al., 2004) and Switchboard (Godfrey et al.,
1992) corpora with 2-channel English telephony
conversations. Examples of the training data and
prompts used to generate data with GPT-4 can be
found in the Appendix A.1 and A.3 respectively.
The speech audio clips of spoken-based instruction
tuning task are generated by using Microsoft Azure
text-to-speech API2. The detailed task information
about description, data source, and data hours can
be found in Appendix F.

3.2.2 Advanced Multi-Task Training Stage
Owing to the incongruity between textual and spo-
ken modalities, extensively fine-tuning the model
using the LoRA method on a large amount of
prompt-repetitive speech-text data, such as ASR
and ST tasks, may cause the model to overfit on
specific speech tasks, thereby compromising the
LLM’s powerful instruction-following capabilities.
For instance, the model exhibits subpar perfor-
mance when handling multi-task instructions, of-
ten only managing to accomplish a fraction of the
tasks assigned. Specifically, if ASR is included
in the tasks, the model might complete only the
ASR portion while failing to address the remaining
instructions.

To this end, we construct a more complex
prompt-aware multi-task dataset in the second
stage, by integrating various single-task instruc-
tions. Multi-task and single-task datasets are uti-
lized together in this training stage. Besides, we
noted that simply incorporating more challeng-
ing training data may slightly diminish the per-
formance of single-task instructions, such as ASR,
when compared to results of the first training phase.
Hence we introduce a prompt adapter, as illustrated
in Section 3.1, to produce adaptive LoRA scal-
ing factors for different instructions and tasks, and
serve as an effective approach to concurrently en-
hance the model’s generalization capabilities.

Data Construction Given a speech audio clip,
we combine different task prompts for this audio
segment as well as text-based instruction tuning
tasks together as instructions. The training target
is designed to complete the tasks sequentially and
to repeat key parts of each prompt prior to deliv-
ering a response. For example, for an utterance
in LibriSpeech, ASR, SQA and text-based IT (t-

2https://azure.microsoft.com/en-us/products/ai-
services/text-to-speech

Table 1: Single-task and multi-task evaluation bench-
marks, including tasks, datasets, and metrics. “Acc.”
stands for accuracy.

Task Dataset Split Metric

Single
-task

ASR LibriSpeech
test-clean

WER (%)
test-others

ST
CoVoST2 (Wang et al., 2020)

En2De BLEU
MUSTC (Di Gangi et al., 2019)

SV VoxCeleb1 (Nagrani et al., 2017) test set Acc. (%)
ER IEMOCAP (Busso et al., 2008) Session 5 Acc. (%)

SQQA WikiQA (Yang et al., 2015) test set Acc. (%)
SQA MuTual (Cui et al., 2020) test set Acc. (%)

Multi
-task

II-Task In-house, based on MuTual - Acc., IFR (%)

CoT
In-house, based on

Gigaword (Graff et al., 2003)
- R-1, R-2,

R-L,
BERTScore

In-house, based on
story generated by GPT-4

-

IT) tasks can be combined into multi-task dataset.
Please refer to Appendix A.2 for specific exam-
ples. In our work, a total of 2.9K hours of var-
ious multitask data are used, including ER+t-IT,
ASR+t-IT, ST+t-IT, SV+t-IT, SQA+t-IT, ASR+ST,
ASR+SQA, ASR+ST+t-IT and ASR+SQA+t-IT
combined tasks, which are summarized in Ap-
pendix F.

4 Experiments

Please find implementation details in Appendix G.

4.1 Evaluation Setup
Corresponding to the training methods, two pri-
mary levels of testing tasks were evaluated, namely,
single-task and multi-task evaluations. The detailed
information of the two types of task evaluations are
provided in the Table 1. Single-task evaluation con-
sists of ASR, ST, SV, ER, SQA, and spoken-query-
based question answering (SQQA). The main dif-
ference between SQQA and SQA is that in SQQA
the questions are directly in the audio, whereas
in SQA the questions are given by text-based in-
structions. In our work, the single-answer multiple-
choice questions of English Listening Comprehen-
sion examination (Gaokao) in China are used as the
zero-shot SQA task, which gives a short dialogue, a
question, and three options. The model is required
to choose the correct one from three options. The
performance of SQA is not only a measure of the
comprehension of the cross-modal speech and tex-
tual content, but also serves as an indicator of the
model’s generalization capabilities with respect to
a diverse array of instructions.

In the multi-task evaluation, two distinct types of
tasks are tested, both of which are given a speech
audio clip: the tasks that consist of independent
instructions (II-Task) and the tasks that feature se-
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Table 2: Single-task instruction performance of our WavLLM model compared to other open-source speech large
language models and cascaded Whisper+LLM baseline model. “*” stands for the results from public paper.

