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Abstract
Large Language Models (LLMs) can become
outdated over time as they may lack updated
world knowledge, leading to factual knowl-
edge errors and gaps. Knowledge Editing (KE)
aims to overcome this challenge using weight
updates that do not require expensive retrain-
ing. We propose treating KE as an LLM align-
ment problem. Toward this goal, we intro-
duce Knowledge Direct Preference Optimiza-
tion (KDPO), a variation of the Direct Prefer-
ence Optimization (DPO) that is more effective
for knowledge modifications. Our method is
based on an online approach that continually
updates the knowledge stored in the model. We
use the current knowledge as a negative sample
and the new knowledge we want to introduce
as a positive sample in a process called DPO.
We also use teacher-forcing for negative sample
generation and optimize using the positive sam-
ple, which helps maintain localized changes.
We tested our KE method on various datasets
and models, comparing it to several cutting-
edge methods, with 100 and 500 sequential
edits. Additionally, we conducted an ablation
study comparing our method to the standard
DPO approach. Our experimental results show
that our modified DPO method allows for more
refined KE, achieving similar or better perfor-
mance compared to previous methods.

1 Introduction

Large language models (LLMs) have achieved re-
markable success in various machine learning tasks
and are commonly used as foundational models in
multiple applications. Training such models (Tou-
vron et al., 2023a,b; Bai et al., 2023; Jiang et al.,
2023; Radford et al., 2019) requires substantial
computational resources and data. A major chal-
lenge with trained LLMs is their potential to gen-
erate inaccurate information in response to user
queries. This can occur due to flawed training data
or the continuously evolving nature of knowledge
(Zhang et al., 2023b; Chen and Shu, 2023).

The increasing popularity of LLMs has high-
lighted the need for methods to correct factual
errors or inaccuracies represented by the models
(Augenstein et al., 2023). Given the high cost of
training LLMs from scratch, recent research has
proposed methods for modifying pre-trained LLMs
without requiring complete retraining (Yao et al.,
2023; Wang et al., 2023). This process, known
as "Knowledge Editing" (KE), aims to modify
the behavior of pre-trained LLMs to update spe-
cific facts without adversely affecting other pre-
existing knowledge irrelevant to the requested up-
dates (Peng et al., 2023).

KE presents significant challenges, such as iden-
tifying and correcting factual errors within multi-
billion parameter LLMs without compromising
their overall pre-trained performance. One poten-
tial approach for updating an LLM involves naive
fine-tuning (Wei et al., 2021), where the parame-
ters of a pre-trained LLM are directly optimized
to incorporate new knowledge based on additional
data (Peng et al., 2023). However, fine-tuning and
even some parameter-efficient fine-tuning (PEFT)
methods have drawbacks, including intensive com-
putational requirements, overfitting to the new data,
and potential loss of valuable existing knowledge
(Wang et al., 2023).

In KE, each factual update, such as changing
the pre-trained response "France" to "Argentina"
for the question "Who won the FIFA World Cup
in Qatar?", is considered a single edit. While KE
shares similarities with fine-tuning, it differs by
focusing on Locality, Fluency, and Portability met-
rics, as well as edit accuracy (Wang et al., 2023).
Those metrics ensure the model is updated with
the new knowledge without degrading the general
capabilities of the model. More details about each
metric will be provided in Section 3.

We propose a variation of Direct Preference Op-
timization (DPO) (Rafailov et al., 2024) for KE.
This method aims to reduce the likelihood of the
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model retaining unwanted knowledge while simul-
taneously increasing the likelihood of incorporating
new desired knowledge. Unlike most other meth-
ods, our proposed approach does not necessitate
additional parameters, external memory, pretrain-
ing, or hypernetwork training. Our contributions
are summarized as follows: (1) We propose view-
ing KE as an LLM alignment problem. (2) We
introduce Knowledge Direct Preference Optimiza-
tion (KDPO), a variation of DPO that is optimized
for incremental knowledge modifications. (3) We
conduct extensive empirical experiments on few
sequential configurations, across four popular KE
datasets, and three popular language evaluation
benchmarks, involving multiple LLM architectures
demonstrating the advantage of our method. (4)
We adapt popular datasets for KE to facilitate se-
quential editing.

2 Related Work

2.1 Large Model Fine Tuning

Fine-tuning a large model adapts a pre-trained
language model for specific tasks, enhancing its
performance on particular datasets. This process
aligns the general capabilities of the model with
specialized application needs, ensuring more accu-
rate and relevant outputs. However, naive fine-
tuning can require significant computational re-
sources and may deviate substantially from the
original model. Zhang et al. (2023a) proposed
Adaptive Budget Allocation for Parameter Efficient
Fine-Tuning (AdaLoRA), which allocates computa-
tional resources based on the importance of weight
matrices.

Christiano et al. (2017) introduced reinforcement
learning from human feedback (RLHF), creating a
reward model from human preferences and using
reinforcement learning to optimize language model
responses. Although effective, RLHF is computa-
tionally expensive as it requires training multiple
models.

DPO (Rafailov et al., 2024) addresses these chal-
lenges by eliminating the need for an additional
reward model. DPO uses preference data directly,
fine-tuning the language model with token probabil-
ities for chosen and rejected answers, simplifying
the process and reducing computational demands.

2.2 Knowledge Editing

Knowledge editing in LLMs involves updating
or modifying information without retraining the

model from scratch. It aims to correct inaccuracies,
incorporate new facts, or remove outdated informa-
tion. This process requires precise adjustments to
ensure consistency and reliability across various
contexts and queries.

