
Findings of the Association for Computational Linguistics: EACL 2024, pages 4705–4726
November 12-16, 2024 ©2024 Association for Computational Linguistics

Re-Invoke: Tool Invocation Rewriting for Zero-Shot Tool Retrieval

Yanfei Chen1∗, Jinsung Yoon1, Devendra Singh Sachan2,
Qingze Wang3, Vincent Cohen-Addad3, Mohammadhossein Bateni3,

Chen-Yu Lee1, Tomas Pfister1
1Google Cloud AI Research, 2Google DeepMind, 3Google

Abstract

Recent advances in large language models
(LLMs) have enabled autonomous agents with
complex reasoning and task-fulfillment capa-
bilities using a wide range of tools. However,
effectively identifying the most relevant tools
for a given task becomes a key bottleneck as
the toolset size grows, hindering reliable tool
utilization. To address this, we introduce Re-
Invoke, an unsupervised tool retrieval method
designed to scale effectively to large toolsets
without training. Specifically, we first generate
a diverse set of synthetic queries that compre-
hensively cover different aspects of the query
space associated with each tool document dur-
ing the tool indexing phase. Second, we lever-
age LLM’s query understanding capabilities to
extract key tool-related context and underlying
intents from user queries during the inference
phase. Finally, we employ a novel multi-view
similarity ranking strategy based on intents to
pinpoint the most relevant tools for each query.
Our evaluation demonstrates that Re-Invoke
significantly outperforms state-of-the-art alter-
natives in both single-tool and multi-tool sce-
narios, all within a fully unsupervised setting.
Notably, on the ToolE datasets, we achieve
a 20% relative improvement in nDCG@5 for
single-tool retrieval and a 39% improvement
for multi-tool retrieval.

1 Introduction

Recently, large language models (LLMs) have
demonstrated impressive capabilities on a variety
of complex tasks, including math, reasoning and
coding (OpenAI, 2023c; Anil et al., 2023; Google,
2023b). They can even surpass average human
performance on standardized exams such as col-
lege entrance tests, law school admission, and math
competitions (Zhong et al., 2024). However, LLMs
are pre-trained on a static corpus, limiting their

∗ Correspondence to: {yanfeichen, jinsungyoon,
chenyulee}@google.com

I’m planning a trip to
France in the summer
and I want to dedicate
my time there to
improve my French
language skills,
particularly focusing on
and cultural
understanding.

Tool name: travel_assistant
Description: Provide
personal travel
recommendations on
itertinary, flights and
accommodations.

Tool registry

Tool retriever

Figure 1: An example of low-performance retrieval
methods failing to identify the actual user intents “im-
prove French language skills” due to the context “plan-
ning a trip to France”. It selects similar, but incor-
rect travel assistant tool instead of the ground-truth lan-
guage learning tool from the given pool of tools.

adaptability to the rapidly evolving real world, and
frequent fine-tuning (Wei et al., 2021) is computa-
tionally expensive.

In contrast, humans leverage a vast array of tools
to interact with the external world, using search
engines for information retrieval, maps for navi-
gation, calculators for algebraic tasks, and so on.
Augmenting LLMs with external tools, rather than
relying solely on their internal knowledge, could
unlock their potential to tackle even more chal-
lenging problems. This insight has driven recent
interests in both academic research (Parisi et al.,
2022; Schick et al., 2023; Lu et al., 2023; Cai et al.,
2023; Patil et al., 2023; Hsieh et al., 2023; Qin
et al., 2023) and industrial applications. Examples
include ChatGPT plugins (OpenAI, 2023a), with
supported third-party APIs, and Bard extensions
(Google, 2023a) connecting to Google APIs and
services.

Common approaches to integrate tools with
LLMs often rely on supervised methods to gener-
ate tool calling functions (Schick et al., 2023; Patil
et al., 2023; Parisi et al., 2022; Qin et al., 2023; Hao
et al., 2023) or in-context learning by providing the
tool documents and few-shot demonstrations (Xu

4705

et al., 2023; Lu et al., 2023; Hsieh et al., 2023).
However, these methods face practical challenges
when scaling to a large number of tools on complex
tasks: (a) Input Token Length Limitations: LLMs
have inherent input token length limitations, mak-
ing it infeasible to include a comprehensive list of
tools within a single prompt. Moreover, LLMs can
struggle to effectively process relevant information
from lengthy input contexts (Liu et al., 2024). (b)
Evolving Tool Pool: LLMs are often paired with
a tool retriever trained on labeled query-tool pairs.
However, the ideal LLM toolkit should be vast
and dynamic, with tools undergoing frequent up-
dates. Providing and maintaining labels for such
an extensive and evolving toolset is impractical.
Continuous retraining would also require extensive
production maintenance. (c) Ambiguous User In-
tents: User contexts in the queries could obfuscate
the underlying intents and failure to identify the
intents could lead to calling the wrong tools (See
Fig. 1). Retrieving the relevant tools to address all
the intents described in the user query remains a
challenging task.

To address these unique challenges, we intro-
duce Re-Invoke, a novel unsupervised retrieval
method to enable effective retrievals even when
user intent is multifaceted or tool document is lack-
ing. To the best of our knowledge, Re-Invoke is the
first fully unsupervised approach to tackle multi-
tool retrieval use cases. It leverages LLMs for both
tool document enrichment and user intent extrac-
tion, thereby enhancing tool retrieval performance
across various use cases. Our approach consis-
tently and significantly improves upon state-of-the-
art alternatives, achieving a 20% relative improve-
ment in nDCG@5 on single-tool retrieval tasks and
39% improvement on multi-tool retrieval tasks with
ToolE dataset.

2 Related Work

Tool Retrievals for Tool-Use. ReAct (Yao et al.,
2023) pioneers the interaction and reasoning with
diverse tools using in-context reasoning traces, par-
ticularly in decision-making and multi-step reason-
ing environments. Schick et al. (2023) proposes a
self-supervised training method with API demon-
strations. Patil et al. (2023) and Hsieh et al. (2023)
demonstrate that augmenting LLMs with tool doc-
ument significantly improves their ability to gener-
ate correct API calls by mitigating hallucinations,
compared to prompting with demonstrations alone.

Yuan et al. (2024) also shows unifying tool instruc-
tion leads to better tool usage. However, tool doc-
ument retrieval for LLM tool learning is currently
under-explored, as most work simply uses LLM
agents to retrieve a limited number of tools. Patil
et al. (2023) first demonstrate that LLMs generate
more reliable outputs with the integration of a re-
trieval system using BM25 (Robertson et al., 2009)
and GPT-index (Liu, 2022), but still introduce more
hallucination and errors compared to the ground
truth retriever. Some works (Qin et al., 2023; Kong
et al., 2023; Gao et al., 2024) train a Sentence-Bert
transformer model using the fully labeled query-
API document pairs as a tool retriever. The key
distinction between our approach and existing tool
retrieval systems lies in our emphasis on zero-shot
usage, eliminating the need for any labeled data.

Generative Document Expansion. Appending
relevant terms, such as queries, to documents effec-
tively enriches document representation for sparse
retrievals. Nogueira et al. (2019) demonstrated
this by using a language model to generate search
queries for improved retrieval in search engines.
Lewis et al. (2021) introduced Probably Asked
Questions (PAQ) by generating the question given
a passage and an answer, and a retriever trained
using PAQ demonstrated the strength in accuracy,
speed, and space efficiency for selective QA. Ma
et al. (2023a) trains a dense retriever after applying
document expansion. Our approach also leverages
document expansion with generative language mod-
els, but with a focus on tool selection rather than
search engine or question-answering tasks. We
further emphasize the ability to extract the user
intents from queries to better match the varying
complexities of downstream tasks.

Generative Query Expansion. Augmenting
user queries with hypothetical information is a pop-
ular approach in both dense and sparse retrieval
methods. Query2doc (Wang et al., 2023) expands
queries with pseudo-generated documents through
few-shot prompting. Jagerman et al. (2023) fur-
ther extends this idea by studying different prompt-
ing methods. Liu et al. (2022) improves query
expansion by balancing diversity and relevance
through a combination of effective filtering and
documents fusion. Shen et al. (2024) augments
queries with potential answers by prompting LLMs
with a composition of the query and its in-domain
candidates. Mackie et al. (2023) enriches the origi-
nal query with useful terms from diverse generation

4706

Tool document indexing

Tool retrieval
Intent extractor

Query generator

Tool name: search_flights
Description: Find all the flights between the origin and the destination.

Tool name: search_flights
Description: Find all the flights between the origin and the destination.
Query: I want to book a flight from New York City to San Francisco.

I want to book a flight to
New York City and rent a
sedan for my trip.

Book a flight to
New York City.

Rent a sedan in
New York City.

Tool name: search_flights
Description: Find all the flights between the origin and the destination.
Query: I want to book a flight from New York City to San Francisco.

Tool name: rent_car
Description: Rent a car in the specific location.
Query: Can you help me rent an SUV in San Francisco airport?