Models
ASR ST (En2De)

SV ER SQQA SQA
test-clean test-other CoVoST2 MUSTC

WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

Whisper + LLM 2.7∗ 5.2∗ 18.2 11.5 - - 0.78 59.30% (63.50%)
SALMONN-7B 2.4 5.4 17.1 12.5 0.86 - - 39.95% (40.00%)
SALMONN-13B 2.1∗ 4.9∗ 18.6∗ 19.5 0.94∗ 0.69∗ 0.41∗ 43.35% (43.35%)

Qwen-Audio-Chat 7B 2.2 5.1 23.2 18.4 0.50 - 0.38 25.50% (54.25%)
Our WavLLM 7B 2.0 4.8 23.6 21.7 0.91 0.72 0.57 67.55% (67.55%)

quentially progressive instructions, which are also
known as CoT tasks. Examples of these two tasks
can be found in the Appendix B. For II-Task, our
focus lies on not only the ability to follow instruc-
tions, i.e. instruction following rate (IFR)3, but
also the correct completion of each instruction.
Whereas for CoT tasks, our primary concern is the
performance of the final instruction, which will be
compared to the performance of one-shot non-CoT
based instructions. The multitasking instruction
of zero-shot II-tasks includes ASR, SQA, ST and
the general knowledge question task. The audio
for zero-shot CoT task is generated from the Giga-
word (Graff et al., 2003) dataset using Microsoft
Azure text-to-speech API, and the target German
texts are translated from English summaries of Gi-
gaword dataset4 by utilizing GPT-4. The CoT task
requires the Speech LLM to complete ASR, sum-
mary and translation tasks in turn. In contract, the
one-shot non-CoT based instructions require the
cross-lingual summarization directly. For open-
ended or target-lack test sets, GPT-4 is utilized to
score the outputs, including the accuracy of SQQA
and II-task, which is conducted three times and
then take the average to minimize the randomness
from GPT-4.

4.2 Main Results

We compare the performance of WavLLM with
other open source text-instruction (chat) based
speech LLMs, including SALMONN (Tang et al.,
2024) and Qwen-Audio-Chat (Chu et al., 2023), as
well as the baseline system that cascades Whisper
large-v2 with LLaMA-2-7b-chat, across various
single-task and multi-task instructions.

Single-task Evaluation As shown in Table 2, for
the ASR task, our chat model achieves state-of-
the-art WERs of 2.0% and 4.8% on test-clean and
test-other sets of LibriSpeech corpus, surpassing

3The IFR is scored manually on 10% of the test utterances.
4Translation directions of ASR+SQA+ST tasks in second

advanced training stage are all English to Chinese.

other open-source chat models on the same size
(7B). Similar superior performance are observed in
ST, SV, ER and SQQA tasks.

The SQA task in our paper is the zero-shot En-
glish listening comprehension tests. As shown in
column “SQA” of Table 2, two types of accuracy
are evaluated: a) the correct option must be ex-
plicitly given (the first number); b) answers that
are semantically equivalent to the correct option
is considered correct (the second number), which
are scored by GPT-4 (The scoring instruction can
be found in Appendix C.1). The larger the both
accuracy, the better the model’s comprehension
and generalization capacity, while the smaller the
difference between the both accuracy, the better
the model’s ability to follow instructions. From
the results, we can observe that our WavLLM
model consistently surpasses the cascaded Whisper
+ LLaMA baseline, and other open source speech
LLMs (67.55% vs. 25.50-59.30%). Additionally,
our WavLLM model supports multiple dialogue
scenario, with a representative instance detailed in
Appendix E.

Multi-task Evaluation As shown in Table 3,
despite the optimization of SALMONN through
activation tuning, and the fact that Qwen-Audio-
Chat conducts fine-tuning only on audio en-
coder without impacting LLM by LoRA weights,
their performance in following multitasking in-
structions remains significantly suboptimal. Our
final chat model produces a markedly higher
instruction-following rate for the II-Task compared
to SALMONN and Qwen-Audio-Chat (92.50% vs.
24.25%-57.75%), which suggests the necessity and
effectiveness of our advanced multi-task training
stage with prompt adapter. From the accuracy
based on GPT-4, which further focuses on whether
they are completed correctly, similar trend can be
observed (62.44% vs. 19.58%-37.99%). The scor-
ing instruction can be found the Appendix C.2.

When the model is able to handle multi-task in-
structions, we aspire to enhance its performance by
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Table 3: Multi-task instruction performance of our WavLLM model compared to other open-source speech LLMs.