Mitchell et al. (2021) introduced Model Editor
Networks with Gradient Decomposition (MEND)
for quick editing of pre-trained LLMs. MEND
uses auxiliary models to convert fine-tuning gradi-
ents into efficient weight updates through low-rank
gradient decomposition.

Meng et al. (2022a) explored factual storage in
GPT models, proposing Rank-One Model Editing
(ROME) for precise fact editing with a rank-one
MLP update. Later, Meng et al. (2022b) developed
Mass-Editing Memory in a Transformer (MEMIT),
which scales edits to thousands while preserving
model performance.

In a recent study, (Zhang et al., 2024) conducted
a survey and presented a new approach. They
compared their approach to FT-L, which involves
fine-tuning a single layer in a feed-forward net-
work (FFN) based on the ROME algorithm (Meng
et al., 2022a). They also introduced FT-M to en-
hance FT-L, aligning with the fine-tuning objec-
tive. FT-M trains the same FFN layer as FT-L
using cross-entropy loss on the target answer while
masking the original text, leading to state-of-the-
art performance on various datasets. In contrast to
previous studies that focused on updating the LLM
weights, (Zheng et al., 2023) proposed In-Context
Learning for LLM Knowledge Editing (IKE). They
demonstrated competitive results without editing
any model weights, which could be particularly
valuable in scenarios where model access is re-
stricted.

3 Method

3.1 Preliminary and Notations

Let D = {ci, yiw, yil}Ni=1 be a dataset composed of
N triplets. Each triplet consists of a prompt c, a
positive completion yw, and a negative completion
yl. Assume that the vocabulary length of the LLM
πθ is V . This means that πθ(c) corresponds to a
vector of length V and represents the Softmax out-
put of the final layer of the LLM. yl and yw can
be decomposed into individual token representa-
tions: yw = (tw1 , . . . , t

w
Kw

), and yl = (tl1, . . . , t
l
Kl
),

where Kw,Kl are the sequence lengths.
We define, πθ(yl|c) as the probability of seeing

some completion yl given a prompt c. This can be
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Figure 1: Illustration of the two generation methods described in this paper. Words in red are generated based on the
previous sequence. In our teacher forcing method, we use the ground truth (in blue) instead of the prediction. This
generation will show gains at the optimization step.

decomposed using the chain rule into a product of
probabilities:

πθ(yl|c) = πθ(t
l
k|c)

Kl∏

k=2

πθ(t
l
k|c, . . . , tlk−1),

where Kl > 2, in cases Kl = 1 we get πθ(tlk|c).
We will use c as cl and cw to clarify the conditioned
tokens better. Thus, πθ(yl|c) will be represented
as πθ(yl|cl). For the remainder of the paper, sim-
plified examples will be presented using words as
tokens.

3.2 Knowledge Editing as an Alignment
Problem

The primary objective of LLM alignment is to train
models that are safe, effective, ethical, and non-
toxic. LLM alignment is generally performed by
finetuning the model using the following objective:

max
πθ

Ec∼D,y∼πθ(y|c) [rϕ(c, y)]− βDKL [πθ∥πref] .

This objective aims to maximize the expected re-
ward rϕ(c, y), with rϕ being a reward model pa-
rameterized by ϕ. Based on user defined criterion,
the reward model evaluates the quality of the gen-
erated text y given the context c. In our case, we
would like rϕ to assign a high reward to the new
knowledge we would like to inject into the model.
This alignment objective will aid us in successfully
editing the model’s knowledge without deviating
from the original weights. DPO (Rafailov et al.,
2024) showed that it is possible to optimize the
same KL-constrained objective without explicitly

defining a reward function. Instead, the problem
is transformed as a maximum likelihood optimiza-
tion of the distribution πθ directly, by applying the
Bradley-Terry(Bradley and Terry, 1952) model to
the objective LDPO(πθ;πref ), defined as:

− E(x,yw,yl)∼D[log σ(β log
πθ(yw|c)
πref (yw|c)

−

β log
πθ(yl|c)
πref (yl|c)

)],

where σ is the Sigmoid activation. The DPO ob-
jective offers two key advantages for KE. First, it
employs a coupled preference model, which facil-
itates the parallel uplifting of yw, the new factual
knowledge, and the diminishing of yl, the outdated
factual knowledge. Second, the reference model
knowledge keeps the model weights from drifting
too much, which helps preserve the existing factual
knowledge and reasoning capabilities embedded
within the model.

3.3 Knowledge Direct Preference
Optimization

In this section, we present our adapted DPO al-
gorithm for KE, which we term Knowledge Di-
rect Preference Optimization (KDPO). This novel
approach differs from vanilla DPO in three key
aspects. First, instead of using a pre-prepared pref-
erences dataset, we regularly prompt the model
to generate its current knowledge and use the out-
put as the dis-preferred completion, yl. Second, yl
generation is teacher-forced context using yw as
illustrated in Fig. 1. Third, our KDPO optimizes
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the model using yw teacher-forced context for the
yl completion, as illustrated in Fig. 2.

Our optimization is performed using a dataset
D, which contains N editing requests. Each re-
quest consists of a prompt c and its corresponding
new knowledge yw. This can be represented as:
D = {ci, yiw}Ni=1. We break down the KE pro-
cess into n cycles, each containing s steps. At the
start of a cycle, the model πθ generates a greedy
completion yl to showcase its current knowledge.
Subsequently, we optimize πθ over s optimization
steps. Let us further define the context till the k-th
token: y<k

w = (tw1 , . . . , t
w
k−1) as all tokens in the

completion until the kth token.