I want to book a flight from
New York City to San

Francisco.

Retriever

Retriever

Generated query

Figure 2: An overview of Re-Invoke for tool retrieval tasks. (Top) A query generator generates diverse synthetic
queries from the tool documents and each synthetic query is concatenated with the tool document to create multiple
copies of the expanded tool document. (Bottom) An intent extractor synthesizes multiple underlying intents from
the user queries in order to retrieve the relevant tools.

subtasks. Chuang et al. (2023) proposes a query
expansion and reranking approach to train a re-
ranker after query expansion. Alternatively, Gao
et al. (2023) proposes a zero-shot dense retrieval
system by first instructing LLMs to generate a hy-
pothetical document given the query for semantic
retrievals. Those approaches primarily focus on
generative pseudo-relevance feedback by enriching
user queries within the retrieval system. They are
fundamentally different from our approach, which
focuses on query understanding rather than query
expansion.

Query Rewriting. LLM-aided query rewriting
is commonly used in conversational search engine
to precisely understand user’s contextual search in-
tent through in-context learning (Yu et al., 2020;
Ye et al., 2023; Mao et al., 2023; Anand et al.,
2023). Some works even train the query rewriter in
a rewrite-retrieve-read pipeline, allowing interac-
tion with the search engine (Feng et al., 2023; Ma
et al., 2023b). While LLMs are primarily used to
summarize user context in conversations in these
works, Re-Invoke focuses on extracting underlying
intents for tool uses, rather than solely for informa-
tion retrieval.

3 Method: Re-Invoke

We formulate the tool retrieval task as retrieving
the most relevant tools that a downstream agent can
execute to fulfill user queries, given a list of tool
documents describing the intended tool usage.

Re-Invoke, our proposed fully unsupervised re-
trieval method designed for tool retrieval tasks, is

illustrated in Fig. 2. It consists of two core com-
ponents: (1) Query generator: for each tool docu-
ment, LLMs generate diverse synthetic queries an-
swerable by the corresponding tool. These queries
enrich the tool document and are then indexed by
encoding them into the embedding space when the
tool documents are ingested offline. (2) Query
intent extractor: during online inference, LLMs
extract the core tool-related intent(s) from user
queries, filtering out irrelevant background context.
Each user intent is then encoded into the same em-
bedding space as the tool documents for similarity
matching. Pseudo-code of Re-Invoke is described
in Algorithm 1.

3.1 Query Generator

Tool documents, provided by developers to explain
tool usage, are often vague or incomplete, which
can lead to incorrect tool retrievals. Additionally,
the existing text embedding model designed for in-
formation retrieval tasks may not accurately model
the semantic relationship between tool usage and
user queries (Patil et al., 2023; Qin et al., 2023).
In practice, tool developers often include usage ex-
amples in the tool documents to help users better
understanding how to use the tools.

Following this intuition, we instruct LLMs to
predict user queries by reading the provided tool
document. The generated queries then serve as
examples of intended tool usages. We encourage
LLMs to produce creative and complex queries that
the tool can address. This process is compatible
with any LLMs, including enterprise models such

4707

Book a flight from
New York City to

San Francisco this
weekend.

Find highly rated
restaurants in
downtown San

Francisco.

Retriever

Retriever

Tool: book_flight
score: 0.9

Tool: travel_assistant
score: 0.8

Tool: shopping_cart
score: 0.3

Tool: find_restaurant
score: 0.7

Tool: search_tool
score: 0.6

Tool: maps
score: 0.5

Tool: book_flight
score: 0.9

Tool: find_restaurant
score: 0.7

Retrieved top 2
tools

I’m traveling to San
Francisco from New York
city this weekend, can you
help me book a flight? Also
find some highly rated
restaurants in downtown
San Francisco.

Figure 3: An illustration of the multi-view similarity ranking algorithm during retrieval. Multiple intents can be
extracted from the user query and we first compute the similarity scores between the expanded tool documents and
each intent in the embedding space. We rank and retrieve the top tools from each intent as the final retrieved tools.

Algorithm 1: Pseudo-code of Re-Invoke
Data: Query Q, List of tool documents D,

The number of tools to retrieve k,
Large language model L, Text
embedding model fenc, m number of
synthetic queries generated per each
tool document

Result: k retrieved tool documents D̂1,...,k

1 Function ReInvoke(q,D, k,L, fenc):
2 for d ∈ D do
3 for i = 1, ...,m do
4 di ← Concat(d,L(d));
5 end
6 end
7 q1, ..., qn ← L(Q);
8 ŝ(Q,D)← rank(q1...n, d1...m, fenc);
9 D̂1,...,k = Argmax(ŝ(Q,D), k);

10 return D̂1,...,k

as GPT-4 (OpenAI, 2023b), Gemini API (Google,
2024), and open-source models like LLaMa (Tou-
vron et al., 2023). The prompt template is detailed
in Appendix A.

To introduce variation and cover the potential
query space, we increase the sampling temperature
and sample the model response multiple times. Ex-
amples of the query generator outputs can be found
in Appendix B. Finally, each synthesized query
is concatenated with the original tool document
to create augmented tool documents, facilitating
better tool retrievals (see Fig. 2).

3.2 Intent Extractor

Tool augmented LLM agents often function as chat-
bots, interacting with users who express their in-
tents in diverse and potentially verbose ways. Users

may unconsciously provide extraneous background
information before stating their actual tasks, which
can confuse downstream tool retrieval when try-
ing to identify the underlying intents (Qian et al.,
2024). Additionally, users might express multi-
ple intents in a single conversational query, which
current retrieval system may struggle to capture
due to the query complexity. To address these, we
leverage LLM’s reasoning and query understanding
capabilities through in-context learning to extract
tool-related intents, thereby improving retrieval ac-
curacy. This approach also allows for the effec-
tive extraction of multiple intents if the user query
contains different requests. We then encode these
intents replacing the original user queries into the
embedding space during tool retrieval. This tech-
nique enables the retrieval system to recommend
all the relevant tools for each individual intent (see
Fig. 2). The prompt template for extracting user
intent using LLMs is available in Appendix A.

3.3 Multi-view Similarity Ranking

As each intent extracted from the user queries could
retrieve different relevant tools, we introduce a
multi-view similarity ranking method to consider
all tool-related intents expressed in the user query.
We aggregate similarity scores between each intent
and the expanded tool document. By incorporating
multiple perspectives within the embedding space,
it provides a robust measure of relevance between
expanded tool documents and user queries.

We first aggregate the embedding values from
multiple copies of the expanded tool document with
synthetic queries to represent each tool document
in the embedding space. Instead of grouping the
entire tools retrieved by all the intents described in
the user query before ranking, we rank the tools
individually within each intent and retrieve the top

4708

tool from each intent until the specified number
of candidates have been retrieved. To achieve this,
we design an ordering function to consider both
the rank of the retrieved tool within each intent
and the similarity score value between the tool and
the intent. The proposed formulation allows us
to capture the relevance of each intent to different
aspects of the tool document, as represented by the
generated queries.

The multi-view similarity ranking algorithm is
explained using an example in Fig. 3. The final
retrieved 2 tools from the query include the top
tool book_flight retrieved from the intent “book
a flight from New York City to San Francisco this
weekend” and the top tool find_restaurant re-
trieved from the intent “find highly rated restau-
rants in downtown San Francisco”. The detailed
implementation is described in Appendix C.

4 Experimental Settings

4.1 Benchmark Datasets

A variety of benchmark datasets containing tools
across different domains have been proposed to
assess tool-augmented LLMs. These include
APIBench (Patil et al., 2023), API-Bank (Li et al.,
2023), ToolBench (Xu et al., 2023), ToolAlpaca
(Tang et al., 2023), ToolBench (Qin et al., 2023),
ToolE (Huang et al., 2023) and ToolQA (Zhuang
et al., 2023). To evaluate Re-Invoke’s tool retrieval
performance, we select ToolBench (Qin et al.,
2023) and ToolE (Huang et al., 2023) datasets, as
both datasets provide ground truth query and tool
document pairs that reflect real-world scenarios.
We use the same ToolBench dataset to evaluate the
end to end performance when integrating the LLM
agent with the proposed Re-Invoke retriever. De-
tailed data statistics on the benchmark datasets can
be found in Appendix D.

Following the approach in Qin et al. (2023), we
use nDCG@k metric1 to evaluate retrieval per-
formance on the benchmark datasets. We report
nDCG@5 in the following sections and the detailed
retrieval metrics including recall@k2 can be found
in Appendix E. For end-to-end performance evalua-
tion, we use pass rate following the same evaluation
protocol proposed in Qin et al. (2023).