Models
II-tasks CoT (ASR+SUMM+En2De, gigaword) w/o CoT (De_SUMM, gigaword)

Acc.↑ IFR↑ R-1↑ R-2↑ R-L↑ BERTScore↑ R-1↑ R-2↑ R-L↑ BERTScore↑

SALMONN-7B 22.49 34.50 11.9 2.4 10.7 66.46 15.0 3.3 13.5 69.50
SALMONN-13B 19.58 24.25 10.9 2.1 9.8 68.12 14.0 2.9 12.6 69.11

Qwen-Audio-Chat 7B 37.99 57.75 5.9 0.9 5.7 67.62 5.8 0.9 5.3 65.84
Our WavLLM 7B 62.44 92.50 16.5 4.1 14.7 70.60 15.4 3.8 13.9 70.37

Chain of Thought (CoT) methodology. Specifically,
the CoT based prompt is excepted to give a better
performance than one-shot non-CoT based instruc-
tions. We list the examples of these two types of
prompts in the Appendix B.2. From the results
in Table 3, we can draw two conclusions: 1) Our
WavLLM model produces the best performance
on the CoT-task instructions; 2) Compared with
the performance given one-shot non-CoT instruc-
tions, our model produces consistent performance
improvements on all metrics.

Table 4: Model performance with/without advanced
training on multi-task instructions. mixed training and
advanced training stand for the first and training stage.
“BS.” refers to BERTScore (Zhang et al., 2019). † de-
notes statistically significant improvement obtained over
the model of mixed training.

Models
II-tasks

CoT (ASR+SUMM+En2De)
gigaword story

Acc.↑ IFR↑ R-1↑ R-2↑ R-L↑ BS.↑ R-1↑ R-2↑ R-L↑ BS.↑

mixed training 22.92 26.25 14.7 3.3 13.2 69.71 18.0 2.9 13.7 68.61
+ advanced training 62.44 92.50 16.5† 4.1† 14.7† 70.60 24.5† 4.8† 19.0† 72.52

4.3 Analysis

The Effect of Advanced Training Table 45

shows the results of our models after first mixed
single-task training stage and second advanced
multi-task training stage6. For zero-shot II-tasks,
significant enhancement of generalization ability
is obtained after advanced training, as evidenced
not only by the increased adherence to instructions
(92.50% vs. 26.25%) but also by the higher ac-
curacy of each executed instruction (62.44% vs.
22.92%). For cross-lingual summary tasks using
CoT based instructions, our advanced multi-task

5Significant tests for ASR, ST, SV, ER, SQA and CoT
tasks (other tasks are scored by GPT-4) are performed. For
ASR task, a matched pairs sentence-segment word error
(MAPSSWE (Gillick and Cox, 1989)) based statistical signif-
icance test at a significance level of 0.05 is performed. And
refer to (Dror et al., 2018), for ST and CoT tasks (R-1, R-2,
R-L), paired bootstrap resampling (Koehn, 2004) at a signifi-
cance level of 0.05 is performed. For SV, ER and SQA, t-test
at a significance level of 0.05 is performed.

6The results of single-task instructions can be found in
Appendix H. After advanced training, our model produces
comparable or even better performance on single-task prompts
compared to the first-stage model.

trained model consistently outperforms the first
stage model.

In addition, we found that the first stage model
mainly accomplished the ST task and did not per-
form the summarization task. To better demon-
strate the effectiveness of the second stage, we
crafted a long story-based CoT task by GPT-4
where the audio contains a 100-word story, and
the target is a 20-word summary in German. In this
task, if the model solely focuses on completing the
translation, there will be a noticeable discrepancy
in length between its output and the target. From
the results of this task in Table 4, the second ad-
vanced multi-task training stage model significantly
outperforms the first stage model, up to 65.52% rel-
ative improvement on R-2. When compared to
SALMONN-7B on story-based CoT task instruc-
tions, a similar greater enhancements can be ob-
tained (24.5/4.8/19.0/72.52 vs. 10.6/1.3/7.8/63.90
on R-1, R-2, R-L and BERTScore respectively.).

Table 5: Model performance across training stages
with/without a prompt adapter on single-task instruc-
tions. one-stage denotes the model is trained by utiliz-
ing all single-task and multi-task data simultaneously.
two-stage (LoRA) stands for two-stage training method
with only LoRA technique. “t-c”, “t-o”, “CoV.” and
“MU.” stand for test-clean, test-other, CoVoST2 and
MUSTC. † denotes statistically significant improvement
of the model with the prompt adapter over the model
of two-stage (LoRA); ∗ denotes statistically significant
improvement of the model of two-stage (LoRA) over
the model of one-stage.

Models
ASR ST (En2De)

SV ER SQQA SQA
t-c t-o CoV. MU.
WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

one-stage 2.1 5.0 22.7 21.0 0.88 0.71 0.51 65.35%
two-stage (LoRA) 2.1 5.1 23.3∗ 21.2 0.89∗ 0.71 0.54 63.70%
+ Prompt Adapter 2.0 4.9† 23.6† 21.6 0.90† 0.72 0.57 65.00%

The Effect of Prompt Adapter Despite the fact
that data-level curricular learning benefits the per-
formance on complex cross-modal tasks, using the
same LoRA parameters between single-task and
multi-task instructions may diminish the perfor-
mance on both instructions. A prompt-aware LoRA
weight adapter (prompt adapter) is proposed to ad-
dress this issue. Comparative experiments are con-
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Figure 2: TSNE visualization of the proposed prompt adapter’s outputs. Each point corresponds to a prompt.

ducted to analyze the effect of prompt adapter dur-
ing the second advanced multi-task training stage.
Additionally, we build a one-stage model trained
by combining all data, including both single-task
and multi-task data7.