3.4 Generation Step
At the start of each cycle, we initiate the model
to articulate its existing knowledge, which is the
knowledge we want to erase, denoted as yl. In this
setting of KE, we can assume the lengths of yw and
yl are the same, K := Kw = Kl. The process of
generating the yl can be expressed as follows:

yl = argmax(πθ(cw)). (1)

It is important to note that the model does not gen-
erate the entire answer yl all at once. Instead, it
generates the next token based on the prompt and
new knowledge. Let us explain why this approach
is beneficial. Suppose we have a single sample,
{c, yw = (tw1 , t

w
2 , .., t

w
K)}, we would like to define

yl that will act as the negative sample in our ob-
jective (the definition of which will be provided
later). We have two options: (i) predicting the en-
tire sequence and (ii) utilizing teacher-forcing with
yw. We describe these options below and illustrate
them in Fig. 1 using a simple example.
Predicting the entire sequence is done by pre-
dicting tl1 = πθ(c), then tl2 = πθ(c, t

l
1), and con-

tinuing iteratively until the last word prediction:
tlK = πθ(c, t

l
1, . . . , t

l
K−1). t

l
k are affected by both

the prompt c and the generated tokens y<k
l , at least

in the first cycles, both reflect the original knowl-
edge of the model. For example, given the prompt
c = "Lionel Messi was born in the city of", and
the knowledge we want to embed is yw ="Milan,
Italy." The model predicts tl1="Rosario" based on
its current knowledge. Thus, both the prompt and
tl1 (since the model knows Rosario is in Argentina)
will cause tl2 to invoke the model’s current knowl-
edge and predict "Argentina".
New Knowledge Teacher forcing is similar to the
former only for the first token, which is affected

only by the prompt, tl1 = πθ(c). The second gener-
ated token is affected by the prompt as well as the
first word in the new knowledge we desire to embed
in the model tl2 = πθ(c, t

w
1 ). The prediction made

by the model changes based on its current context
which is different at each stage: c-original knowl-
edge, and tw1 -part of the new knowledge. Leverag-
ing the previous example, the context for generat-
ing tl2 is now "Lionel Messi was born in the city of
Milan". The model’s original knowledge will lean
the model toward predicting "Argentina", but the
"Milan" will push the model to generate "Italy".

Using twk−1 instead of tlk−1 for generating tlk
will promote a more subtle editing, which is bet-
ter for ensuring that other parts of the model are
unchanged. This will be shown in the following
section, which describes our optimization phase.

3.5 Optimization Step

Next, let us define the objective for our KDPO,
denoted as LKDPO(πθ;πref ) using the loss:

LKDPO(πθ;πref) = −E(x,yw,yl)∼D

[log σ(β log
πθ(yw|cw)
πref (yw|cw)

−β log
πθ(yl|cw)
πref (yl|cw)

)].

Where, πθ(yl|cw) can be decomposed into a prod-
uct of probabilities:

πθ(yl|cw) =
K∏

k=1

πθ(t
l
k|c, y<k

w ).

πθ(t
l
k|c, y<k

w ) represent the probability of tlk ap-
pearance based on the prompt and parts of
the new knowledge yw. KDPO optimizes the
model to decrease the probability of the tlk
with the least amount of bond breaking inside
the completion yl. Given the previous exam-
ple, yl="Rosario, Argentina." DPO will mini-
mize: πθ("Argentina"|"Lionel Messi ... Rosario,")
this will aid in breaking the connection between
"Lionel Messi" and "Argentina." but it may also
detach the relation between "Rosario" and "Ar-
gentina."
Next, let us observe how the gradient of LKDPO
behaves:

∇θLKDPO(πθ;πref) ∝
− [∇θ log πθ(yw|cw)−∇θ log πθ(yl|cw)],
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Algorithm 1 Single Edit Flow

Input: c - context, yw - new knowledge
Output: θ
Initialize: πref = πθ.copy()
for cycle in n do
yl = greedy_generation(πθ(cw))
if yl == yw then

break
for step in s do

Calculate loss LKDPO(πθ;πref)
Update θ using Adam

thus

∇θLKDPO(πθ;πref) ∝
−
∑

k

∇θ[log πθ(t
w
k |c, y<k

w )−log πθ(t
l
k|c, y<k

w )].

One can note the importance of generating us-
ing cw and not cl. Using cw, we achieve a more
balanced distribution of tokens between the two
completions from an early stage; this is beneficial
since if tlk == twk , the k-th term in the sum cancels,
which leads to fewer gradient terms to average,
thus, fewer changes in the weight space. Fig. 2
shows an example of this type of term-cancellation.
Comparison with FT: KDPO enables more reli-
able KE, by allowing the term-cancellation phe-
nomenon mentioned above. Additionally, because
KDPO makes relative adjustments based on a ref-
erence model πref , it leads to model edits that are
more local. Furthermore, KDPO allows for con-
trollable editing capabilities through the use of the
β parameter. Empirical evidence of this can be
seen in Tab. 1, where the average locality of KDPO
is significantly higher than that of FT-M and FT-
L (which are fine-tuning variations) for the three
models examined.

4 Experiments

Recent studies (Zhang et al., 2024) have primarily
focused on single edits, which involve evaluating
a model’s performance after a single knowledge
update. In contrast, our focus is on sequential edit-
ing tasks, which require performing a series of
knowledge updates successively, with evaluation
conducted after the entire sequence of edits.

4.1 Evaluation Metrics
The purpose of KE is to modify the behavior of
the model by changing facts. Evaluating KE in

LLMs involves assessing the effectiveness and im-
pact of modifications made to the model’s knowl-
edge base. This evaluation ensures that the edited
model accurately reflects the desired changes while
maintaining its overall performance.