1https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.ndcg_score.html

2https://www.tensorflow.org/ranking/api_docs/
python/tfr/keras/metrics/RecallMetric

4.2 Unsupervised Retrieval Baselines
As the proposed method is training free, we es-
tablish the following baselines to benchmark Re-
Invoke’s unsupervised tool retrieval performance:
(a) Sparse retrieval using BM25: We directly cal-
culate relevance between the user query and the
tool documents using BM25. We use the default
normalization parameter k = 1.5 for term fre-
quency and offset parameter b = 0.75 for docu-
ment length normalization.
(b) Dense retrieval using text embedding: We
encode both query and entire tool documents using
Google Vertex AI’s textembedding-gecko@003
model3 and compute the cosine similarity on the
embedding values.
(c) HyDE as a dense retrieval method: Follow-
ing Gao et al. (2023), we use LLMs to generate
a hypothetical tool document for each user query.
We then calculate document-document similarity
using embeddings to retrieve the real tool docu-
ment. In our experiment, we use Google Vertex
AI’s text-bison@001 model4 to generate the hy-
pothetical tool document. The instruction template
can be found in Fig. 6 in Appendix A. Both hypo-
thetical and real tool documents are encoded using
the Vertex AI text embedding API.

AnyTool (Du et al., 2024) proposes hierarchi-
cal agents by leveraging LLM as a tool retriever
for large-scale API calls, but the “hierarchy of the
tools” structure may not be available in general
tool use cases. It also results in significantly higher
latency and cost when the number of tools scale up.
Therefore, this method is excluded in our baselines.

4.3 Re-Invoke
We use Google Vertex AI’s text-bison@001
model (with 0.7 temperature) in the query genera-
tor to generate 10 diverse synthetic queries per tool
document. Other parameters remain default. We
explored various concatenation methods (prepend-
ing, appending, repetition) and found they yield
similar retrieval metrics. Therefore, we append
each generated query to the original tool docu-
ment in the format: "Documentation: <tool
document> Query: <predicted query>" to cre-
ate different copies of the expanded tool document.
For evaluation, we vary the number of synthetic
queries (see ablation study in Sec. 6.1).

3https://cloud.google.com/vertex-ai/docs/
generative-ai/embeddings/get-text-embeddings

4https://cloud.google.com/vertex-ai/docs/
generative-ai/model-reference/text

4709

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ndcg_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.ndcg_score.html
https://www.tensorflow.org/ranking/api_docs/python/tfr/keras/metrics/RecallMetric
https://www.tensorflow.org/ranking/api_docs/python/tfr/keras/metrics/RecallMetric
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/text

Retrieval Method Backbone LLM ToolBench ToolE

I1 I2 I3 single-tool multi-tool

Sparse

BM25 - 0.3475 0.2077 0.3375 0.3735 0.2635
HyDE w/ Vertex AI text-bison@001 0.3084 0.1627 0.2594 0.3770 0.1954

Re-Invoke w/ BM25 (ours) text-bison@001 0.5519 0.3968 0.4990 0.5971 0.5637
Re-Invoke w/ BM25 (ours) gpt-3.5-turbo 0.6013 0.4230 0.4959 0.6300 0.5883
Re-Invoke w/ BM25 (ours) Mistral-7B 0.5768 0.3964 0.4770 0.6134 0.5373

Dense

Vertex AI - 0.5962 0.3880 0.4633 0.6522 0.5296
HyDE w/ Vertex AI text-bison@001 0.4336 0.2221 0.2996 0.6558 0.4910

Re-Invoke w/ Vertex AI (ours) text-bison@001 0.6110 0.5379 0.5955 0.7821 0.7231
Re-Invoke w/ Vertex AI (ours) gpt-3.5-turbo 0.6090 0.5068 0.5719 0.7705 0.6957
Re-Invoke w/ Vertex AI (ours) Mistral-7B 0.6150 0.5128 0.5771 0.7770 0.6959

Table 1: nDCG@5 metrics on ToolBench I1, I2, I3 and ToolE single-tool, multi-tool datasets using both sparse
and retrieval methods. In the sparse retrieval method, we apply BM25 retrieval and HyDE retrieval based on BM25
as two baselines. text-bison@001 is used to generate hypothesis documents in the HyDE method. We integrate
Re-Invoke with BM25 embedding using text-bison@001, gpt-3.5-turbo and Mistral-7B-Instruct-v0.3
as three different backbone LLMs. In the dense retrieval method, we apply Vertex AI text embedding retrieval
and HyDE retrieval based on Vertex AI text embedding as two baselines. text-bison@001 is used to generate
hypothesis documents in the HyDE method. We also integrate Re-Invoke with the Vertex AI text embedding using
text-bison@001, gpt-3.5-turbo and Mistral-7B-Instruct-v0.3 as three different backbone LLMs. The
highest nDCG@5 metric is marked in bold.

We use the same Google Vertex AI’s LLM model
in the intent extractor to synthesize the intents from
the user queries. We then extract dense embed-
ding vectors from both augmented tool documents
and extracted intents using Google Vertex AI’s
textembedding-gecko@003 model. We also ap-
ply Re-Invoke using BM25 embedding vectors as
a sparse retrieval method.

In our Re-Invoke design, we average the em-
bedding values from multiple copies of the ex-
panded tool document as a representation of the
tool document. We then compute the embedding
similarity score between each extracted intent and
the expanded tool documents, and rank the tool
documents with the ordering function described in
Sec. 3.3. We compare our designed aggregation
function with others in Sec. 6.1.

5 Experimental Results

5.1 Baseline Retrieval Performance

As shown in Table 1, semantic retrieval using Ver-
tex AI text embedding significantly outperforms
the sparse retrieval BM25 across all five benchmark
datasets. This aligns with the findings in Patil et al.
(2023) and Qin et al. (2023). Even without specific
pre-training on tool retrieval tasks, the existing en-
terprise text embedding API can effectively repre-
sent the semantic relationship between user queries
and relevant tool documents.

Compared to its dense retrieval counterpart,

HyDE retrieval using Vertex AI text embedding
performs less favorably. This suggests that the
HyDE approach introduces a concept drift between
the actual and hypothetical tool documents. The
metric degradation can likely be attributed to infor-
mation loss within the hypothetical documents.

5.2 Retrieval Performance of Re-Invoke

Re-Invoke consistently outperforms both sparse
and dense retrieval baselines across all benchmark
datasets, as shown in Table 1 (See Table 6 in Ap-
pendix for complete results). When combined with
BM25 sparse embeddings, nDCG@5 is signifi-
cantly increased. Similarly, Re-Invoke with Vertex
AI text embedding yields significant performance
gains. This improvement stems from the proposed
LLM-powered tool document enrichment and user
intent extraction.

The application of Re-Invoke significantly im-
proves both sparse and dense retrieval performance
although we observe that applying Re-Invoke on
top of the sparse retrieval method still underper-
forms the dense retrieval counterparts. To further
analyze the impact of Re-Invoke on improving re-
trievals, we examine specific user queries and com-
pare the retrieved tools between the baseline and
Re-Invoke (see Appendix F).

We also replicate our experiment using Ope-
nAI’s gpt-3.5-turbo model5 and Mistral AI’s

5https://platform.openai.com/docs/models/
gpt-3-5-turbo

4710

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo

Tool Retriever I1 (%) I2 (%) I3 (%) Average (%)
Instruction Tool Category Instruction Category Instruction

None 39.70 44.72 47.50 64.50 55.33 61.00 52.13
ToolLLM’s 47.50 42.00 53.00 62.50 56.78 54.00 52.63
Re-Invoke (ours) 48.00 49.75 53.03 65.33 58.29 62.00 56.07

Table 2: End-to-end performance on the ToolBench datasets. We follow Qin et al. (2023) to use pass rate as the
evaluation metric. We integrate ToolLLaMA with DFSDT as the agent, using a set of reference tools without a
retriever, ToolLLM’s retriever, and Re-Invoke retriever. The highest performance metric is marked in bold.

Mistral-7B-Instruct-v0.3 model (Jiang et al.,
2023) as the backbone LLMs. The same backbone
LLM is used in both the query generator and in-
tent extractor. Applying the same settings including
prompt and decoding parameters as those described
in text-bison@001, Re-Invoke achieves a similar
trend across all benchmark datasets (see Table 1).
This demonstrates Re-Invoke’s compatibility with
various foundation models to improve the baseline
retrieval methods.

5.3 End-to-End Performance Evaluation

We employ the proposed Re-Invoke as the tool
retriever and the ToolLLaMA with Depth-First
Search-Based Decision Tree (DFSDT) approach as
the agent. Comprehensive implementation details
can be found in ToolLLM (Qin et al., 2023). We
adopt the pass rate metric proposed in ToolLLM
(Qin et al., 2023) for evaluation metrics. Pass rate
calculates the percentage of instructions success-
fully completed within limited budgets. We eval-
uate on six subsets of the ToolBench benchmark
dataset: I1-Instruction, I1-Category, I1-Tool, I2-
Instruction, I2-Category and I3-Instruction, using
OpenAI’s gpt-3.5-turbo model as an evaluator.