From the results of Table 5 and 6, the following
conclusions can be drawn. Firstly, the results of
two-stage model without a prompt adapter against
one-stage model further demonstrate that the two-
stage curriculum learning based training is effective
as evidenced by 1) the comparable performance of
single-task instructions; 2) consistent performance
improvements on zero-shot II-task and CoT-task
prompts. Secondly, incorporating the proposed
prompt adapter consistently outperforms the base-
line two-stage model without such module on all
single-task and multi-task instructions.

Table 6: Model performance across training stages
with/without a prompt adapter on multi-task prompts.

Models
II-tasks CoT (gigaword)

Acc.↑ IFR↑ R-1↑ R-2↑ R-L↑ BS.↑

one-stage 59.34 85.50 14.8 3.4 13.2 69.64
two-stage (LoRA) 61.15 90.25 15.8∗ 3.8∗ 14.5∗ 70.42
+ Prompt Adapter 63.05 92.75 16.5† 4.0 14.8 70.75

The Effect of WavLM WavLM model has been
widely used for speech processing as a founda-
tion model, especially for speaker information ex-
traction. Table 7 shows the single-task instruction
performance on models with or without WavLM
encoder after the first mixed single-task training
stage. Incorporating the weighted sum of all layers
in WavLM-base encoder not only brings perfor-
mance improvements to speaker verification task
but also enhances other tasks such as ASR (rela-
tive WER reductions of 13.04% and 11.11% on
test-clean and test-other) and ST tasks.

Robustness Analysis In this subsection, the ro-
bustness8 of the speech LLMs is evaluated by

7Due to the computing resource constraints, only a por-
tion of the single-task dataset are utilized during the second
advanced multi-task training stage in this section.

8In this paper, “robustness” refers to the model’s ability
to maintain stable performance on in-domain data across dif-
ferent conditions, such as varying prompts, including seen
and unseen prompts; On the other hand, the “generalizability”

Table 7: Single-task instruction performance of models
w or w/o WavLM encoder after the mixed training. †
denotes statistically significant improvement obtained
over WavLLM w/o WavLM.

Models
ASR ST (En2De)

SV ER SQQA SQA
t-c t-o CoV. MU.
WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

WavLLM 2.0† 4.8† 23.9† 21.9† 0.91† 0.72 0.55 67.30%
WavLLM w/o WavLM 2.3 5.4 23.4 21.0 0.89 0.73 0.55 68.55%

comparing the performance between the seen and
the unseen prompts on our WavLLM model and
SALMONN model9. From the results in Table
8, compared to the SALMONN model, which ex-
perienced a decline in performance with unseen
or diverse prompts, our WavLLM model does not
exhibit any performance degradation with unseen
prompts on ASR tasks and even produces perfor-
mance improvement on the ST task, demonstrating
our model’s powerful robustness.

Table 8: Model performance using seen(se.) or unseen
(unse.) prompts on WavLLM and SALMONN.

Models
ASR (WER↓) ST-CoVoST2 (BLEU↑)

test-clean test-other En2De
se. unse. se. unse. se. unse.

SALMONN-7B 2.4 81.8 5.4 85.5 17.1 15.9
SALMONN-13B 2.1 3.5 4.9 8.8 18.6 18.2
Our WavLLM 7B 2.0 2.0 4.8 4.8 23.4 23.6

Visualization of LoRA Weights In this sub-
section, TSNE (Van der Maaten and Hinton,
2008) based visualization of the proposed prompt
adapter’s output is given in Figure 2. Several trends
can be observed: 1) The overlap between two
clusters of the seen and unseen ASR prompts im-
plies the generalization of the proposed prompt
adapter; 2) the clear discrimination among single-
task prompts suggests that the proposed prompt
adapter is capable of discerning various single-
task instructions and assigning disparate weights
to each; 3) Similar strong discrimination between
single-task and multi-task instructions is obtained
which validates our motivation; 4) The wide dis-

measured by the model’s performance on out-of-domain data,
e.g., the performance of zero-shot SQA task.

9Various prompts generated by GPT-4 are used as unseen
prompts.
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tribution of the SQA task with various prompts,
illustrates that the prompt adapter can accommo-
date diverse prompts.