However, because facts are interconnected, alter-
ing one fact can have unexpected effects on others.
This makes it challenging to evaluate edits. To eval-
uate the capabilities of our framework in KE, we
use the same metrics as in previous works (Zhang
et al., 2024), namely edit success, locality, portabil-
ity, and fluency. Below, we provide definitions of
these metrics.
Edit Success: The model should accurately pro-
duce updated knowledge for related questions when
making an edit. This is evaluated by checking if
the post-edit model correctly answers the target
knowledge and similar expressions. This builds on
previous research (Mitchell et al., 2021; Li et al.,
2024), combining reliability (exact questions) and
generalization (paraphrased questions).

Portability: Yao et al. (2023) evaluated the
model’s ability to reason about the implications
of the edited knowledge to related content. It is cal-
culated as the average accuracy of the edited model
in complex reasoning scenarios. This includes pro-
viding the edited continuation when a subject alias
or alternative description is used, testing reversed
relations, and handling one-hop prompts related to
the modification without an explicit edit.

Locality: This metric assesses unrelated knowl-
edge, both in-distribution (e.g., forgetfulness, re-
lation specificity) and out-of-distribution (perfor-
mance on other NLP benchmarks), to ensure it
remains unchanged by the edit algorithm. A good
algorithm only affects the intended edits.

Fluency: Measures the diversity and non-
repetitiveness of the model’s text after editing, us-
ing bi-gram and tri-gram entropies. Meng et al.
(2022a) suggested lower fluency should be avoided
as it indicates the model generates repetitive re-
sponses.

4.2 Datasets
We assess the performance of our model us-
ing four datasets designed to evaluate KE qual-
ity: WikiDatacounterfact,WikiBio, ZsRE, and
WikiDatarecent. These datasets cover various edit-
ing types such as fact manipulation, sentiment mod-
ification, and hallucination generation (Zhang et al.,
2024). Details about each dataset are available in
Section A. We use the evaluation split provided
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Figure 2: Illustration of an optimization cycle. We note tokens that do not affect the loss by the "prohibited" sign.
The arrows indicate which tokens DPO and KDPO objectives will increase/decrease their log-prob. Note that in
KDPO, the "Italy" token is not optimized because it is the same in both sequences, which cancels out the two loss
terms of the objective.

in EasyEdit (Wang et al., 2023). To prepare these
datasets for sequential editing, we have filtered out
samples with the same subject. This is to prevent
cases where a fact is being edited twice, which
would make the first edit non-relevant. For exam-
ple, if the prompt is "What is the city of birth of
X?" and the target is "Y." on the next edit request,
"What is the city of birth of X?" with the target
"Z." the evaluation performed after N edit requests
would be evaluated on answering "Y." even though
we have already guided the model’s knowledge for
another fact.

4.3 Knowledge Editing Impact on General
LLM Tasks

The efficacy of KE methods is evaluated based
on their ability to modify knowledge in the model
while preserving its other capabilities, such as rea-
soning and common sense understanding. The pri-
mary goal is to determine if making targeted factual
edits unintentionally hinders the model’s capabil-
ities in unrelated areas. To facilitate this analysis,
we curate a set of benchmarks HellaSwag (Zellers
et al., 2019), Winogrande (Sakaguchi et al., 2021),
and MMLU (Hendrycks et al., 2020). Then, we
test different KE methods on those benchmarks to
investigate any performance degradation.

5 Results

This section presents our results across multiple
dataset, LLMs, and KE methods. We start by show-
ing the results of our multiple edits study. Then,
we demonstrate our method’s ability to handle gen-

eral, non KE, LLM benchmarks. Lastly, we show
an extensive ablation study. Additionally, prompt
examples and empirical edit results are presented
in Tab. 2. The prompts were selected from the
ZsRE dataset to give some intuition on prompt
types and edit challenges. We also show compara-
tive responses from multiple KE methods shown in
this paper. Some baselines did not converge in all
cases and thus were not added to the results. Those
issues and other baseline implementation details
are discussed in Section B.1 of the supplemen-
tary material. Further results appear in the supple-
mentary material Section C. Our method uses the
same hyperparameters for all models (size ranging
from 0.5B-8B) and datasets, while we optimized
the hyperparameters of baseline methods to achieve
competitive results.

5.1 Multiple Edits results

Fig. 3 compares all KE algorithms on ZsRE dataset
using the metrics as described in Section 4. We
show the results for LLaMA2-7B model after 100
sequential edits. Our method outperforms the base-
lines on all metrics with a notable gap in Locality.
This is especially encouraging when using LLMs
since we aim to retain the pre-trained knowledge
during post-editing. Detailed results for all four
datasets for three LLMs (LLaMA3-8B, Qwen1.5-
7B, and LLaMA2-7B) are available in Tab. 1 for
100 sequential edits. We show that our method
maintains state-of-the-art or comparable results on
all datasets in all metrics. In many cases we notice
a large gap in the locality, which in some cases sur-
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DataSet Metric LLaMA3-8B Qwen1.5-7B LLaMA2-7B

AdaLoRA ROME FT-L FT-M Ours AdaLoRA ROME FT-L FT-M Ours AdaLoRA ROME MEMIT FT-L FT-M Ours

ZsRE

Edit Succ. 21.5 9.5 79.2 87.6 88.4 29.7 51.2 49.1 70.7 87.1 44.7 23.1 48.3 28.9 90.8 91.4
Portability 11.1 3.4 26.4 29.9 49.3 19.9 31.2 24.9 46.6 42.5 28.2 7.5 24.9 9.1 48.9 50.4
Locality 3.1 0.7 14.5 4.5 40.4 6.3 19.5 15.5 22.2 34.3 11.2 10.5 7.4 2.3 27.5 45.6
Fluency 3.4 3.8 4.0 4.0 5.0 3.4 3.2 3.9 2.9 5.5 4.8 4.5 4.3 2.5 3.0 5.5