We compare the agent performance with differ-
ent tool retriever settings: using a set of reference
tools without retrievers, ToolLLM’s API retriever
(Qin et al., 2023) trained using the labeled query-
tool pairs, and our Re-Invoke retriever without any
training data. The reference set of tools are pro-
vided in the ToolBench dataset, but they might not
be the ground-truth tools as same task could be
solved with a different set of tools. All pass-rate
evaluation results are reproduced. Table 2 demon-
strates that our unsupervised Re-Invoke retriever
outperforms both baselines with the set of refer-
ence tools and a trained tool retriever across all the
benchmark datasets. This aligns with the finding in
ToolLLM (Qin et al., 2023) that a tool retriever can
expand the search space to find more appropriate

tools for a given task. Therefore, using tools re-
trieved by Re-Invoke can improve the agent perfor-
mance by suggesting more relevant tools given the
task even compared to using the reference toolset.
These evaluation results provide evidence that our
Re-Invoke retriever can effectively retrieve relevant
tools from a vast pool (16,000+ APIs) and it leads
to more reliable downstream agent behaviors on
the tool use. Importantly, Re-Invoke is completely
unsupervised, eliminating the needs for training.

6 Discussions

6.1 Ablation Studies

Re-Invoke component evaluation. In this study,
we evaluate the tool retrieval performance on each
individual Re-Invoke components: query generator
and intent extractor using Vertex AI text embed-
ding API. The results in Table 3(A) provide the
evidence that both designed components contribute
positively to final retrieval metrics in Re-Invoke.
Specifically, we observe consistent retrieval per-
formance improvement across all the benchmark
datasets when integrating the query generator with
the baseline retrieval method. Similar improvement
is also demonstrated when applying intent extractor
with the baseline. When integrating both query gen-
erator and intent extractor, Re-Invoke achieves the
highest retrieval metrics. Note that no improvement
is observed on ToolBench I1 dataset when apply-
ing intent extractor mainly because ToolBench I1
dataset consists of APIs under the same tool, and
each individual intent retrieves overlapped set of
APIs. We discuss the scenarios when each compo-
nent performs better in Sec. 6.3.

Query generator evaluation. We investigate the
retrieval performance with different document aug-
mentation settings using the query generator alone
including (1) whether to append the document with
the synthetic query, (2) number of synthetic queries
and (3) aggregation function. Table 3(B,C,D)

4711

Method ToolBench ToolE

I1 I2 I3 single-tool multi-tool

(A) INCLUDING CRITICAL COMPONENTS IN RE-INVOKE

Baseline 0.5962 0.3880 0.4633 0.6522 0.5296
+ Query generator (Sec. 3.1) 0.6286 0.4135 0.4906 0.7813 0.6906
+ Intent extractor (Sec. 3.2) 0.5910 0.5157 0.5843 0.6756 0.6258
+ Query generator & Intent extractor (Re-Invoke) 0.6110 0.5379 0.5955 0.7821 0.7231

(B) USING GENERATED QUERIES ONLY IN QUERY GENERATOR

Synthetic query only 0.4924 0.3050 0.4121 0.7535 0.6814
Appending the synthetic query to the document 0.6286 0.4135 0.4906 0.7813 0.6906

(C) VARYING THE NUMBER OF SYNTHETIC QUERIES IN QUERY GENERATOR

1 synthetic query 0.5962 0.3741 0.4543 0.7388 0.6503
5 synthetic queries 0.6242 0.4091 0.4882 0.7777 0.6724
10 synthetic queries 0.6286 0.4135 0.4906 0.7813 0.6906

(D) VARYING THE AGGREGATION FUNCTION IN QUERY GENERATOR (MAX VS MEAN)

Maximum similarity score 0.6104 0.3867 0.4760 0.7716 0.6333
Mean similarity score 0.6286 0.4135 0.4906 0.7813 0.6906

Table 3: nDCG@5 metrics of ablation studies on ToolBench I1, I2, I3 datasets and ToolE single-tool, multi-tool
datasets. We evaluate the impact of each critical component in Re-Invoke: the query generator and the intent
extractor. Within query generator component, we further compare nDCG@5 metrics across different number of
synthetic queries, different aggregation functions to aggregate the relevance scores, and appending the synthetic
queries to the tool documents or not. The highest retrieval metric is marked in bold.

Metric
ToolBench ToolE

I1 I2 I3 single-&
multi-tool

recall@5 0.7787 0.7665 0.9043 0.9131
recall@10 0.8402 0.8311 0.9464 0.9462

Table 4: Round-trip consistency recall metrics on syn-
thetic queries in the query generator.

clearly validate that our design choices in the query
generator: appending the synthetic query to the
tool document with 10 synthetic queries and ag-
gregating the similarity scores on the augmented
tool documents with mean function, outperforms
the alternatives. We observe that replacing the tool
document with the synthetic queries could lead
to potential information loss during the retrieval
stage and augmenting the tool document is pre-
ferred. Mean similarity score is more robust when
considering diverse synthetic queries in the query
generator. Increasing the number of diverse syn-
thetic queries improves the retrieval performance
and demonstrates the effectiveness in enriching the
tool documents with diverse synthetic queries.

6.2 Round-Trip Consistency Evaluation

We define the synthetic query quality using the
round-trip consistency criteria (Alberti et al., 2019),

i.e., the synthetic queries should retrieve the same
tool documents used to generate them. Specifically,
we compute recall@k as a round-trip consistency
metric to quantify if the tool document used to
generate the synthetic query are among the top-k
documents after retrieval using the synthetic query
(see Table 4). The relatively high recall@10 metric
across all the benchmark datasets suggests query
generator’s effectiveness to distinguish highly simi-
lar tool documents during retrieval. The round-trip
consistency recall metric is lower on ToolBench I1
and I2 datasets, mainly caused by the larger toolset
size compared to ToolBench I3 and ToolE datasets.

6.3 Re-Invoke Performance Analysis

We analyze the Re-Invoke performance under dif-
ferent scenarios from the results in Table 3(A).
For relatively short tool documents with minimal
human-readable descriptions, tool document ex-
pansion alone can significantly boost retrieval per-
formance through generative relevance feedback.
The documents in the ToolE datasets only include
the tool name and descriptions and we can see that
query generator alone achieves larger performance
gains. However, if a tool document lacks API and
parameter descriptions, LLMs may struggle to ac-
curately infer usage, relying solely on names. This
can lead to generated queries that do not reflect real-

4712

world tool usage scenarios. In contrast, for complex
user queries with extensive background context or
requiring multiple tools simultaneously, intent ex-
tractor becomes crucial for improving tool retrieval
performance. This component ensures individual
tool-related contexts are extracted effectively. Tool-
Bench I2 and I3 datasets both contain the queries
that need to be handled by calling the APIs from
multiple tools and categories on RapidAPI hub,
intent extractor component alone achieves more
significant retrieval performance gains.

6.4 Latency and Computational Cost
Analysis

The query generator in Re-Invoke creates the syn-
thetic queries offline when the tool documents are
ingested, resulting no additional latency during
serving. The number of LLM calls during tool
document indexing is proportional to the number
of synthetic queries per document and the total
number of documents. On the other hand, intent
extractor employs an LLM to extract the user in-
tents from the user query during online inference,
which incurs an extra LLM call with associated
latency and computational cost.

To mitigate the latency and cost increase, tech-
niques such as knowledge distillation from larger to
smaller LLMs, or quantization, offer promising av-
enues for reducing both latency and computational
overhead.

7 Conclusion

In this work, we present Re-Invoke, a fully unsuper-
vised tool retrieval approach designed to scale LLM
tool learning to large toolsets. We leverage LLMs
to enhance tool document context with diverse syn-
thetic queries, extract essential tool-related intents
into executable requests through intent extraction.
Re-Invoke offers a fresh perspective on scalable
tool retrieval, prioritizing context enhancement and
intent understanding without any training data.

8 Limitations

Synthetic query diversity and quality. Re-
Invoke achieves query diversity through simple
LLM response sampling with a zero-shot prompt.
To further enhance the quality and reduce con-
cept drift between synthetic and real-world queries,
more sophisticated query generation methods could
be explored. This might include techniques such

as controlled prompting, iterative refinement, or
utilizing external knowledge bases.

Intent extractor. Re-Invoke relies on in-context
learning and LLM’s internal knowledge to extract
tool related intents. Future work could include
using the downstream agent’s execution results as
a feedback to refine intent extraction.

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-

vlin, and Michael Collins. 2019. Synthetic QA cor-
pora generation with roundtrip consistency. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6168–
6173, Florence, Italy. Association for Computa-
tional Linguistics.

Abhijit Anand, Vinay Setty, Avishek Anand, et al. 2023.
Context aware query rewriting for text rankers using
llm. arXiv preprint arXiv:2308.16753.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Yung-Sung Chuang, Wei Fang, Shang-Wen Li, Wen-
tau Yih, and James Glass. 2023. Expand, rerank,
and retrieve: Query reranking for open-domain
question answering. In Findings of the Associ-
ation for Computational Linguistics: ACL 2023,
pages 12131–12147, Toronto, Canada. Association
for Computational Linguistics.