5 Conclusion

In this paper, we propose WavLLM, a robust and
adaptive speech large language model, which uses
LLaMA-2-chat as foundational LLM backbone,
and extracts semantic and acoustic information
from speech audio utilizing Whisper and WavLM
encoders. Utilizing a curriculum learning approach,
the proposed WavLLM commences with single-
task instruction training in the initial mixed train-
ing phase and subsequently expanding our train-
ing to encompass additional multi-task prompts in
the second advanced phase with the integration of
the proposed prompt adapter. Massive experiments
demonstrate that our WavLLM model delivers state-
of-the-art performance on various speech-related
tasks and robust generalization abilities on single-
task and multi-task instructions, enhanced by a
CoT processing ability that greatly improves its
effectiveness in tackling intricate tasks.

Limitations

Although WavLLM shows a remarkable profi-
ciency in handling speech-related tasks and impres-
sive cross-modal instruction following and gener-
alization capacity, it also exhibits some specific
constraints.

Adaptive Use of CoT Our WavLLM model pro-
duces performance improvements using CoT based
instructions compared to one-shot non-CoT based
instructions. However, it lacks the capability to
autonomously decompose complex one-shot non-
CoT based tasks into CoT based ones. For future
work, we are interested in advancing the capability
of adaptive use of CoT. This requires WavLLM
to determine whether a task can be decomposed
into multiple sub-tasks, and then applying the CoT
approach accordingly.

Broader Applicability Although our WavLLM
model focuses primarily on speech in English, it
can be readily extended to accommodate multi-
ple languages. Additionally, the WavLLM model
excels at processing and comprehending spoken
language, yet it lacks the capability to generate
speech. We defer the task of expanding WavLLM’s
capabilities to synthesize speech to future research.

Safety and Ethics Employing continuous speech
representations within our WavLLM model may
render it more vulnerable to adversarial attacks,
potentially undermining the model’s compliance
with the HHN criteria (Harmless, Helpful, Honest).
This vulnerability merits further investigation for
solutions.
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A Some Examples of Training Data

A.1 SQA Task

speech transcript instructions targets source
the nautilus would still have nothing to
fear from their attacks

What animal would
still have nothing to
fear from attacks?

The nautilus. LibriSpeech

as gelatinous or glutinous matters im-
press the sense of touch i have spoken
both of sound and of voice i mean to
say that the sound was one of distinct
of even wonderfully thrillingly distinct

What is the gender
of the speaker? And
what is the speaker
talking about?

The speaker
is female.
And she is
talking about
sound and
voice being
distinct.

LibriSpeech

A: so how do you feel about it; B:
uh i don’t see any problem with with
random- testing for random drugs; A:
yeah i myself almost um am in favor of
it uh; A: i work at Honeywell and i went
through a a pretty i don’t know i went
through a standard drug testing thing
before i was brought on; B: um-hum

What is the sec-
ond speaker’s opin-
ion on random drug
testing?

The second
speaker
doesn’t see
any problem
with random
drug testing.

Switchboard
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A.2 Multi-task Instruction Datasets
speech tran-
script

instructions targets source

the nautilus
would still
have nothing
to fear from
their attacks

Initially, Analyze the
speech in the given audio
clip and provide a com-
plete textual transcription;
Then, answer the question:
What animal would still
have nothing to fear from
attacks?; Thirdly, ignore
the audio clip, Come
up with 5 activities for
a birthday party for a
5-year-old.

The audio transcription is: the
nautilus would still have nothing
to fear from their attacks \n For
the question “What animal would
still have nothing to fear from at-
tacks?”, the response is: The nau-
tilus. \n The response to “Come
up with 5 activities for a birth-
day party for a 5-year-old. ” is:
1. Play a game of freeze dance
\n 2. Make balloon animals \n 3.
Have a color scavenger hunt \n 4.
Bake cupcakes \n 5. Make a craft
project together

LibriSpeech,
Alpaca
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A.3 The Prompts for Generating SQA Data
by GPT-4

You are asked to generate **only one** questions, and their corresponding answers,
according to some conversational sentences given below. These sentences have been
transcribed from conversational speech data with one or multiple speakers who are
taking to each other. “Speaker A” and “Speaker B” in the senteces are labeled
by human and your response must not contain human-marked information, namely
“Speaker A” and “Speaker B”. Here are the requirements: 1. Your response should
strictly follow the format below: “Question”: “xxx”, “Answer”: “xxx”; 2. Please
ignore “Speaker A” and “Speaker B” in the given sentences. Your response should
strictly not include the phrase “Speaker A” and “Speaker B”; 3. Your question should
be highly related to the conversation, and your answer must be **correct**, and
should be simple and clear. Besides, you question should be designed as your answer
has to be reasoned from the conversation; 4. For example, a sentence “Speaker A:
It is a good day; Speaker B: Yes, but I have to go to hospital” means that speaker A
first say it is a good day and speaker B then say that Yes, but I have to go to hospital.
5. **Very Importance**: Your questions and answers **can not** contain the word
“Speaker A” and “Speaker B”, because “Speaker A” and “Speaker B” in the sentences
are additional labels for transcripts, and they are different people. For example, the
question “What is Speaker B’s opinion?” **does not** meet the requirements because
it contains word “Speaker B”. Namely, you can not use “Speaker A” and “Speaker
B” to represent they in questions and answers, maybe you can use the first or second
speaker to denote “Speaker A” or “Speaker B”; 6. The type of response should be
diverse. The respone **must contain** double quotation marks for each part. Here
are the sentences: transcript
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B Some Examples of Evaluation Data

B.1 Examples of II-task Instruction

speech transcript instructions targets source
Women: “How much time
do you usually spend ex-
ercising daily?” Man:
“Frankly speaking, I’m an
awfully lazy man. I know
it’s time to change.”

