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Abstract

Machine unlearning refers to methods for
deleting information about specific training in-
stances from a trained machine learning model.
This enables models to delete user information
and comply with privacy regulations. While
retraining the model from scratch on the train-
ing set excluding the instances to be “forgotten”
would result in a desired unlearned model, ow-
ing to the size of datasets and models, it is
infeasible. Hence, unlearning algorithms have
been developed, where the goal is to obtain
an unlearned model that behaves as closely as
possible to the retrained model. Consequently,
evaluating an unlearning method involves - (i)
randomly selecting a forget set (i.e., the train-
ing instances to be unlearned), (ii) obtaining
an unlearned and a retrained model, and (iii)
comparing the performance of the unlearned
and the retrained model on the test and forget
set. However, when the forget set is randomly
selected, the unlearned model is almost often
similar to the original (i.e., prior to unlearning)
model. Hence, it is unclear if the model did re-
ally unlearn or simply copied the weights from
the original model. For a more robust eval-
uation, we instead propose to consider train-
ing instances with significant influence on the
trained model. When such influential instances
are considered in the forget set, we observe that
the unlearned model deviates significantly from
the retrained model. Such deviations are also
observed when the size of the forget set is in-
creased. Lastly, choice of dataset for evaluation
could also lead to misleading interpretation of
results.

1 Introduction

Datasets that are used to train natural language pro-
cessing models are often very large and may con-
tain sensitive information, which raises concerns
regarding user privacy (Shaik et al., 2023). To ad-
dress these concerns, the “right to be forgotten” has
been introduced and realized through laws such as

the General Data Protection Regulation and the Cal-
ifornia Consumer Privacy Act. This right provides
users with the ability to request the removal of their
personal data from a machine learning pipeline.
While personal information can simply be deleted
from a database, this is much more complicated
for the training data in machine learning, as the
final trained model still encapsulates the user’s in-
formation, posing a potential risk for data leakage
(Nguyen et al., 2022). To fully comply with the law,
not only the data point but also its influence on the
trained model needs to be removed. This is realized
through machine unlearning techniques, which re-
move the influence of specific points in efficient
ways without compromising model performance.
Note that a trivial solution to the problem would
be to retrain the model from scratch. However, this
would be infeasible for larger models, which in-
volve long training times. Nevertheless, the goal
of the unlearning approaches is to achieve an un-
learned model that behaves as closely as possible
to a retrained model. While machine unlearning
research has gained traction in recent years, the
focus has been mainly on computer vision tasks
(Bourtoule et al., 2021; Guo et al., 2020; Mehta
et al., 2022). For models involving textual data,
only a few unlearning approaches (Kumar et al.,
2023; Wang et al., 2023) exist.

Typically, an unlearning method is evaluated on
its ability to replicate the performance of the re-
trained model on the test set and the forget set
(i.e., the set of points whose influence is to be re-
moved). However, the forget set is usually small
and randomly sampled from the training set. We
argue that a small, randomly selected forget set
lacks the necessary complexity to effectively eval-
uate the unlearning process and is not represen-
tative of the true performance of the unlearning
method. This is illustrated in Table 1, where we
perform a weight comparison for a state-of-the-
art unlearning algorithm (Wang et al., 2023). The
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original model is a DistilBERT (Sanh et al., 2019)
model fine-tuned to perform text classification on
the LEDGAR (Tuggener et al., 2020) dataset. For
unlearning evaluation, 100 instances are randomly
selected, and the unlearning algorithm is applied
to obtain the unlearned model. We compare the
weights of the unlearned model to those of the orig-
inal model and observe that they are almost identi-
cal. It is hence unclear if the forget set didn’t have
any influence on the model or if the unlearning was
unsuccessful.

Table 1: Weight comparisons with the original model
for KGA unlearning on the LEDGAR dataset. The
model architecture is DistilBERT, and 100 instances
are randomly selected as the forget set. We flattened
the parameters for each layer group and calculated the
cosine similarity. The unlearned model’s weights are
nearly identical to those of the original model.