Yu Du, Fangyun Wei, and Hongyang Zhang.
2024. Anytool: Self-reflective, hierarchical
agents for large-scale api calls. arXiv preprint
arXiv:2402.04253.

Jiazhan Feng, Chongyang Tao, Xiubo Geng, Tao Shen,
Can Xu, Guodong Long, Dongyan Zhao, and Daxin
Jiang. 2023. Knowledge refinement via interaction
between search engines and large language models.
arXiv preprint arXiv:2305.07402.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie
Callan. 2023. Precise zero-shot dense retrieval with-
out relevance labels. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1762–
1777, Toronto, Canada. Association for Computa-
tional Linguistics.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen
Fang, Xin Xin, Pengjie Ren, Zhumin Chen, Jun
Ma, and Zhaochun Ren. 2024. Confucius: Iterative

4713

https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/2023.findings-acl.768
https://doi.org/10.18653/v1/2023.findings-acl.768
https://doi.org/10.18653/v1/2023.findings-acl.768
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2023.acl-long.99

tool learning from introspection feedback by easy-
to-difficult curriculum. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38,
pages 18030–18038.

Google. 2023a. Bard can now connect to your google
apps and services.

Google. 2023b. Introducing gemini: our largest and
most capable ai model.

Google. 2024. Gemini api.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu.
2023. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. In
Advances in Neural Information Processing Systems,
volume 36, pages 45870–45894. Curran Associates,
Inc.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Ya-
suhisa Fujii, Alexander Ratner, Chen-Yu Lee, Ran-
jay Krishna, and Tomas Pfister. 2023. Tool doc-
umentation enables zero-shot tool-usage with large
language models. arXiv preprint arXiv:2308.00675.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Rolf Jagerman, Honglei Zhuang, Zhen Qin, Xuanhui
Wang, and Michael Bendersky. 2023. Query expan-
sion by prompting large language models. arXiv
preprint arXiv:2305.03653.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Yilun Kong, Jingqing Ruan, Yihong Chen, Bin Zhang,
Tianpeng Bao, Shiwei Shi, Guoqing Du, Xiaoru Hu,
Hangyu Mao, Ziyue Li, et al. 2023. Tptu-v2: Boost-
ing task planning and tool usage of large language
model-based agents in real-world systems. arXiv
preprint arXiv:2311.11315.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale
Minervini, Heinrich Küttler, Aleksandra Piktus, Pon-
tus Stenetorp, and Sebastian Riedel. 2021. Paq: 65
million probably-asked questions and what you can
do with them. Transactions of the Association for
Computational Linguistics, 9:1098–1115.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3102–3116,
Singapore. Association for Computational Linguis-
tics.

Jerry Liu. 2022. LlamaIndex.

Linqing Liu, Minghan Li, Jimmy Lin, Sebastian Riedel,
and Pontus Stenetorp. 2022. Query expansion us-
ing contextual clue sampling with language models.
arXiv preprint arXiv:2210.07093.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play
compositional reasoning with large language mod-
els. In Advances in Neural Information Process-
ing Systems, volume 36, pages 43447–43478. Cur-
ran Associates, Inc.

Guangyuan Ma, Xing Wu, Peng Wang, Zijia Lin, and
Songlin Hu. 2023a. Pre-training with large language
model-based document expansion for dense passage
retrieval. arXiv preprint arXiv:2308.08285.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023b. Query rewriting in retrieval-
augmented large language models. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 5303–5315,
Singapore. Association for Computational Linguis-
tics.

Iain Mackie, Shubham Chatterjee, and Jeffrey Dalton.
2023. Generative relevance feedback with large lan-
guage models. In Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2026–
2031.

Kelong Mao, Zhicheng Dou, Fengran Mo, Jiewen Hou,
Haonan Chen, and Hongjin Qian. 2023. Large lan-
guage models know your contextual search intent: A
prompting framework for conversational search. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 1211–1225, Singa-
pore. Association for Computational Linguistics.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

OpenAI. 2023a. Chatgpt plugins.

OpenAI. 2023b. Gpt-4.

OpenAI. 2023c. Gpt-4 technical report.

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:
Tool augmented language models. arXiv preprint
arXiv:2205.12255.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

4714

https://blog.google/products/bard/google-bard-new-features-update-sept-2023/
https://blog.google/products/bard/google-bard-new-features-update-sept-2023/
https://blog.google/technology/ai/google-gemini-ai/
https://blog.google/technology/ai/google-gemini-ai/
https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini
https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/8fd1a81c882cd45f64958da6284f4a3f-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.5281/zenodo.1234
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/871ed095b734818cfba48db6aeb25a62-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.emnlp-main.322
https://doi.org/10.18653/v1/2023.findings-emnlp.86
https://doi.org/10.18653/v1/2023.findings-emnlp.86
https://doi.org/10.18653/v1/2023.findings-emnlp.86
https://openai.com/blog/chatgpt-plugins
https://openai.com/research/gpt-4
http://arxiv.org/abs/2303.08774

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2024.
Tell me more! towards implicit user intention under-
standing of language model driven agents. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1088–1113, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi,
Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas
Scialom. 2023. Toolformer: Language models can
teach themselves to use tools. In Advances in Neural
Information Processing Systems, volume 36, pages
68539–68551. Curran Associates, Inc.

Tao Shen, Guodong Long, Xiubo Geng, Chongyang
Tao, Yibin Lei, Tianyi Zhou, Michael Blumenstein,
and Daxin Jiang. 2024. Retrieval-augmented re-
trieval: Large language models are strong zero-shot
retriever. In Findings of the Association for Compu-
tational Linguistics ACL 2024, pages 15933–15946,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. arXiv preprint arXiv:2306.05301.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9414–9423, Singapore. Association for Com-
putational Linguistics.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,
Zhengyu Chen, and Jian Zhang. 2023. On the tool
manipulation capability of open-source large lan-
guage models. arXiv preprint arXiv:2305.16504.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing reasoning and acting in lan-
guage models. In International Conference on
Learning Representations (ICLR).

Fanghua Ye, Meng Fang, Shenghui Li, and Emine Yil-
maz. 2023. Enhancing conversational search: Large
language model-aided informative query rewriting.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5985–6006.

Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong, Paul
Bennett, Jianfeng Gao, and Zhiyuan Liu. 2020. Few-
shot generative conversational query rewriting. In
Proceedings of the 43rd International ACM SIGIR
conference on research and development in Informa-
tion Retrieval, pages 1933–1936.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction. arXiv preprint
arXiv:2401.06201.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo
Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. 2024. AGIEval: A human-
centric benchmark for evaluating foundation models.
In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 2299–2314, Mex-
ico City, Mexico. Association for Computational
Linguistics.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for
llm question answering with external tools. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 50117–50143. Curran Associates,
Inc.

4715

https://aclanthology.org/2024.acl-long.61
https://aclanthology.org/2024.acl-long.61
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://aclanthology.org/2024.findings-acl.943
https://aclanthology.org/2024.findings-acl.943
https://aclanthology.org/2024.findings-acl.943
https://doi.org/10.18653/v1/2023.emnlp-main.585
https://doi.org/10.18653/v1/2023.emnlp-main.585
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://doi.org/10.18653/v1/2024.findings-naacl.149
https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9cb2a7495900f8b602cb10159246a016-Paper-Datasets_and_Benchmarks.pdf

Appendix

A Prompt Templates

In this section, we list all the prompt templates used in our experiments. Fig. 4 is the prompt to generate
a synthetic query from the tool document. Fig. 5 shows the prompt to extract the user intents. Fig. 6
describes the prompt to generate hypothetical tool document given a user query used in the HyDE retrieval
baseline.

Suppose you are an assistant and you have access to the following API to answer user's queries.
You are provided with a tool and its available API function including the description and
parameters.

Your task is to generate a possible user query that can be handled by the API.

You must include the input parameters required in the API call. Please be creative and generate
random but specific information for the required parameters.
Now you are given the API documentation below:

<tool document>

Please generate a user query that you will need to call this tool. Note the generated query should
be complex enough to describe the scenarios that you will need to call the provided API to address
them.

The relevant query is:

Figure 4: Prompt template to generate the synthetic queries from the tool document.

4716

Instructions
Suppose you are a query analyzer and your task is to extract the underlying user intents from the
input query. You should preserve all the underlying user request and the extracted user intents
should be easily understood without extra context information.
You should carefully read the given user query to understand its different intents. Then identify
what are the specific intents. Each individual intent should be separated by a newline.

Here are some examples of how you should solve the task.