To begin, What will the man do next?
A. Start to take exercise; B. Do as he
always does; C. Change his working
time.; Next, Create a French transcript
for this English audio clip; Furthermore,
Recognize the speech and give me the
transcription; Last step, setting aside the
audio, Who wrote “The Adventures of
Sherlock Holmes”?

- MuTual

B.2 Examples of CoT-task and Non-CoT-task
Instruction

speech transcript instructions targets source
three films from Asia-Pacific
are in the running for the cov-
eted golden palms at this yearś
Cannes film festival, competing
in a field dominated by Euro-
pean productions, organizers an-
nounced Monday.

First of all, transcribe
the audio recording into
text, capturing every spo-
ken word; Additionally
given this audio clip and
text, can you condense it
into a clear, concise sum-
mary, no more than 20
words?; Lastly disregard-
ing the sound, translate
this English summary into
German.

Drei Filme
aus dem
asiatisch-
pazifischen
Raum im
Rennen in
Cannes

gigaword

three films from Asia-Pacific
are in the running for the cov-
eted golden palms at this yearś
Cannes film festival, competing
in a field dominated by Euro-
pean productions, organizers an-
nounced Monday.

Please summarize the con-
tent of the audio clip in
German, no more than 20
words.

Drei Filme
aus dem
asiatisch-
pazifischen
Raum im
Rennen in
Cannes

gigaword
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C The Prompt for Scoring using GPT-4

C.1 SQA Scoring

Next, I will give you a multiple-choice question along with its correct answer, as well
as a generated answer that needs to be evaluated for correctness. You will need to
determine whether the given answer is correct based on the question and the correct
answer, and give a simple reason. The answer must explicitly give the correct option
to be considered correct and not by implication or indirect response. Your response
should strictly follow the format:{"result": "xx", "reason": "xx"}, if the given answer
is correct, then your response should be {"result": "True", "reason": "xx"}, otherwise
your response should be {"result": "False", "reason": "xx"}.Here is the question:
{"What will the man do next? A. Start to take exercise; B. Do as he always does; C.
Change his working time."},and the correct answer is {"A"},the answer that needs to
be judged is {"B. Do as he always does"}.
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C.2 II-task Scoring

Next i will give you an audio transcription, instructions related or unrelated to the audio, and the
corresponding responses. You need to use the given information to figure out how many instructions
were completed correctly in the given responses and how many were left unanswered or answered
incorrectly, then give the simple and clear reason why each question was completed or not, Finally,
you need to do the self-examination to ensure responses you give must be correct and without
inconsistencies.
You must adhere to the following rules: 1. instructions are only answered sequentially, and one
answer must only correspond to one instruction; 2. For choice questions, the answer must be in
**English** and only **one** of the three options, multiple options or none of the options are
considered incomplete, e.g. the answer is “A. xx; B. xx; C. xx.” (note that options may appear
across sentences or lines); 3. All instructions must be completed in **English**, except translation
tasks; 4. The translation task is not a translation of instructions, but a translation of the content of
the given audio speech 5. If the response is a repetition of the instruction, then it is considered not
completed.
Your response should strictly follow the format: {“instructions completed”: “xx”, “instructions
incompleted”: “xx”, “Reasons for each instructions”: [“instruction_1: xx”, “instruction_2: xx”,
“instruction_3: xx”, “instruction_4: xx”]}.
You need to refer to this example: the transcription of the audio: “So James What are you going to
do for your birthday? Well, I was hoping to have a party but most of my friends are busy so I have
accepted my sisters offer to take me to a film. At least it is better than going out for a meal with my
parents.”; the instructions are “To begin, ignore the audio clip, Who is known for developing the
theory of relativity?; Then, What will the man do on his birthday? A. Have a party; B. See a movie;
C. Go out for a meal.; Moreover, Convert the spoken words in this audio file into a textual format;
Last step, Translate this English speech into Japanese";
and the respones are “1. エイトリングの理論を発展した人物は誰ですか？; 2. What will
the man do on his birthday? A. Have a party; B. See a movie; C. Go out for a meal.; 3. この音
声>ファイルをテキスト形式に変換してください。; 4. この英語のスピーチを日本語に
翻訳してください。”.
And your output should be {“instructions completed”: “0”, “instructions incompleted”: “4”,
“Reasons for each instructions”: [“instruction_1: incompleted, the answer is the Japanese translation
of the instruction. Q&A task should be completed in English.”, “instruction_2: incompleted, the
answer is the a repetition of the instruction. More than one options were given”, “instruction_3:
incompleted, the answer is the Japanese translation of the instruction”, “instruction_4: incompleted,
the answer is the Japanese translation of the instruction”]}.
Be sure to carefully follow the rules and refer to the examples for responses.
Here is the transcription of the audio: {“I really want to go to the concert, but I haven’t got a
ticket yet leave it to me, I’ll organize that we can go together really that’s wonderful.”},
the instructions are {“To begin, disregarding the sound, How many elements are on the periodic
table?; Then, Translate this English speech into Japanese; Additionally, How will the speaker get a
ticket to the concert? A. The man will go to buy the ticket; B. The woman will get the ticket; C.
The man will have someone buy the ticket.; Lastly, Transcribe the given audio clip into text”},
the responses is {“Addressing the prompt ’How many elements are on the periodic table?’, the
answer is: There are currently 118 elements on the periodic table. From the audio, we have the
following translations: コンサートに行きたいけどまだチケットがないのどうするんだ？
For the question “How will the speaker get a ticket to the concert? A. The man will go to buy
the ticket; B. The woman will get the ticket; C. The man will have someone buy the ticket.”, the
response is: B; The audio transcription is: i really want to go to the concert but i haven’t got a ticket
yet b leave it to me i’ll organize that we can go together r really that’s wonderful }
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D Prompt Template for WavLLM