Layers Retrained Unlearned
Model Model

Embedding 0.999904 1.000000
Transformer Block 1 0.998690 1.000000
Transformer Block 2 0.998532 1.000000
Transformer Block 3 0.998730 1.000000
Transformer Block 4 0.998912 1.000000
Transformer Block 5 0.998834 1.000000
Transformer Block 6 0.998725 1.000000
Classifier 0.001149 0.999999

For a more robust evaluation, we propose an al-
ternative evaluation method where the forget sets
consist of highly influential data points, which we
identify using influence functions (Koh and Liang,
2017). These influential data points act as represen-
tatives of sensitive user information, allowing us
to better gauge the algorithm’s success in unlearn-
ing tailored to practical scenarios. Additionally,
we also consider larger forget sets and different
datasets for a more robust evaluation.

Our results show that influential forget sets cre-
ated via influence functions provide a more chal-
lenging unlearning scenario for state-of-the-art ma-
chine unlearning methods, as they are unable to
match the behavior of the retrained model. More-
over, we observe that the impact of influential data
varies across different datasets, showing the im-
portance of dataset choice for machine unlearning
evaluation. Finally, we demonstrate that increasing
the size of the forget set improves the robustness
of the evaluation for both random and influential
forget data, which is demonstrated by the drop in
performance of the unlearned models for larger
forget sets even though the model retrained from

scratch maintains its performance.
To summarize the primary contributions of our

work -

• we point out the inability of existing evalua-
tion methods for unlearning in demonstrating
their true performance

• we propose an alternate evaluation approach
involving influential function for a more rep-
resentative evaluation of unlearning methods

• our findings provide recommendations for a
more robust evaluation

• to facilitate reproducibility, we make project-
related resources publicly available1.

2 Background and related work

In this section, we formally define the machine
unlearning problem and discuss existing machine
unlearning methods, focusing on their applications
in natural language processing. Additionally, we
describe the Knowledge Gap Alignment (KGA)
(Wang et al., 2023) in detail, which is the state-of-
the-art unlearning algorithm for natural language
processing and which we deploy for our experi-
ments.

2.1 The unlearning problem

Given a model AD trained on the training data D
and the forget dataset Df ⊂ D, an unlearning algo-
rithm is denoted as a function U(AD, D,Df ) that
outputs a new model A∗, which crucially maintains
the performance on Dr = D \Df (Nguyen et al.,
2022). The training instances containing the in-
formation that should be removed are commonly
referred to as the forget set, and unlearning aims
to remove their influence from the already trained
model. A simple approach to the machine unlearn-
ing problem can be realized by deleting the forget
data and then retraining the model on the remaining
data Dr. This ensures a complete removal of the
data in question while maintaining the performance
in the best way possible, as the model is optimized
during retraining. However, this approach is consid-
ered impractical for large-scale models due to the
significant time costs associated with it (Bourtoule
et al., 2021).

1https://github.com/Kartoffelpuffa/
Rethinking-MU-Evaluation
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2.2 Exact and approximate unlearning

According to Thudi et al. (2022), machine unlearn-
ing algorithms can further be categorized into two
categories: exact and approximate unlearning. Ex-
act unlearning methods ensure the complete re-
moval of the forget set, as they rely on retraining
from scratch, but they improve the efficiency of
this retraining process. A large portion of exact
unlearning methods are based on SISA (Bourtoule
et al., 2021), which divides the training data into
multiple disjoint shards. On each shard, a model
is trained in isolation, and for prediction, different
aggregation strategies are used. Upon receiving
an unlearning request, only the models trained on
instances from the forget set need to be retrained,
reducing the unlearning time. However, since SISA
requires a lot of storage for the additional models, it
is impractical for modern natural language process-
ing. Kumar et al. (2023) combat this by introducing
strategies to reduce the number of parameters that
need to be stored, enabling the use of the SISA
algorithm for natural language processing tasks.
It’s important to note that since aggregation is re-
quired, the approach cannot be used for generative
tasks. This limitation is addressed by approximate
unlearning techniques, which do not involve any
form of retraining. Instead, these methods modify
the parameters of the original model directly to
obtain an unlearned model that performs as close
as possible to a retrained model. Often, such al-
gorithms involve the calculation of influence of
instances in the forget set and reversing this influ-
ence during unlearning (Guo et al., 2020; Mehta
et al., 2022). As the calculation of these influence
scores can be costly, especially for larger models,
an alternative solution is proposed by Chundawat
et al. (2023), who perform unlearning based on the
assumption that the unlearned model should ob-
tain random performance regarding the forget set,
which is achieved through knowledge adaptation
from a random teacher model.