Example
Query: I'm planning to travel to Paris next weekend to visit my family, could you help me book a
round trip flight ticket? I want to fly in economy class.
Intent:
book a round-trip flight ticket in economy class to Paris next weekend

Query: I'm a potential buyer looking for a condominium in the city of Miami. I am specifically
interested in properties that have a minimum of two bathrooms. It should have walkable distance to
the grocery stores.
Intent:
buy a real estate in Miami with a minimum of two bathrooms and walkable distance to the grocery
stores

Query: I want to learn Spanish by talking to the native speakers at any time. Additionally, can you
recommend some interesting books, preferably fictions, so that I can learn by reading? Also include
the websites that I can buy them.
Intent:
learn Spanish by talking to the native speakers
recommend fictions to learn Spanish by reading
suggest the websites to buy Sanish fictions

Begin!
Query: <user query>
Intent:

Figure 5: Prompt template to extract the underlying intents from user queries.

4717

Suppose you are an assistant and you have access to the API documentation to answer user's queries.
Please generate an API documentation in the JSON format that can be called to handle this query.
The API documentation should be general enough to handle the cases beyond the provided queries.
Please provide detailed descriptions on the parameters.

Examples
Query: I'm planning to travel to Paris next weekend to visit my family, could you help me book a
round trip flight ticket? I want to fly in economy class.
The API documentation is:
{

"api_name": "flights",
"api_description": "Search the flight ticket on a specific travel date."
"required_parameters": [

{
"name": "departure_date",
"type" DATETIME,
"description": "The departure date for the flight."

},
{

"name": "from",
"type" STRING,
"description": "The city where the flight departs."

},
{

"name": "to",
"type" STRING,
"description": "The city where the flight arrives."

},
{

"name": "fare_class",
"type": STRING,
"description": "The fare class for the flight, economy, business or first."

}
],
"optional_parameters": [

{
"name": "return_date",
"type": DATETIME,
"description": "The return date for the flight."

}
]

}

Begin!
Query: <user query>
The API documentation is:

Figure 6: One-shot prompt template to generate hypothetical tool document given a user query.

4718

B Example Synthetic Queries

We show 10 different generated user queries from the documentation newsSearch API in the ToolBench
dataset in Fig. 7.

{"category_name": "Data", "tool_name": "Web Search", "api_name": "newsSearch", "api_description":
"Get news articles relevant for a given query.", "required_parameters": [{"name": "pageSize",
"type": "NUMBER", "description": "The number of items per page. The maximum value is 50.",
"default": "10"}, {"name": "autoCorrect", "type": "BOOLEAN", "description": "Automatically correct
spelling.", "default": true}, {"name": "q", "type": "STRING", "description": "The user's search
query string.", "default": "taylor swift"}, {"name": "pageNumber", "type": "NUMBER", "description":
"The page to view.", "default": "1"}], "optional_parameters": [{"name"": "toPublishedDate", "type":
"STRING", "description": "The published date and time for the newest article allowed. For example:
2015-05-16T05:50:06. See [https://www.c-sharpcorner.com/blogs/date-and-time-format-in-c-sharp
-programming1](url)for more possible DateTime formats.", "default": "null"}, {"name":
"safeSearch", "type": "BOOLEAN", "description": "A filter used to filter results for adult
content.", "default": false}, {"name": "fromPublishedDate", "type": "STRING", "description": "The
published date and time for the oldest article allowed. For example: *2015-05-16T05:50:06.* See
[https://www.c-sharpcorner.com/blogs/date-and-time-format-in-c-sharp-programming1](url)for more
possible DateTime formats. "", "default": "null"}, {"name": "withThumbnail"", "type": "BOOLEAN",
"description": "Show results with image thumbnails.", "default": false}], "method": "GET"}

Show me news articles about the latest coronavirus outbreak in the United States. I would like to
see the articles from the past week, and I would like them to be safe for work.

I would like to see a list of news articles about the latest developments in the field of
artificial intelligence. Please show me the results from the past year and make sure that they are
safe for work.

I'd like to get a list of news articles about the latest developments in the field of artificial
intelligence. Please show me articles from the past 24 hours, and include images with the results.

I would like to get a list of news articles about the latest developments in artificial
intelligence. Please show me the results in chronological order, with the most recent articles
first. I would also like to see images of the articles.

I want to get the news articles about the latest news about the new album by Taylor Swift. I want
the results to be from the past month and I want them to be safe for work.

I want to know the latest news about the war in Ukraine. Please show me the results from the past
24 hours, and make sure that they are safe for work.

I want to find news articles about the latest developments in the field of artificial intelligence.
Please show me articles from the past year that are safe for work and have image thumbnails.

I would like to find news articles about the latest developments in AI. Please show me the results
from the past month and make sure to include images in the results.

I would like to know about the latest news articles on the topic of artificial intelligence.
Please show me the results in chronological order, with the newest articles first. I would also
like to see thumbnails of the articles.

I would like to find news articles about the latest developments in artificial intelligence.
Please show me the results from the past week and make sure they are safe for work.

Figure 7: The document on the example newsSearch tool and 10 different synthetic queries that are relevant to the
provided tool.

4719

C Multi-view Similarity Ranking Algorithm Implementations

In this section, we describe the multi-view similarity ranking algorithm (Sec. 3.3) implementations. As
each tool document is concatenated with a synthetic query to create m copies, we iterate each augmented
tool document and compute the average embedding on each copy of the same tool document. We iterate
each user intent from a user query and each tool document to compute the embedding similarity score
between the individual intent and tool document. Within each intent, we also compute the reversed ranking
order of the tools using the similarity score. To allow each intent to be considered during retrieval, we use
a tuple to represent the ranking score to include both the reversed ranking order and similarity score value:
we compare the reversed ranking order followed by the similarity score value if the reversed ranking order
is the same. We then group all the intents and retrieve the top k documents based on the ranking score.
The pseudo-code is available in Algorithm 2, with a detailed working example in Fig. 8.

Algorithm 2: Pseudo-code of Re-Invoke’s ranking method
Data: n extracted intents q1, q2, ..., qn from query Q, List of tool documents D with each

document d concatenated with m synthetic queries and each concatenated document is
denoted as d1, d2,..., dm, Text embedding model fenc

Result: a retrieval score to rank the documents given a user query
1 Function rank(q1...n, d1...m, fenc):
2 for d ∈ D do
3 Ed ← 1

m

∑m
i=1(fenc(di));

4 end
5 for i = 1, .., n do
6 for d ∈ D do
7 ŝ(qi, d)← fenc(qi) · Ed;
8 rank(qi, d)← ŝ(qi, d).rank(reversed = True, axis = 1);
9 r(qi, d)← (rank(qi, d), ŝ(qi, d));

10 end
11 end
12 r(Q,D)← maxi=1,2,...,nr(qi, D);
13 return r(Q,D)

Intent

Intent 1 0.40 0.90 0.85 0.15 0.05

Intent 2 0.80 0.75 0.10 0.70 0.30

Intent 3 0.50 0.55 0.20 0.60 0.10

(5, 0.80) (5, 0.90) (4, 0.85) (5, 0.60) (2, 0.30)

Intent

Intent 1 (3, 0.40) (5, 0.90) (4, 0.85) (2, 0.15) (1, 0.05)

Intent 2 (5, 0.80) (4, 0.75) (1, 0.10) (3, 0.70) (2, 0.30)

Intent 3 (3, 0.50) (4, 0.55) (2, 0.60) (5, 0.60) (1, 0.10)

Similarity score Ranking score

Retrieval scoreRanked tools

(5, 0.90) (5, 0.80) (5, 0.60) (4, 0.85) (2, 0.30)

Figure 8: An example of the multi-view similarity ranking algorithm. From the intent-tool similarity score, we
define the ranking score as a tuple of the reversed ranking order (i.e., lowest similarity score will have a reversed
ranking order of 1) for each tool within the same intent and similarity score. We then find the maximum ranking
score across multiple intents for each tool document to compute the retrieval score. The retrieval score will be used
to retrieve and rank the top tools given the user query.

4720

D Data statistics

The statistics for the benchmark datasets of ToolBench I1, I2, I3 and ToolE single-tool and multi-tool are
shown in Table 5.

Dataset name Number of queries Number of tools Number of labeled pairs

ToolBench I1 87,419 10,439 424,169
ToolBench I2 84,815 13,142 220,832
ToolBench I3 25,251 1,605 72,324

ToolE single-tool 20,550 199 20,550
ToolE multi-tool 497 199 994

Table 5: Data statistics on ToolBench and ToolE benchmark datasets including number of queries, number of tool
documents and number of labeled pairs.

4721

E Retrieval performance evaluation

The complete retrieval metrics including nDCG@1, nDCG@5, recall@1 and recall@5 on all the bench-
mark datasets of ToolBench I1, I2, I3 and ToolE single-tool and multi-tool are shown in Table 6.