The template of our WavLLM containing a
speech audio clip, text instructions and targets are
constructed as follows:

<bos>[INST]«SYS»\n As a helpful language and
speech assistant, you are able to understand the
speech content provided by the user, and assist
the user with a variety of tasks using natural
language. \n«/SYS»\n\n <SPEECH>“ speech ”
</SPEECH>“instruction” [/INST]“ target ”<eos>

where “speech” will be replaced by the 4096-dim
speech features extracted from speech encoders
and modality adapters, while “instruction” and
“target” are the specific task prompts and outputs.
The input to the WavLLM is this template with the
<eos> removed, while the target is this template
without the <bos>. During training, only the
“target” part is involved in the loss calculation.

E Example of Multi-round Dialog

Women: How much time do you usually spend exercising daily? 
Man: Frankly, speaking, I'm an awfully lazy man I know it's time to change.

What will the man do next? A. Start to take exercise; B. Do as he always does; 
C. Change his working time.

WavLLM The answer is A.

Why the answer is not B?

WavLLM Because the man himself acknowledges that he is a lazy person and is willing 
to change.

Figure 3: An example of multi-round dialog
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F Training Data Details

Training data used in the first stage and second
stage. For all tasks, the instructions are diverse.
“#Hours” refers to the duration of speech data for
each task, not the total number of hours of the data
source. The targets of SQA tasks are generated
using GPT3.5, GPT-4 or LLaMA-2-chat.

Task Description Data Source #Hours

Single
-task

automatic speech recognition (ASR)
LibriSpeech 960

LibriHeavy medium 1800
speech-to-text translation (ST), including English to German (En2De),

English to Japanese (En2Ja), and English to Chinese (En2Zh)
CoVoST2 440
MuST-C 280

speaker verification (SV) VoxCeleb 1290
emotion recognition (ER) IEMOCAP Session 1-4 5

speech question answering (SQA),
including gender and speaker-related questions,

and multi-round QA

LibriSpeech 520
AMI 50

Fisher 710
Switchboard 230

speech question answering (SQA), continue writing tasks LibriSpeech 960
speech question answering (SQA), summary tasks LibriSpeech 410

instruction tuning (IT), including spoken based and text based tasks Alpaca 90

Multi
-task

ER + text based IT IEMOCAP Session 1-4, Alpaca 71
ASR + text based IT LibriSpeech, Alpaca 274
ST + text based IT CoVoST2, MuST-C, Alpaca 343
SV + text based IT VoxCeleb, Alpaca 243

SQA + text based IT AMI, Fisher,Switchboard, Alpaca 773
ASR + ST LibriSpeech 74

ASR + SQA LibriSpeech 43
ASR + ST + text-based IT CoVoST2, Alpaca 5

ASR + SQA + text-based IT LibriSpeech, Alpaca 1066
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G Implementation Details