WikiBio
Edit Succ. 66.9 3.4 74.3 85.4 89.3 76.1 64.2 55.6 87.8 93.5 84.4 19.4 20.3 27.1 94.7 91.6
Locality 16.0 6.6 9.9 10.4 35.8 14.6 21.3 22.7 28.9 36.2 20.0 9.1 8.6 7.9 36.0 44.4
Fluency 6.3 6.0 6.1 6.3 6.3 6.3 6.0 6.0 6.2 6.3 6.3 6.1 6.0 5.8 6.1 6.3

Wikicounterfact

Edit Succ. 27.9 8.1 79.1 87.4 86.7 3.2 41.2 29.8 79.6 90.5 24.5 19.7 8.2 19.8 92.5 92.5
Portability 8.6 7.3 24.6 28.2 31.2 12.1 19.8 15.8 29.2 31.6 17.2 3.3 8.3 6.3 48.4 47.7
Locality 7.6 7.9 4.1 2.7 42.5 10.0 52.3 48.4 48.3 53.9 15.6 1.9 2.4 9.1 24.5 52.9
Fluency 4.0 5.0 3.7 3.8 5.3 3.4 4.6 4.0 2.6 5.5 5.3 4.6 2.7 3.9 3.2 5.6

Wikirecent

Edit Succ. 12.1 4.8 78.2 90.4 96.3 48.2 71.8 62.0 81.7 93.3 64.2 14.9 66.9 25.8 94.4 95.7
Portability 4.7 5.5 31.2 36.3 42.1 23.1 34.0 33.4 39.1 37.4 39.4 5.5 30.2 9.7 54.4 59.0
Locality 10.3 1.5 21.5 24.8 47.9 24.9 38.3 49.4 51.2 51.0 41.9 6.6 34.1 6.5 43.2 60.3
Fluency 2.7 5.2 3.3 3.2 5.6 4.8 4.5 3.1 3.1 5.4 5.6 4.5 5.0 3.4 3.6 5.6

Average Edit Succ. 32.1 6.4 77.7 87.7 90.2 39.3 57.1 49.1 80.0 91.1 54.5 19.3 35.9 25.4 93.1 92.8
Portability 8.1 5.4 27.4 31.5 40.9 18.4 28.3 24.7 38.3 37.2 28.3 5.4 21.1 8.4 50.6 52.4
Locality 9.2 4.2 12.5 10.6 41.7 14.0 32.9 34.0 37.7 43.9 22.2 7.0 13.1 6.5 32.8 50.8
Fluency 4.1 5.0 4.3 4.3 5.6 4.5 4.6 4.2 3.7 5.7 5.5 4.9 4.5 3.9 4.0 5.8

Table 1: Multiple Knowledge Editing algorithm’s performance using three different language models (LLaMA3-8B,
Qwen1.5-7B, and LLaMA2-7B) on four different datasets (ZsRE, WikiBio, WikiDatacounterfact, and WikiDatarecent)
with 100 sequential edits evaluated across multiple metrics. Best result is noted in bold and second best in an
underline. Overall, our method exhibits good result across models and datasets.

Post-Edit Output

Ours DPO ROME FT-M MEMIT

Prompt: Which league did Southern
California Fusion join with?
Pre-Edit Output: L W Division
Edit Target: USL First Division USL First Division ✓ USL First Division ✓ ✗ USL First Division ✓ USL Division ✗

Prompt: What sports team
was Petteri Nummelin
a member of?
Pre-Edit Output: us Blue Jackbers
Edit Target: Columbus Blue Bombers Columbus Blue Bombers ✓ Olympicus Blue Jackbers ✗ ian ✗ Columbus Blue Bombers ✓ A Blue bers ✗

Prompt: The mother of Anthony
Delon is whom?
Pre-Edit Output: ida Delon
Edit Target: Alma Delon Alma Delon ✓ Anthonyida Delon ✗ one ✗ Alma Delon ✓ Al Del Jr ✗

Prompt: What network first
aired The Smothers
Brothers Comedy Hour?
Pre-Edit Output: BC
Edit Target: NBC NBC ✓ NationalBC ✗ BC ✗ NBC ✓ ✗

Prompt: What species is ZIC3
specific to?
Pre-Edit Output:
Edit Target: male male ✓ male male ✓ male ✓ male ✓

Prompt: What war or battle
involved Alec Rose?
Pre-Edit Output: Civil War
Edit Target: Spanish Civil War Spanish Civil War ✓ | Civil War ✗ ✗ Spanish Civil War ✓ ✗

Prompt: What is an ecological
status of Bali myna?
Pre-Edit Output: 2na
Edit Target: myna myna ✓ crit2na ✗ 1udes ✗ 1na ✗ myna ✓

Prompt: The father of Juan
María Bordaberry is whom?
Pre-Edit Output: inoela Bordaberry
Edit Target: Gabrielle Bordaberry Gabrielle Bordaberry ✓ Gabrielle Bordaberry ✓ 1onú úú ✗ Gabrielle Bordaberry ✓ elle Bordyerry ✗

Table 2: Example Pre-Edit and Post-Edit outputs for various prompts taken from the ZsRE dataset. All methods
were trained using LLaMA2-7b model using 100 sequential edits. In some cases, the LLM’s output was empty
either in the pre or post edits. In such cases we leave the answer empty and in the post edit we mark it with an ✗.
Correct responses are marked with a ✓.
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Figure 3: Comparative result for the four metrics in
ZsRE datasets using algorithms discussed in this paper.
Fluency results were scaled with a factor of 10 for better
visibility.

passes double the performance of other methods.
This indicates that our proposed editing method
is precise and does not change non relevant parts
of the pre trained LLM. To further deepen our un-
derstanding of the proposed approach, we tested it
on four different LLMs (GPT-j-6B, Qwen1.5-7B,
LLaMA2-7B, and LLaMA3-8B) on all datasets
using 500 sequential edits in Tab. 3. We notice
that performance gap for 500 edit got bigger, our
method maintains its performance and achieves
state-of-the-art results on all metrics using the re-
cent LLaMA3-8B model.