Dataset Retrieval Method LLM nDCG recall

@1 @5 @1 @5

ToolBench I1
Sparse

BM25 - 0.4108 0.3588 0.1281 0.3135
HyDE w/ BM25 text-bison@001 0.3449 0.3084 0.1073 0.2729

Re-Invoke w/ BM25 (ours) text-bison@001 0.6338 0.5519 0.2000 0.4767
Re-Invoke w/ BM25 (ours) gpt-3.5-turbo 0.6809 0.6013 0.2167 0.5225
Re-Invoke w/ BM25 (ours) Mistral-7B 0.6588 0.5768 0.2089 0.4993

Dense

Vertex AI - 0.6461 0.5962 0.2069 0.5278
HyDE w/ Vertex AI text-bison@001 0.4700 0.4336 0.1508 0.3892

Re-Invoke w/ Vertex AI (ours) text-bison@001 0.6947 0.6110 0.2231 0.5392
Re-Invoke w/ Vertex AI (ours) gpt-3.5-turbo 0.6779 0.6090 0.2209 0.5413
Re-Invoke w/ Vertex AI (ours) Mistral-7B 0.6847 0.6150 0.2207 0.5441

ToolBench I2
Sparse

BM25 - 0.2543 0.2168 0.1091 0.2201
HyDE w/ BM25 text-bison@001 0.1940 0.1627 0.0839 0.1641

Re-Invoke w/ BM25 (ours) text-bison@001 0.4722 0.3968 0.2007 0.3980
Re-Invoke w/ BM25 (ours) gpt-3.5-turbo 0.4982 0.4230 0.2117 0.4271
Re-Invoke w/ BM25 (ours) Mistral-7B 0.4691 0.3964 0.1991 0.3990

Dense

Vertex AI - 0.4451 0.388 0.1902 0.3976
HyDE w/ Vertex AI text-bison@001 0.2661 0.2221 0.1144 0.2235

Re-Invoke w/ Vertex AI (ours) text-bison@001 0.5456 0.5379 0.2315 0.5642
Re-Invoke w/ Vertex AI (ours) gpt-3.5-turbo 0.5021 0.5068 0.2134 0.5373
Re-Invoke w/ Vertex AI (ours) Mistral-7B 0.5133 0.5128 0.2174 0.5426

ToolBench I3
Sparse

BM25 - 0.4075 0.3452 0.1601 0.3480
HyDE w/ BM25 text-bison@001 0.2965 0.2594 0.1162 0.2655

Re-Invoke w/ BM25 (ours) text-bison@001 0.5768 0.4990 0.2253 0.5052
Re-Invoke w/ BM25 (ours) gpt-3.5-turbo 0.5660 0.4959 0.2213 0.5052
Re-Invoke w/ BM25 (ours) Mistral-7B 0.5432 0.4770 0.2124 0.4868

Dense

Vertex AI - 0.5165 0.4633 0.2029 0.4793
HyDE w/ Vertex AI text-bison@001 0.3475 0.2996 0.1376 0.3048

Re-Invoke w/ Vertex AI (ours) text-bison@001 0.5965 0.5955 0.2327 0.6242
Re-Invoke w/ Vertex AI (ours) gpt-3.5-turbo 0.5764 0.5719 0.2248 0.6016
Re-Invoke w/ Vertex AI (ours) Mistral-7B 0.5833 0.5771 0.2271 0.6047

ToolE single-tool
Sparse

BM25 - 0.2716 0.3732 0.2716 0.4618
HyDE w/ BM25 text-bison@001 0.3121 0.3770 0.3121 0.4337

Re-Invoke w/ BM25 (ours) text-bison@001 0.4928 0.5971 0.4927 0.6866
Re-Invoke w/ BM25 (ours) gpt-3.5-turbo 0.5255 0.6300 0.5255 0.7193
Re-Invoke w/ BM25 (ours) Mistral-7B 0.5021 0.6134 0.5021 0.7093

Dense

Vertex AI - 0.5265 0.6522 0.5265 0.7574
HyDE w/ Vertex AI text-bison@001 0.5488 0.6558 0.5488 0.7448

Re-Invoke w/ Vertex AI (ours) text-bison@001 0.6716 0.7821 0.6715 0.8707
Re-Invoke w/ Vertex AI (ours) gpt-3.5-turbo 0.6551 0.7705 0.6551 0.8635
Re-Invoke w/ Vertex AI (ours) Mistral-7B 0.6600 0.7770 0.6600 0.8714

ToolE multi-tool
Sparse

BM25 - 0.1841 0.2627 0.0926 0.3350
HyDE w/ BM25 text-bison@001 0.2414 0.1954 0.1207 0.1942

Re-Invoke w/ BM25 (ours) text-bison@001 0.5392 0.5637 0.2696 0.6408
Re-Invoke w/ BM25 (ours) gpt-3.5-turbo 0.5634 0.5883 0.2817 0.6610
Re-Invoke w/ BM25 (ours) Mistral-7B 0.4909 0.5373 0.2455 0.6157

Dense

Vertex AI - 0.4286 0.5296 0.2143 0.6258
HyDE w/ Vertex AI text-bison@001 0.5614 0.4910 0.2807 0.5050

Re-Invoke w/ Vertex AI (ours) text-bison@001 0.6660 0.7231 0.3330 0.8008
Re-Invoke w/ Vertex AI (ours) gpt-3.5-turbo 0.6499 0.6957 0.3249 0.7797
Re-Invoke w/ Vertex AI (ours) Mistral-7B 0.6076 0.6959 0.3038 0.7968

Table 6: Retrieval metrics (nDCG@1, nDCG@5, recall@1 and recall@5) on ToolBench I1, I2, I3 and ToolE
single-tool and multi-tool datasets with different approaches including baselines and Re-Invoke using BM25 and
Vertex AI text embedding. We observe the similar tool retrieval performance trend with different retrieval metrics.
The highest metric is marked in bold.

4722

F Case Study on Retrieved Tools

In this section, we showcase that tool retrieval can benefit from Re-Invoke using the ToolE dataset as
demonstration examples. A few user queries are cherrypicked from the ToolE single-tool and multi-tool
datasets that the baseline Vertex AI retriever retrieved the wrong tools while the Re-Invoke recommended
the relevant tools. We investigate query generator and intent extractor components separately.

Table 7 shows the example queries that the correct tools are retrieved with the query generator compo-
nent. It can be clearly seen that Re-Invoke’s query generator component can better distinguish among
similar tools to determine which tool is more relevant to user’s request. For example, when the user is
asking for the weather forecast for a location, the Vertex AI baseline retriever retrieves the very specific
airqualityforeast tool while Re-Invoke retrieves the correct WeatherTool tool, which is more tailed
to answer user’s queries.

Table 8 lists the correct tools retrieved with the intent extractor component. Similarly, Re-Invoke’s
intent extractor effectively understands the user intents to recommend the most relevant tools to user’s
specific request. For example, when the user is asking for recommendations on online courses on machine
learning and needs the access to relevant PDFs or URLs, Re-Invoke’s intent extractor identifies two intents
“recommend a course on machine learning” and “have access to relevant PDFs or URLs for further reading”
and successfully retrieves the correct tools CourseTool and PDF&URLTool from each intent. However, the
baseline retrieval method retrieves CourseTool and search tools instead.

We have also observed that Re-Invoke can still lead to wrong retrievals, especially when the tools are
very similar, e.g., HousePurchasingTool and HouseRentingToo, FinanceTool and CompanyInfoTool.
Please see the examples in Table 9. When the user is explicitly looking to buy a condominium in the
query, Re-Invoke retrieves the wrong HouseRentingTool. We believe those errors can be reduced by
designing a more sophisticated approach to generate more explicit synthetic queries that can be used to
distinguish among confusing tool documents.

4723

User query Are there any strategy games, specifically turn-based and real-time strategy games, avail-
able for Nintendo Switch that offer a variety of gameplay options and customizable
gameplay mechanics?

Baseline retrievals {"name": "Chess", "description": "Unleash your inner chess master with this interactive
chess experience! You can play against a novice or a grandmas-ter!"}

Re-Invoke retrievals { "name": "GameTool", "description":"Get game-related information and recommend
games."}

User query What are some popular attractions in London that I shouldn’t miss? I’m specifically
interested in historical landmarks, famous museums, and iconic landmarks that are unique
to the city.

Baseline retrievals {"name":"themeparkhipster", "description": "Find theme park waiting times around the
world."}

Re-Invoke retrievals { "name": "TripAdviceTool", "description": "A comprehensive travel assistant that makes
travel planning more vivid and practical. It offers tourism activities, accommodation and
attraction recommendations, aiming to provide users with a more enjoyable and enriching
travel experience through technology."}

User query Can you help me find research papers on a specific topic?

Baseline retrievals {"name": "ResearchHelper", "description": "Tool that offers additional functions beyond
searching academic papers, such as generating mind maps, answering user questions and
storing them in specific formats."}

Re-Invoke retrievals { "name": "ResearchFinder", "description": "Tool for searching academic papers."}

User query Could you please provide me with the highly detailed weather forecast for Tokyo, the
capital city of Japan, specifically for the upcoming four days?