As mentioned above, the semantic and acoustic
speech encoders are the encoder of Whisper-large-
v210 and WavLM-base11, the backbone LLM is
LLaMA-2-chat-7b12, and all of their parameters are
frozen. The outputs of both modality adapters have
a time stride of 80 ms and a dimension of 2048,
and the rank (R) of LoRA is set as 32. In the first
mixed single-task training stage, the total number
of parameters in our model is 7.55 billion, of which
76.6 million are trainable. In the advanced training
phase, the bottleneck dimension (K) of the prompt
adapter is set as 1024. The 4096-dimensional
prompt-dependent parameters produced by prompt
adapter are element-wise multiplied with the out-
puts of the LoRA. Our models are trained with the
two-stage curriculum-learning method on 32 V100
GPUs using the Adam optimizer, set with hyper-
parameters β1 = 0.9, β2 = 0.98 and batch size
equivalent to 30 seconds per GPU, where the first
stage consisted of 400K steps and the subsequent
stage involved an additional 150K steps. Addi-
tionally, we employed a maximum learning rate of
1 × 10−4, incorporating a warm-up phase for the
first 10% of steps. The two-stage training data are
presented in data construction part of Section 3.2.

H The Effect of Advanced Training for
Single-tasks

Performance of model with or without advanced
training on single-task instructions. mixed training
means the first mixed single-task training stage,
and advanced training means the second advanced
multi-task training stage.

Models
ASR ST (En2De)

SV ER SQQA SQA
test-clean test-other CoVoST2 MUSTC

WER↓ BLEU↑ Acc.↑ Acc.↑ Acc.↑ Acc.↑

mixed training 2.0 4.8 23.9 21.9 0.91 0.72 0.55 67.30%
+ advanced training 2.0 4.8 23.6 21.7 0.91 0.72 0.57 67.55%

I The Creation Process of Multi-task
Instruction Dataset

Take the “ASR + text based IT” training task as an
example. We use the speech of the ASR task as the
input speech, and the instruction is a combination
of the respective instructions from the two tasks,

10https://huggingface.co/openai/whisper-large-v2
11https://huggingface.co/microsoft/wavlm-base
12https://huggingface.co/meta-llama/Llama-2-7b-chat-hf

linked together using connectives. For example,
the instruction of ASR and IT tasks are “Analyze
the speech in the given audio clip and provide a
complete textual transcription” and “Come up with
5 activities for a birthday party for a 5-year-old.”,
then the combined instruction is “Initially, Analyze
the speech in the given audio clip ...; Then, ignore
the audio clip, Come up with 5 activities for ...”.
The training target is designed to complete the tasks
sequentially and to repeat key parts of each prompt
prior to delivering a response. In this case, it is
“The audio transcription is: ... \n The response to
“Come up with 5 activities for a birthday party for
a 5-year-old. ” is: ...”. The creation process of
evaluation sets is similar to the training set.
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J Some Case Study and Error Analysis

speech transcript instructions response
How much time do
you usually spend
exercising daily?
Frankly, speaking,
I’m an awfully lazy
man I know it’s
time to change.

To begin, What will the
man do next? A. Start
to take exercise; B. Do
as he always does; C.
Change his working time.;
Next, Create a French
transcript for this English
audio clip; Furthermore,
Recognize the speech and
give me the transcription;
Last step, setting aside the
audio, Who wrote ’The
Adventures of Sherlock
Holmes’?

In reply to ’What will the man do next? A.
Start to take exercise; B. Do as he always does;
C. Change his working time.’, the answer is: A.
The audio clip’s translation reads: How much
time do you usually spend exercising daily? I
frankly speaking, I’m an awfully lazy man, I
know it’s time to change. The audio clip’s tran-
scription reads: how much time do you usually
spend exercising daily. As for ’Who wrote
’The Adventures of Sherlock Holmes’?’, the
answer provided is: Sir Arthur Conan Doyle

What would you
like pizza, sand-
wich, hotdog, fried
rice? we do ev-
erything takeaway.
fried rice sounds
good. OK fried. no
on second thought.
I’ll have a tomato
sandwich.

Initially, What will the
woman have? A. Fried
rice; B. A sandwich; C.
Pizza.; Next, Create a
French transcript for this
English audio clip; Fur-
thermore, setting aside the
audio, What is the capi-
tal of Germany?; Last step,
Please provide a text ver-
sion of the speech in the
provided audio

The answer to ’What will the woman have?
A. Fried rice; B. A sandwich; C. Pizza.’ is: B.
The audio clip’s translation reads: QG : Qu’est-
ce que tu veux ? A. Pizza. B. Sandwich. C.
Hot-dog. D. Frite de riz. A. : Tu veux une
pizza ? B. Un sandwich. C. Hot-dog. D. Frite
de riz. A. : Tiens, une pizza ? B. Un sandwich.
C. Hot-dog. D. Frite de riz. A. Tu veux une
pizza ? B. Un sandwich. C. Hot-dog. D. Frite
de riz. A. Tu veux une pizza ? B. Un sandwich.
C. Hot-dog. D. Frite de riz...

One of the error cases arises from a failure to
distinguish between “transcription” and “transla-
tion”, and the other is due to the repetition of the
same responses, a problem also observed in other
multimodal large language models.
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