2.3 Knowledge Gap Alignment (KGA)

In the domain of natural language processing, ex-
ploring and developing unlearning techniques have
largely remained unexplored. However, the Knowl-
edge Gap Alignment (KGA) (Wang et al., 2023)
framework has shown superior results compared to
previous approximate unlearning techniques. The
key assumption behind KGA is that an unlearned
model should treat the forget data the same as previ-

ously unseen data, which is how a retrained model
would handle it. KGA achieves this via knowledge
gaps, defined as the distance between prediction
distributions from two models with the same archi-
tecture but different training data.

The algorithm operates on three datasets: the
original training data D, the forget data Df , and
an extra dataset Dn that is distinct from D but has
a similar distribution. During the unlearning, the
original model AD, trained on D, is transformed
into the unlearned model A∗. Directly aligning the
prediction distribution of A∗ on Df with the predic-
tion distribution of AD on Dn might be challenging
because Dn could contain unknown labels or fea-
tures. Instead, the knowledge gap between AD and
An on Dn is aligned with the knowledge gap be-
tween A∗ and Af on Df using Kullback-Leibler
divergence as follows:

La =
∑

(y,z)∈(Df ,Dn)

|KL[Pr(A∗)(y)||Pr(Af )(y)]

−KL[Pr(AD)(z)||Pr(An)(z)]|,
(1)

where Pr(A)(z) refers to the output distribution
of model A given input z. The loss is summed
over batches containing pairs of instances (y, z),
which are sampled from (Df , Dn). Meanwhile,
the knowledge gap between A∗ and AD on Dr is
minimized in order to maintain the performance on
the remaining data:

Lr =
∑

x∈Dr

KL[Pr(A∗)(x)||Pr(AD)(x)]. (2)

Both objectives are then optimized together as fol-
lows:

L = La + α · Lr. (3)

Due to its state-of-the-art performance on differ-
ent natural language processing tasks, we consider
KGA a representative approximate unlearning tech-
nique for our experiments.

3 Method

In this section, we discuss the challenges of the cur-
rent evaluation strategy and proceed to introduce
our approach involving influential forget datasets
based on influence functions (Koh and Liang,
2017).
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3.1 The Need for Robust Evaluation
For evaluation of machine unlearning techniques,
the unlearned model is compared to a retrained
model using a randomly created forget set. Follow-
ing this procedure, we perform evaluation of the
KGA method on the LEDGAR (Tuggener et al.,
2020) text classification task using a fine-tuned Dis-
tilBERT (Sanh et al., 2019) as the original model.
While the resulting F1 scores on the test and for-
get set are high (Table 2), we also notice that the
obtained unlearned model is very similar to the
original model with respect to its weights, as seen
in Table 1. This is further supported by a compar-
ison of the prediction distributions using Jensen-
Shannon divergence, as depicted in Table 3.

Table 2: Performance comparisons for KGA unlearning.
The model architecture is DistilBERT, and 100 instances
are randomly selected as the forget set. The unlearned
model obtains high performance on test and forget sets.

Model Test Forget

F1 Score (%) F1 Score (%)

Original 94.84 93.81
Retrained 94.79 93.27
Unlearned 94.88 94.69

Table 3: Output distribution comparisons for KGA un-
learning using Jensen-Shannon divergence (JSD). The
model architecture is DistilBERT, and 100 instances are
randomly selected as the forget set. The output distri-
butions of the original and unlearned models are very
similar.

Comparison Test Forget

JSD ↓ JSD ↓
Retrained vs Unlearned 0.0094 0.0235
Original vs Retrained 0.0094 0.0058
Original vs Unlearned 0.0005 0.0085

Therefore, even though the unlearned model is
able to match the performance of the retrained
model, the evaluation does not provide significant
insights, as the unlearning technique resulted in a
model with minimal changes. In order to provide
a more robust evaluation, we experiment with for-
get sets of different sizes and varying degrees of
influence.