5.2 Knowledge Editing in Small Language
Model

Different sizes of language models vary in the way
they train, predict, and react to KE. We compare
our method to other method as well as to standard
DPO. Our method shows very promising results for
smaller models like Qwen1.5-0.5B. Fig. 4 shows
the average results on three leading datasets . Re-
sults are presented in the supplementary material
Section C, and shows once again that KDPO keeps
opens a gap against baseline method on 500 se-
quential edits.

5.3 Knowledge Editing Impact on General
LLM Tasks

We first test the performance of the LLaMA2-7B
model on those three benchmarks. Then, we con-
duct two main experiments to test the performance
of LLMs after applying different KE schemes com-
pared to the original LLM. The first experiment

tests different KE methods after 100 edits from
the ZsRE dataset. Tab. 4 (Left) indicates that
our KDPO method performs at a similar level as
the pre-trained LLaMA2-7B model, which further
strengthens our claim that KDPO possesses strong
locality capabilities. On the other hand, the ROME
method seems to degrade the performance quite
substantially in this case. The second experiment
results are in Tab. 4 (Right). This experiment uti-
lizes the WikiDatacounterfact with 500 edits. After
making 500 edits to WikiDatacounterfact, we have
demonstrated that our method is able to maintain
its original performance. Additionally, we have
shown that our method outperforms all other tested
KE methods across all datasets, sometimes by a
significant margin.

5.4 Ablation study

The goal of this section is to thoroughly examine
our proposed method, KDPO versus the Vanilla
DPO. We examine both on 100 and 500 sequen-
tial edits on various datasets and models. Tab. 7
shows the results of multiple different 6-8B models
on three datasets when performing 100 and 500
sequential edits. In the case of 100 edits, the re-
sults mostly appear similar, and there seems to be
no dominant advantage for our suggested KDPO.
However, in the case of 500 sequential edits, KDPO
clearly demonstrates its superiority, particularly in
the locality metric and the success in edits. We
delve deeper into the differences between KDPO
and DPO in Tab. 4. This table illustrate how each
method influences the performance of the LLM on
general LLM tasks. Our method shows a signifi-
cantly lower negative impact on the original abili-
ties of the LLM compared to DPO, which should
underline the importance of our research findings.

6 Conclusions

We have introduced a variant of DPO that is effec-
tive for KE. Our extensive testing shows that our
proposed KDPO methodology is a promising one
for LLM KE. We showed our method works well
for various recent LLMs on multiple well known
KE datasets. In our ablation, we demonstrated
the advatage of KDPO over the vanilla DPO, sug-
gesting the value of our novel idea for KE tasks.
Finally, we verified our method maintains the pre
trained LLM performance on multiple benchmarks.
Overall, we have demonstrated that KDPO is a
high-performance and highly precise method for
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DataSet Metric GPT-j-6B Qwen1.5-7B LLaMA2-7b LLaMA3-8b

AdaLoRA FT-M Ours AdaLoRA FT-M Ours AdaLoRA FT-M Ours AdaLoRA FT-M Ours

ZsRE

Edit Succ. 37.4 57.1 69.7 43.3 66.6 85.4 40.6 92.3 92.1 82.3 79.5 87.8
Portability 22.9 20.8 36.8 26.7 46.5 41.1 29.8 43.8 49.4 35.1 29.2 44.9
Locality 4.2 3.2 22.7 5.2 18.8 25.0 11.8 16.4 38.9 24.2 3.5 31.4
Fluency 4.4 4.2 3.8 3.1 2.6 5.2 4.1 3.1 5.4 4.9 4.1 5.4

WikiBio
Edit Succ. 83.1 6.5 88.0 76.1 87.8 93.5 84.4 94.7 91.6 82.3 85.1 87.9
Locality 23.4 2.1 22.8 14.6 28.9 36.2 20.0 36.0 44.4 25.4 13.1 36.2
Fluency 6.4 5.7 6.3 6.3 6.2 6.3 6.3 6.1 6.3 6.4 6.2 6.4

Wikicounterfact

Edit Succ. 22.9 66.1 65.3 24.1 74.7 84.5 32.8 93.5 92.8 81.9 78.6 84.5
Portability 10.2 27.9 29.6 11.8 29.4 29.1 19.5 44.4 46.3 42.3 26.5 60.4
Locality 9.3 6.6 20.1 8.4 43.4 43.6 13.7 18.1 47.8 21.8 4.7 32.8
Fluency 3.7 3.9 3.8 4.3 2.9 4.8 4.4 3.8 5.3 5.2 4.7 5.4

Wikirecent

Edit Succ. 58.1 57.8 72.2 31.4 75.7 87.3 45.6 93.5 92.3 81.2 83.9 89.5
Portability 3.2 26.6 39.9 16.7 35.1 34.9 29.0 48.2 52.8 31.2 29.6 35.9
Locality 31.7 17.5 35.4 23.4 46.3 44.4 34.4 38.7 50.4 28.2 24.2 40.3
Fluency 4.1 4.6 3.8 2.9 2.5 5.3 3.5 3.3 5.6 4.2 4.0 5.6