Baseline retrievals {"name": "airqualityforeast", "description": "Planning something outdoors? Get the 2-day
air quality forecast for any US zip code."}

Re-Invoke retrievals { "name": "WeatherTool", "description": "Provide you with the latest weather informa-
tion."}

User query Could you please provide detailed information about the deployed smart contract of a
specific ERC20 token on the Ethereum blockchain, including its address, source code,
contract functions, and any associated events or transactions?

Baseline retrievals {"name": "magi_codex", "description": "Ask about Magic: The Gathering cards, rules and
interactions."}

Re-Invoke retrievals {"name": "FinanceTool", "description": "Stay informed with the latest financial updates,
real-time insights, and analysis on a wide range of options, stocks, cryptocurrencies, and
more."}

User query What questions can I ask about this YouTube video?

Baseline retrievals {"name": "video_highlight", "description": "Explore, research, and interact with YouTube
videos and personal videos."}

Re-Invoke retrievals {"name": "VideoSummarizeTool", "description": "Generate summaries from YouTube
video links, offer question-answering capabilities, analyze and interpret the content of
YouTube videos, and support interactions with online video platforms such as YouTube
and Daily Motion."}

User query Despite submitting my resume to numerous companies and job openings, I have not
received any responses or feedback regarding my application.

Baseline retrievals {"name": "JobTool", "description": "Your Global Career Hub! Find diverse job opportuni-
ties, expert interview tips, and resume optimization guidance. Empowering job seekers
worldwide on their path to success."}

Re-Invoke retrievals {"name": "ResumeTool", "description": "Quickly create resumes and receive feedback on
your resume."}

Table 7: A list of cherry-picked example queries from the ToolE single-tool dataset, including top 1 tool retrieved
by the baseline and Re-Invoke’s query generator using the Vertex text embedding API. Re-Invoke’s query generator
retrieves the correct tools (in green) while the baseline retrieves the wrong tools (in red).

4724

User query What are some popular investment options with good returns, and can you recommend a
playlist to relax while I research them?

Baseline retrievals {"name": "FinanceTool", "description": "Stay informed with the latest financial updates,
real-time insights, and analysis on a wide range of options, stocks, cryptocurrencies, and
more."}
{"name": "portfoliopilot", "description": "Your AI investing guide: portfolio assessment,
recommendations, answers to all finance questions."}

Re-Invoke retrievals {"name": "FinanceTool", "description": "Stay informed with the latest financial updates,
real-time insights, and analysis on a wide range of options, stocks, cryptocurrencies, and
more."}
{"name": "MusicTool", "description": "Create music playlists, search for music, and check
out the latest music trends."}

User query Could you provide me with news articles on renewable energy sources and any research
papers exploring their effectiveness??

Baseline retrievals {"name": "ResearchHelper", "description": "Tool that offers additional functions beyond
searching academic papers, such as generating mind maps, answering user questions and
storing them in specific formats."}
{"name": "ResearchFinder", "description": "Tool for searching academic papers."}

Re-Invoke retrievals {"name": "ResearchHelper", "description": "Tool that offers additional functions beyond
searching academic papers, such as generating mind maps, answering user questions and
storing them in specific formats."}
{"name": "NewsTool", "description": "Stay connected to global events with our up-to-date
news around the world."}

User query Can you recommend me a course on machine learning? I want to learn more about the
topic, and also have access to relevant PDFs or URLs for further reading.

Baseline retrievals {"name": "CourseTool", "description": "Unlock a world of knowledge and growth with
our comprehensive learning platform, offering a diverse range of courses from renowned
providers like Coursera and Upskillr, personalized language learning, professional team
information lookup, open course schedule discovery, and top-tier university content."}
{"name": "search", "description": "Level up your design skills quickly with a wide range
of design courses, interactive workshops and AI-guided mentorship."}

Re-Invoke retrievals {"name": "PDF&URLTool", "description": "Interact with any PDF files, provide page
references for fact-checking, support chatting via Google Drive links to AI-driven PDF
summaries and analysis; engage in interactive conversations with websites, access links
on the internet to fetch required information, including generating articles and intelligent
assistance for interactions with source code."}
{"name": "CourseTool", "description": "Unlock a world of knowledge and growth with
our comprehensive learning platform, offering a diverse range of courses from renowned
providers like Coursera and Upskillr, personalized language learning, professional team
information lookup, open course schedule discovery, and top-tier university content."}

User query Can you recommend any online courses for learning about natural language processing
and a GitHub repository with relevant code examples?

Baseline retrievals {"name": "CourseTool", "description": "Unlock a world of knowledge and growth with
our comprehensive learning platform, offering a diverse range of courses from renowned
providers like Coursera and Upskillr, personalized language learning, professional team
information lookup, open course schedule discovery, and top-tier university content."}
{"name": "AI2sql", "description": "Converts a natural language text into an SQL query."}

Re-Invoke retrievals {"name": "RepoTool", "description": "Discover GitHub projects tailored to your needs,
explore their structures with insightful summaries, and get quick coding solutions with
curated snippets. Elevate your coding journey with RepoTool, your go-to companion for
GitHub project exploration and code mastery."}
{"name": "CourseTool", "description": "Unlock a world of knowledge and growth with
our comprehensive learning platform, offering a diverse range of courses from renowned
providers like Coursera and Upskillr, personalized language learning, professional team
information lookup, open course schedule discovery, and top-tier university content."}

Table 8: A list of cherry-picked example queries from the ToolE multi-tool dataset, including 2 tools retrieved by
the baseline and Re-Invoke’s intent extractor component using the Vertex text embedding API. Re-Invoke’s intent
extractor identifies the intents (in green and blue) and retrieves the correct tools (in green and blue) while the
baseline retrieves the wrong tools (in red). 4725

User query I’m working on a project about renewable energy sources. Can you help me find scientific
publications related to this topic and generate bibtex bibliographies for them?

Baseline retrievals {"name": "ResearchHelper", "description": "Tool that offers additional functions beyond
searching academic papers, such as generating mind maps, answering user questions and
storing them in specific formats."}

Re-Invoke retrievals { "name": "ResearchFinder", "description": "Tool for searching academic papers."}

User query I’m a potential buyer looking for a condominium in the city of Miami. I am specifically
interested in properties that have a minimum of two bathrooms.

Baseline retrievals {"name": "HousePurchasingTool", "description": "Tool that provide all sorts of informa-
tion about house purchasing"}

Re-Invoke retrievals { "name": "HouseRentingTool", "description": "Tool that provide all sorts of information
about house renting"}

User query Can you provide me with a list of restaurants in Japan that I can reserve a table at?

Baseline retrievals {"name": "RestaurantBookingTool", "description": "Tool for booking restaurant"}

Re-Invoke retrievals { "name": "TripAdviceTool", "description": "A comprehensive travel assistantn that makes
travel planning more vivid and practical. It offers tourism activities, accommodation and
attraction recommendations, aiming to provide users with a more enjoyable and enriching
travel experience through technology." }

User query I’m looking for a luxurious hotel in Bali that offers stunning beach views, as I am planning
a romantic getaway.

Baseline retrievals {"name": "TripTool", "description": "Offer discounted hotel and accommodation bookings,
along with personalized hotel and product searches, travel planning, image editing, and
more, helping users easily plan their trips and find accommodation and transportation
options."}

Re-Invoke retrievals { "name": "TripAdviceTool", "description": "A comprehensive travel assistantn that makes
travel planning more vivid and practical. It offers tourism activities, accommodation and
attraction recommendations, aiming to provide users with a more enjoyable and enriching
travel experience through technology."}

User query Users would like to know the exact percentage of the dividend yield for Coca-Cola stock
based on its current market price and dividend payouts.

Baseline retrievals {"name": "FinanceTool", "description": "Stay informed with the latest financial updates,
real-time insights, and analysis on a wide range of options, stocks, cryptocurrencies, and
more."}

Re-Invoke retrievals {"name": "CompanyInfoTool", "description": "Obtain relevant information about global
companies from databases or knowledge graphs."}

User query I have a presentation scheduled in the near future, and I am seeking assistance in enhancing
its impact. Specifically, I would greatly appreciate it if you could utilize your skills to
paraphrase and rephrase significant elements extracted from my research article, thereby
transforming them into highly captivating and attention-grabbing points.

Baseline retrievals {"name": "SummarizeAnything_pr", "description": "Summarize YouTube videos, web
pages, and PDF documents by providing a link. This is a free preview."}

Re-Invoke retrievals {"name": "PolishTool", "description": "Elevate your content with our AI-powered tool,
which utilizes advanced rewriting techniques to create more human-like expressions and
foster creative inspiration."}

Table 9: A list of cherrypicked example queries from the ToolE single-tool dataset, including top 1 tool retrieved
by the baseline and Re-Invoke using the Vertex text embedding API. Baseline retrieves the correct tool (in green),
while Re-Invoke retrieves the wrong tool (in red).

4726