3.2 Selecting Influential Forget Data
While changing the size of the forget set is straight-
forward, the meaning of influence needs to be fur-
ther specified. We consider an influential forget

set to contain instances which have a significant
influence on the original model and calculate these
instances using influence functions (Koh and Liang,
2017). The core idea behind them is to think of
the influence of a point z on a given model as how
the model’s parameters would change if z were re-
moved from the training data. As it is not feasible
to observe these parameter changes by retraining
the model for every point z, the authors instead
upweight z by a small amount in order to create
similar parameter changes. These changes can be
calculated and are defined as the influence of z on
the model parameters:

Iup,params(z) = −H−1
θ ∇θL(z, θ̂) (4)

Furthermore, the influence of z on a specific test
point ztest can be derived by application of the
chain rule, as the loss of ztest is a function of the
parameters:

Iup,loss(z, ztest) =
−∇θL(ztest, θ̂)

⊤H−1
θ ∇θL(z, θ̂) (5)

The calculations required for influence functions
involve the computation of the inverse Hessian of
the loss function H−1

θ , which is computationally
expensive and scales poorly with the number of
parameters. Instead of calculating and inverting
the Hessian, the authors also propose to calculate
a Hessian-vector product directly, which does not
require the full Hessian and is achievable in linear
time with respect to the number of parameters. The
inverse Hessian-vector product can then be esti-
mated through the Linear time Stochastic Second-
Order Algorithm (LiSSA) (Agarwal et al., 2017) in
a recursive manner for T steps.

An alternative method for calculating influence
was proposed by Pruthi et al. (2020), which in-
volves monitoring changes in test loss throughout
the training process. However, scaling this method
for large natural language processing models re-
quires the storage of multiple checkpoints, result-
ing in substantial memory demands that were im-
practical for our study.

3.3 Unlearning with Influential Forget Data

Before using the influential instances for unlearn-
ing evaluation, we need to verify the meaning of
the obtained influence scores, as the application of
influence functions to deep models yields different
results compared to the original motivation Bae
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et al. (2022). In order to determine the usefulness
of the influence scores, we look at their distribution,
where we expect to see varying levels of influence,
so that we can select the most influential instances
for unlearning evaluation. Additionally, we analyze
the training performance of the original model on
these influential points in comparison with random
points to further verify the selected points.

To form the different forget sets for unlearning
evaluation, we choose the top 1%, 2%, 5%, 10%,
15%, and 20% of the most influential points. Usu-
ally, in the existing literature, a fixed number of
only 100 instances is considered, which is often
less than 1% of the training data and might not
be sufficient, as indicated by the lack of weight
changes. While the higher percentages are less
likely to occur in real-world scenarios, they still
help us understand the implications of larger forget
sets in machine unlearning evaluation.

We proceed to perform unlearning for each for-
get set, utilizing the KGA algorithm, and compare
the results to retraining from scratch. Our experi-
ments are focused on text classification, where we
fine-tune DistilBERT on three different text classi-
fication datasets. Moreover, we modify the model
slightly by freezing the transformer layers and fo-
cusing solely on training and unlearning the fully
connected classifier layers (from now on referred to
as Frozen DistilBERT). Additionally, we compare
the influential method to a fully random forget set
for each percentage size and carry out each individ-
ual unlearning experiment three times to account
for stochasticity.

4 Experiments

In this section, we delve into the experimental setup
and results of our analysis on machine unlearning
evaluation.

4.1 Datasets

We conduct our experiment on three text classifi-
cation datasets: IMDB (Maas et al., 2011), SST2
(Socher et al., 2013) and TREC (Li and Roth, 2002).
The IMDB dataset consists of 50,000 movie re-
views associated with either a negative or a positive
sentiment and is the most used dataset in text-based
machine unlearning-related research, according to
Shaik et al. (2023). SST2 is another binary clas-
sification task based on movie reviews, including
9613 sentences. Being part of the GLUE (Wang
et al., 2018) benchmark, it is a widely used dataset

for evaluating text classification frameworks. The
TREC dataset deals with question classification,
with six different labels indicating the type of ques-
tion. As the average input length is only ten tokens,
it is considered an easy task for transformer-based
models by Karl and Scherp (2022) and is therefore
expected to provide the best results in an unlearn-
ing scenario. For each dataset, we set aside 100
instances from the training data for the extra dataset
An required for the KGA algorithm.