Average

Edit Succ. 50.4 46.9 73.8 43.7 76.2 87.7 50.9 93.5 92.2 81.9 81.8 87.4
Portability 12.1 25.1 35.4 18.4 37.0 35.0 26.1 45.5 49.5 36.2 28.4 47.1
Locality 17.2 7.4 25.3 12.9 34.4 37.3 20.0 27.3 45.4 24.9 11.4 35.2
Fluency 4.7 4.6 4.4 4.2 3.6 5.4 4.6 4.1 5.7 5.2 4.8 5.7

Table 3: Evaluationg of the performance of multiple Knowledge Editing algorithms using four different language
models (GPT-j-6B, Qwen1.5-7B, LLaMA2-7B, and LLaMA3-8B) on four different datasets (ZsRE, WikiBio,
WikiDatacounterfact, and WikiDatarecent) with 500 sequential edits evaluated across multiple metrics. The best result is
noted in bold and second best in an underline. Overall, our method exhibits good results across models and datasets.

HellaSwag Winogrande MMLU Average
LLaMA2-7B 75.99 69.06 41.24 62.76
Ours 76.38 68.68 41.32 62.79
DPO 75.93 69.29 41.55 62.92
FT-M 72.79 68.50 37.86 59.05
ROME 27.66 48.53 24.32 33.50
MEMIT 72.13 66.61 26.05 54.93

HellaSwag Winogrande MMLU Average
LLaMA2-7B 75.99 69.06 41.24 62.76
Ours 76.28 70.48 38.83 61.86
DPO 73.74 66.61 35.68 58.68
FT-M 61.55 66.37 31.93 53.95
ROME 22.34 43.77 21.78 29.96
MEMIT 25.79 48.77 26.89 33.82

Table 4: Comparison of performance on general LLM benchmarks (HellaSwag, Winogrande, MMLU). LLaMA2-7B
is the base model, with its pre-trained results in the first row for reference. The best results are in bold, and the
second-best are underlined. Left: shows KE using the ZSRE dataset for 100 sequential edits. Right: shows KE using
the WikiDatacounterfact dataset for 500 sequential edits. Notably, KDPO and DPO are competitive for 100 sequential
edits, but KDPO outperforms for 500 sequential edits by a large margin.

KE tasks. This can significantly help prevent ex-
pensive retraining of LLMs due to factual errors.

7 Limitations

The primary limitation of our method, which is
inherited from DPO, is the need to keep a copy of
the model, leading to an increase in the memory
footprint. However, it is important to note that
recent works, such as those by Meng et al. (2024)
and Azar et al. (2024), are actively addressing this
challenge, offering potential solutions to reduce
this hurdle.
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A Knowledge editing datasets details

Here we provide the details about KE datasets used
in this paper.

• WikiDatarecent: This dataset focuses on
triplets inserted into WikiData after July 2022,
enabling creation of insertion edit requests for
models trained before this date. These facts
are simulating scenarios where an outdated
model needs to be updated with new world
knowledge.

• ZsRE: The data involves a context-free
question-answering task. In this task, the
model is expected to provide the correct object
as the answer when given a question based on
the subject and relation. We use the extended
version, which includes a portability test and
uses new locality sets.

• WikiBio: This dataset aims to correct hallu-
cinations in GPT language models by edit-
ing inaccurate sentences from GPT-3 gener-
ated Wikipedia-style biographies and replac-
ing them with corresponding sentences from
true Wikipedia entries.

• WikiDatacounterfact: This dataset contains
triplets of data about both popular entities (top-
viewed Wikipedia pages) and random entities
from Wikidata. The random sample is used
as the training set, while the popular entities
make up the test set. This is because tail enti-
ties are often not captured by models and are
unsuitable for testing modification edits.

B Implementation Details

We used the same hyperparameters for all models
across all datasets. We optimized using the Adam
optimizer with a learning rate of 1e − 4, number
of cycles, n = 10, and the number of steps in
each cycle is s = 8. We only optimized layer 21
as done in FT-M. However, empirically examined,
the average number of cycles is 4 and the average
number of total steps is 29. All experiments were
done using PyTorch (Paszke et al., 2019) on Nvidia
A100 GPU.

B.1 Baseline implementation
For the baselines, we used the hyperparameters in
the EasyEdit repository. However not all methods
contain hyperparameter for all the examined mod-
els; In those cases we conduct a grid search on

Figure 4: Comparative result for the four metrics av-
eraged over all datasets in Tab. 5 using algorithms dis-
cussed in this section on Qwen1.5-0.5B with 500 se-
quential edits. Fluency results were scaled with a factor
of 10 for better visibility.

several hyperparameters. For example, FT-M usu-
ally edits layer 31, but Qwen1.5-0.5B has only 24
layers, thus we sweep layers 13-21, layer 15 was
the best and that result was presented in the paper.
Further, FT-M mostly use normalization factor of
5e-5, using this factor results in a very poor "edit
success" in some models, after searching for bet-
ter factors, we’ve used a factor of 5e-4 (only for
the models that got poor results using 5e-5). For
some methods we were not able to reach decent re-
sults. For example, PMET on LLaMA2-7B did not
converge to appropriate numbers, and on the other
LLMs we constantly had GPU memory issues. For
MEMIT, we were able to reach results on LLaMA2-
7B but not on other model due to GPU memory
issues. SERAC and MEND we were not able to get
reasonable results in training on Qwen1.5 models
and LLaMA3-8B.