We selected the text classification task for our
experiments, as it was also used by the state-of-the-
art KGA algorithm for evaluation. Nonetheless,
our approach is easily extendable to various other
natural language processing tasks, as it only ne-
cessitates a differentiable loss function, which is
available for any such task.

4.2 Hyperparameter Choices
To train the original models, we employ the same
hyperparameters identical to the work of Wang et al.
(2023) across all datasets. We use a batch size of 16
during fine-tuning. For the Frozen DistilBERT we
use a learning rate of 3e-4 selected from the set of
[1e-3, 5e-4, 3e-4, 1e-4, 5e-5, 3e-5]. Due to the lack
of validation data for some datasets, we utilize the
training loss for validation and stop the fine-tuning
after 3, 3, and 6 epochs for IMDB, SST2, and
TREC, respectively. Additional hyperparameters
for the KGA unlearning algorithm are set according
to the original paper.

Table 4: Comparing the performance of the original
model between randomly sampled and influential forget
data for the SST2 dataset. Forget accuracies on influ-
ential data are significantly lower compared to random
sampling, but the gap becomes smaller for larger Df .

Df (%)

DistilBERT
Forget Acc. (%)

Frozen DistilBERT
Forget Acc. (%)

Random
Sampling

Influence
Functions

Random
Sampling

Influence
Functions

1 92.30 ± 2.19 10.10 75.83 ± 4.43 0.00
2 93.97 ± 1.07 22.50 83.10 ± 3.57 0.00
5 94.60 ± 0.35 52.30 83.90 ± 2.03 1.20
10 94.83 ± 0.70 74.60 83.83 ± 0.85 26.70
15 95.60 ± 0.89 82.80 85.10 ± 1.64 50.90
20 95.40 ± 0.20 87.00 85.67 ± 1.29 63.20

For the approximation of influence functions
with LiSSA (Agarwal et al., 2017), we choose the
number of repetitions as R = 1 for the fastest com-
putation. The recursion depth T is set to equal the
size of the training data |D|, as the recommenda-
tion of the original influence functions paper is to
have R ∗T ≈ |D|. Additionally, a damping param-
eter λ = 0.003 and a scaling factor σ = 10000 are
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Figure 1: Influence score distribution for the SST2 dataset. Scores near zero are predominant across both architec-
tures and the shapes indicate normal distributions, with a slight shift towards negative scores for the DistilBERT
model.

used for the calculations.

4.3 Influential Points

In order to verify the meaning of the influential
points, we take a look at the distribution of influ-
ence scores. We illustrate our results using the
SST2 dataset as a representative example. The
results corresponding to the other datasets are pro-
vided in the appendix. In Figure 1, we can see
that the main bulk of influential points is concen-
trated close to zero for the DistilBERT and Frozen
DistilBERT models. Although the absolute val-
ues themselves are not particularly meaningful, the
shapes indicate normal distributions, which verify
the validity of these scores.

We also compare the performance of the original
model between randomly sampled and influential
forget data in Table 4, again using the SST2 dataset
as a representative example. The accuracy on in-
fluential forget data is always lower than that on
randomly sampled forget data for all sizes of Df ,
showing that the influential points were harder to
classify during training. When the size of the for-
get set increases, the accuracy on the influential
data rises significantly. This complements the ob-
servations from the score distribution, as the larger
sets include so many points that some of them have
to be of lower influence. Overall, our influential
points have a plausible distribution and a measur-
able effect on the original model.

4.4 Increasing Forget Set Size

For unlearning evaluation, we compare the un-
learned model to a model retrained from scratch
regarding test and forget accuracies. We first in-
vestigate the effects of increasing the size of the

forget data while still selecting the points randomly.
Figure 2 illustrates representative results using the
SST2 dataset. We observe that the unlearned model
performs similarly to the retrained one for sizes
1-5% but achieves worse performance for sizes 10-
20% for both test and forget accuracies. The drop
in performance is more noticeable for the Distil-
BERT model, and it is also accompanied by high
standard deviations. Notably, the results for the
IMDB dataset differ, as the corresponding Distil-
BERT model matches the performance of the re-
trained model across all sizes. In summary, an
effect on the unlearning performance is only no-
ticeable for higher percentages, which might not
be applicable to real-world scenarios as deletion
requests would not be received in such a large bulk.
Nevertheless, such experiments allow for a more
robust evaluation of the unlearning methods.

4.5 Unlearning Influential Data

We repeat the previous experiment but use influen-
tial points in order to create the forget sets. The
results for the SST2 dataset are shown in Figure
3. Additional results on other datasets are pro-
vided in the appendix. Compared to the randomly
selected forget sets, the forget accuracies behave
vastly differently. In the Frozen DistilBERT ar-
chitecture, they are significantly higher for the un-
learned model than for the retrained model, while
this difference varies for the DistilBERT model.
Additionally, the forget accuracies are a lot lower
compared to the test accuracies, which was not the
case for the randomly selected data. These obser-
vations can also be made for IMDB and TREC,
but there are some exceptions, as the forget accura-
cies for DistilBERT on IMDB are constantly higher
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Figure 2: Comparison of retraining and unlearning with randomly sampled forget data Df for the SST2 dataset.
DistilBERT exhibits a significant performance drop for unlearning when 10− 20% of points are removed.

than the retrained ones, while the forget accuracies
for Frozen DistilBERT on TREC align with the
retrained ones.

For the test accuracies, a performance drop is
noticeable for the unlearned model for sizes 10-
20%. However, this only applies to the DistilBERT
model, while for the frozen variant, the accura-
cies of the unlearned model exceed those of the re-
trained model at larger sizes. There is no observed
performance drop for IMDB, while the unlearned
model’s accuracies being higher than the retrained
ones is not observed for TREC.

5 Discussion

In this section, we discuss the most important re-
sults from our experiments as well as their implica-
tions and our recommendations.

Calculation of Influence Scores In order to pro-
vide a more robust evaluation, we experiment with
larger forget datasets, which also include influen-
tial instances determined via influence functions.
The calculation of these influential points is com-
putationally expensive for larger models and thus
necessitates the use of approximations. We observe
that the resulting influence scores show plausible
distributions and result in forget datasets that sig-
nificantly differ from random ones when evaluated
by the original model. It would be intriguing to ex-

plore whether other approximation methods, such
as TracIn (Pruthi et al., 2020), yield similar results
and if the identified influential instances correspond
to meaningful data in real-world applications. How-
ever, we were unable to deploy TracIn due to its
high memory requirements.

Larger Forget Sets Using the influential points
for unlearning evaluation leads to unlearned models
that deviate significantly from the retrained ones,
especially on the forget accuracies. On the test ac-
curacies, the unlearned model diverges from the re-
trained model for sizes 10-20%. However, the same
observation can be made for randomly selected for-
get data, showing that an increase in forget data
consistently leads to worse unlearning performance.
As the retrained model is able to maintain its per-
formance even for larger forget data, this points to
an area of improvement for unlearning algorithms.

Forget Accuracies on Influential Data If we
consider the forget accuracies, the impact of using
influential points for unlearning is more significant.
Even for small forget datasets that are more relevant
for real-world problems, we can see the difference
between unlearned and retrained models. More-
over, even the retrained models exhibit lower forget
accuracies compared with the test accuracies. This
is expected, as the influential points are supposed
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Figure 3: Comparison of retraining and unlearning with influential forget data Df for the SST2 dataset. Test
accuracies decrease for removal numbers of 10− 20% in the DistilBERT architecture. Observations for the forget
accuracies diverge when comparing model architectures.

to be harder to unlearn. It is important to consider
such a scenario for unlearning evaluation, as an un-
learning task will not always feature points that can
be easily forgotten. That the forget accuracies of
the unlearned model do not align with the retrained
model indicate that current algorithms are not able
to effectively tackle this challenge. Moreover, this
issue can not be seen when using randomly selected
points, which underlines the effectiveness of the
influential approach.