C Further Results

C.1 Small Language Model Results

The results for KE on Qwen1.5-0.5B are present
in Tab. 5. We also show a radar plot of the 500
sequential edits in Fig. 4. The results shows that
the effectiveness gap of our method increases as the
number of edits increases, this also can be deduced
by other experiments in this paper.
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DataSet Metric 100 sequential edits 500 sequential edits

AdaLoRA FT-L FT-M DPO Ours AdaLoRA FT-L FT-M DPO Ours

ZsRE

Edit Succ. 21.5 71.2 77.8 77.4 85.3 20.2 20.9 43.6 66.4 74.3
Portability 10.2 34.3 35.9 43.2 43.0 10.1 8.4 20.8 38.0 37.7
Locality 3.4 27.1 30.0 32.1 34.9 3.2 4.5 4.2 24.2 29.9
Fluency 3.9 4.4 4.4 4.4 4.4 3.6 3.3 3.0 4.4 5.0

Wikicounterfact

Edit Succ. 13.8 54.2 63.1 69.2 73.3 13.2 7.6 50.3 56.1 66.3
Portability 5.9 21.3 23.9 26.2 26.8 5.5 2.3 17.8 22.6 24.2
Locality 4.3 29.8 35.1 40.1 39.1 4.0 8.4 5.8 18.8 22.5
Fluency 3.1 4.2 4.4 3.6 3.6 3.0 3.3 3.9 3.7 3.9

Wikirecent

Edit Succ. 27.0 64.2 76.1 79.9 83.5 26.3 30.1 54.4 64.3 70.5
Portability 13.9 31.2 35.6 34.4 34.4 12.1 12.6 21.4 28.5 29.5
Locality 14.3 51.7 59.1 50.3 52.4 13.8 22.6 19.0 33.4 46.6
Fluency 4.3 4.6 4.9 4.6 4.9 3.7 3.3 3.3 3.8 4.0

Average

Edit Succ. 20.8 63.2 72.3 75.5 80.7 19.9 19.5 49.4 62.3 70.4
Portability 10.0 28.9 31.8 34.6 34.7 9.2 7.8 20.0 29.7 30.5
Locality 7.3 36.2 41.4 40.8 42.1 7.0 11.8 9.7 25.5 33.0
Fluency 3.8 4.4 4.6 4.2 4.3 3.4 3.3 3.4 4.0 4.3

Table 5: Multiple Knowledge Editing algorithm’s performance using small language models (Qwen1.5-0.5B) on
four different datasets (ZsRE, WikiBio, WikiDatacounterfact, and WikiDatarecent) with 100 and 500 sequential edits
evaluated across multiple metrics. The best result is noted in bold and second best in an underline. Overall, our
method exhibits good results across models and datasets.

C.2 Ablation Study Detailed results
Tab. 7 provides detailed results for our ablation
study for 100, and 500 sequential edit on multiple
LLM architectures.

Method Training Batch Editing Weight Update

IKE Yes No None
AdaLoRA Yes Yes LoRA
ROME Yes No Partial
FT-L Yes Yes Full
FT-M Yes Yes Partial
MEMIT Yes Yes Partial
DPO Yes Yes Partial
Ours Yes Yes Partial

Table 6: Comparison of Different Method’s Properties
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DataSet Metric Sequential 100 Edits Sequential 500 Edits

Qwen1.5-7B LLaMA2-7B GPT-j-6B Qwen1.5-7B LLaMA2-7B GPT-j-6B LLaMA3-8B
DPO Ours DPO Ours DPO Ours DPO Ours DPO Ours DPO Ours DPO Ours

ZsRE

Edit Succ. 92.7 87.1 86.4 91.4 77.7 82.7 89.5 85.4 81.4 92.3 63.6 69.7 87.8 87.8
Portability 45.2 42.5 51.1 50.4 36.6 42.8 42.5 41.1 44.6 52.8 32.7 36.8 43.7 44.9
Locality 35.6 34.3 44.8 45.6 23.8 28.6 25.0 25.0 41.8 50.5 16.0 22.7 26.4 31.4
Fluency 5.5 5.5 5.2 5.5 4.0 3.7 5.2 5.2 4.9 5.6 3.5 3.8 4.7 5.4

WikiDatacounterfact

Edit Succ. 86.8 90.5 88.5 92.4 75.3 75.3 77.1 84.5 80.6 92.9 66.2 65.3 79.1 84.5
Portability 30.8 31.6 47.1 47.7 33.9 34.7 27.6 29.1 39.9 46.3 29.6 29.6 28.0 60.4
Locality 47.6 53.9 50.4 52.9 22.1 24.9 20.8 43.6 28.0 47.9 17.4 20.2 18.1 32.8
Fluency 5.5 5.5 5.3 5.6 4.2 2.9 4.4 4.8 3.9 5.3 3.8 3.8 4.6 5.4

WikiDatarecent

Edit Succ. 93.7 93.3 97.9 95.7 86.8 85.5 87.1 87.4 84.8 92.3 71.3 72.2 89.1 89.5
Portability 41.3 37.4 60.1 59.0 46.3 48.2 34.8 34.9 47.0 52.8 37.5 39.9 37.9 35.9
Locality 49.7 51.0 61.4 60.3 37.7 38.8 34.9 44.4 44.9 50.5 32.9 35.4 41.0 40.3
Fluency 5.4 5.4 5.6 5.6 4.6 3.8 5.1 5.3 4.4 5.6 4.5 3.8 4.9 5.6

Table 7: Ablation study: Sequential 100 and 500 edits
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