Choice of Dataset We have conducted our exper-
iments on three text classification datasets. While
the results for randomly selected data generalize
well onto these datasets, we observe some dif-
ferences when working with influential instances.
This shows that we need to carefully consider the
choice of dataset for machine unlearning evalua-
tion, as different datasets can yield varying results
in our influential evaluation method. Moreover,
when choosing the LEDGAR dataset used in the
KGA paper, we observe that removing up to 90%
of the training data does not affect the performance
of the retrained model significantly. This indicates
that most of the data points have no significant in-
fluence on the model and removing them would
not lead to any change in the model parameters.
Consequently, such datasets might not be suitable

for unlearning evaluation if they are not sensitive
enough to the removal of instances. Further ex-
ploration of datasets is warranted to identify ones
that are most relevant in an unlearning evaluation
scenario.

Recommendations: Our findings lead to the fol-
lowing recommendations regarding the evaluation
of unlearning methods:
Random and influential points. Random points
provide insights into the general capabilities of an
unlearning algorithm, while influential instances
present more challenging scenarios that better re-
flect real-world applications. A goal of machine
unlearning research is the creation of an evalua-
tion benchmark (Nguyen et al., 2022) and we argue
that both types of data should be included in un-
learning to identify the strengths and weaknesses
of different methods, which would then lead to the
development of more robust and effective unlearn-
ing techniques.
Selecting datasets. We suggest using the distri-
bution of influence scores to find useful datasets
for unlearning evaluation and to create the forget
sets appropriately. If a dataset contains only a few
influential points or if all points have similar influ-
ence levels, the dataset is not suitable for evaluation
based on influence.
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Finding influential points. We note that incorpo-
rating influential points into the evaluation process
introduces new challenges that must be addressed
by future research. Calculating influence needs
to be scalable to larger models and applicable to
natural language processing tasks. Additionally,
there is a need for the development of novel un-
learning techniques capable of effectively handling
such influential points.

6 Conclusion

In this paper, we introduce novel techniques in or-
der to improve the robustness of machine unlearn-
ing evaluation for natural language processing. Our
approach of using influential forget data created via
influence functions provides a challenging unlearn-
ing scenario for state-of-the-art machine unlearn-
ing concerning the forget accuracies. Moreover, we
show that increasing the size of the forget dataset
also enables a more robust evaluation. Our results
further demonstrate that for evaluating these un-
learning methods, one needs to carefully consider
the evaluation dataset. Otherwise, it might lead
to incorrect interpretation of results. Our results
advocate for development of unlearning evaluation
scenarios resembling real-world challenges.

Limitations

Additional models. In this study, we mainly con-
sidered two variants of the DistilBERT model for
our analysis. For a more robust evaluation, one
could consider additional models. However, com-
puting influence function scores for training data
points is computationally very expensive, which
limits its deployment to larger datasets or wider
range of models. Nevertheless, we believe the ob-
servations and the key findings to hold for other
datasets and models.
Additional tasks. For our analysis, we focused
on the task of text classification. Our proposed
method could also be extended to other tasks, in-
cluding natural language generation. However, this
would require adapting influence functions to the
generative modeling task.
Identifying influential points. We deployed influ-
ence function to identify influential training points.
However, as alluded to previously, it is compu-
tationally expensive and does not scale to large
datasets. We also deployed TracIn (Pruthi et al.,
2020) as an alternative method for identifying in-
fluential points. However, we also found this to be

extremely resource-intensive and unable to scale to
large models. Other methods for finding influential
data points could be considered in the future.
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A Appendix

A.1 Additional results
Additional results on IMDB and TREC datasets are
provided here.

Table 5: Comparing the performance of the original
model between randomly sampled and influential forget
data for the IMDB dataset. Forget accuracies on influ-
ential data are significantly lower compared to random
sampling, but the gap becomes smaller for larger Df .

Df (%)

DistilBERT
Forget Acc. (%)

Frozen DistilBERT
Forget Acc. (%)

Random
Sampling

Influence
Functions

Random
Sampling

Influence
Functions

1 95.73 ± 0.83 32.80 86.13 ± 1.29 0.00
2 96.13 ± 0.46 42.60 88.20 ± 1.40 0.00
5 96.10 ± 0.44 63.80 86.13 ± 0.87 0.20
10 96.27 ± 0.31 80.70 87.83 ± 0.76 30.40
15 96.10 ± 0.35 87.00 87.00 ± 0.26 53.10
20 96.27 ± 0.12 90.20 86.70 ± 0.72 64.80

4736

https://doi.org/10.18653/V1/2023.FINDINGS-IJCNLP.25
https://doi.org/10.18653/V1/2023.FINDINGS-IJCNLP.25
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1109/CVPR52688.2022.01017
https://doi.org/10.1109/CVPR52688.2022.01017
https://doi.org/10.48550/ARXIV.2209.02299
https://doi.org/10.48550/ARXIV.2209.02299
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.48550/ARXIV.2305.06360
https://doi.org/10.48550/ARXIV.2305.06360
https://doi.org/10.48550/ARXIV.2305.06360
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.usenix.org/conference/usenixsecurity22/presentation/thudi
https://www.usenix.org/conference/usenixsecurity22/presentation/thudi
https://aclanthology.org/2020.lrec-1.155/
https://aclanthology.org/2020.lrec-1.155/
https://aclanthology.org/2020.lrec-1.155/
https://doi.org/10.18653/V1/W18-5446
https://doi.org/10.18653/V1/W18-5446
https://doi.org/10.18653/V1/2023.ACL-LONG.740
https://doi.org/10.18653/V1/2023.ACL-LONG.740
https://doi.org/10.18653/V1/2023.ACL-LONG.740


−6 −4 −2 0 2 4

Influence Score ×10−6

0

2000

4000

6000

F
re

q
u
en

cy

(a) DistilBERT

−2 −1 0 1 2

Influence Score ×10−6

0

2000

4000

6000

F
re

q
u
en

cy

(b) Frozen DistilBERT

Figure 4: Influence score distribution for the IMDB dataset. Most of the scores are located around zero for both
architectures. The scores appear to be distributed normally.
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Figure 5: Influence score distribution for the TREC dataset. Most of the scores lie around zero for both architectures.
The scores seem to be distributed normally, while the pattern is a little disturbed for DistilBERT.

Table 6: Comparing the performance of the original
model between randomly sampled and influential forget
data for the TREC dataset. Forget accuracies on influ-
ential data are significantly lower compared to random
sampling, but the gap becomes smaller for larger Df .

Df (%)

DistilBERT
Forget Acc. (%)

Frozen DistilBERT
Forget Acc. (%)

Random
Sampling

Influence
Functions

Random
Sampling

Influence
Functions

1 96.87 ± 2.14 31.50 76.53 ± 1.10 1.90
2 96.93 ± 1.10 38.50 84.73 ± 2.79 7.97
5 96.70 ± 1.10 65.80 78.70 ± 3.52 28.70
10 96.33 ± 0.76 80.00 80.50 ± 1.08 45.90
15 96.57 ± 0.12 86.70 81.00 ± 1.23 55.07
20 96.77 ± 0.50 89.90 81.33 ± 1.12 60.70
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Figure 6: Comparison of retraining and unlearning with randomly sampled forget data Df for the IMDB dataset.
Unlearning mostly achieves comparable performance compared to retraining, especially for DistilBERT.
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Figure 7: Comparison of retraining and unlearning with randomly sampled forget data Df for the TREC dataset.
DistilBERT and Frozen DistilBERT exhibit a performance drop for unlearning when 10 − 20% of points are
removed.
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Figure 8: Comparison of retraining and unlearning with influential forget data Df for the IMDB dataset. Unlearning
mostly achieves comparable test accuracies compared to retraining. However, the forget accuracies of the unlearned
models are significantly higher than those of the retrained models.
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Figure 9: Comparison of retraining and unlearning with influential forget data Df for the TREC dataset. The test
accuracies of unlearned DistilBERT models dropped for removal percentages 10− 20%. The unlearned Frozen
DistilBERT models perform close to the retrained ones on the forget data.
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