
Findings of the Association for Computational Linguistics: EACL 2024, pages 4786–4797
November 12-16, 2024 ©2024 Association for Computational Linguistics

Reap the Wild Wind: Detecting Media Storms in Large-Scale News
Corpora

Dror Kris Markus1, Effi Levi2, Tamir Sheafer1,3, Shaul R. Shenhav1

1Department of Political Science, The Hebrew University of Jerusalem
2Department of Computer Science, The Hebrew University of Jerusalem

3Department of Communication and Journalism, The Hebrew University of Jerusalem
{dror.markus|tamir.sheafer|shaul.shenhav}@mail.huji.ac.il

efle@cs.huji.ac.il

Abstract

Media storms, dramatic outbursts of attention
to a story, are central components of media dy-
namics and the attention landscape. Despite
their importance, there has been little system-
atic and empirical research on this concept due
to issues of measurement and operationaliza-
tion. We introduce an iterative human-in-the-
loop method to identify media storms in a large-
scale corpus of news articles. The text is first
transformed into signals of dispersion based
on several textual characteristics. In each it-
eration, we apply unsupervised anomaly de-
tection to these signals; each anomaly is then
validated by an expert to confirm the presence
of a storm, and those results are then used to
tune the anomaly detection in the next iteration.

We make available the resulting media storm
dataset. 1 Both the method and dataset provide
a basis for comprehensive empirical study of
media storms.

1 Introduction

Media storms - dramatic increases in media atten-
tion to a specific issue or story for a short period of
time (Boydstun et al., 2014) - are central compo-
nents of media dynamics. Such outbursts include,
for example, news reports on acts of terrorism, pub-
lic scandals, or major political decisions. They usu-
ally begin with a specific trigger event (e.g., Wien
and Elmelund-Præstekær, 2009), and then surge to
disproportionate levels of coverage - hype (e.g., van
Atteveldt et al., 2018). Storms intensify nearly all
media-related effects (e.g., Boydstun et al., 2014;
Walgrave et al., 2017). In addition, being pivotal
moments in the public agenda, storms can be crit-
ical junctures for political actors (Gruszczynski,
2020; Wolfsfeld and Sheafer, 2006).

However, we still lack a systematic and compre-
hensive understanding of such outbursts of media

1https://github.com/DrorMarkus/
ReapTheWildWind.git

attention. One reason is that it is not clear how
to operationalize this concept into a concrete mea-
surable object (Boydstun et al., 2014, 518-519).
Essentially, previous researchers are left devising
“arbitrary” thresholds for their studies (Boydstun
et al., 2014, 519). In addition to this amorphous-
ness, an additional challenge is that media storms
are relatively sporadic phenomena. Boydstun et al.
(2014) approximate that they consist about 11%
of all media coverage, a finding that was later cor-
roborated by Nicholls and Bright (2019). These
properties make it extremely difficult to create a
gold-labeled data-set to train a model, or to even
begin reading the raw articles to identify media
storms directly, necessitating the development of a
different strategy to solve this challenging task.

Traditionally, communication researchers em-
ployed manual content analysis to label and mea-
sure issue attention over short periods (e.g., Boyd-
stun et al., 2014; Wolfsfeld and Sheafer, 2006).
Recent computational work has utilized topic mod-
eling (van Atteveldt et al., 2018; Nakshatri et al.,
2023) and keyword analysis (Lukito et al., 2019)
for the task. However, the drawback of these ap-
proaches is their sensitivity to research design -
the keyword choice or delineation of topics. A
researcher might choose a model with broad top-
ics - hampering the ability to recognize deviances
of specific outburst. Conversely, an overly com-
plex model might cause a media storm to be dis-
persed across several topics, diluting attention
peaks. This could make significant media events
less discernible. Meanwhile, focusing on keywords
may obfuscate the actual story behind the tokens.

Another approach adopted in recent computa-
tional communication research has been to focus
on news story chains. Such methods utilize clus-
tering to identify news events - articles describing
the same event or story (e.g., Nicholls and Bright,
2019; Trilling and van Hoof, 2020). These tech-
niques ‘uncover’ the stories occurring in the corpus
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- groups of documents discussing the same, specific
event. Recently, Litterer et al. (2023) fine-tuned a
model to generate document embeddings for the
clustering.

While these methods identify media stories, they
do not encompass the theoretical concept of me-
dia storms. Rather than capturing prominent sto-
ries, we are aiming for periods where the me-
dia coverage is not structured normally (Boyd-
stun et al., 2014), but rather characterized by
’hype’—dramatic and anomalous levels of cover-
age of a story (van Atteveldt et al., 2018; Vasterman,
2005). However, it is impossible to determine hype
when only taking into account the structure of a
single story at a single time-step without noting
long-term trends and cycles as baselines. Tellingly,
such methods tend to identify many more instances
than we do in our experiments here. For exam-
ple, Litterer et al. (2023) identify 98 cases over
nearly two years, while we detect 221 over a 20
year period.

With these points in mind, we sought a different
approach we believe better reflects the theoretical
conception of storms. We return to the basic defini-
tive property of media storms: a dramatic, tempo-
rary spike in attention to an issue (above the norm).
In other words, storms are anomalies in news cov-
erage, so we turn to anomaly detection to iden-
tify them. We create several signals representing
the daily dispersion of texts across the time frame.
These signals are the basis for a two-step procedure.
First, an unsupervised anomaly detection model
identifies media storm candidates—anomalous pe-
riods of news convergence. Then, a domain expert
labels true media storms from these candidates.
This human-in-the-loop process iterates until con-
vergence, uncovering media storms over the period.

Our approach offers several advantages. First,
methodologically speaking, it integrates the tem-
poral features of topic- or keyword-based outlier
detection described above, without relying on or
being limited by idiosyncrasies of researcher de-
sign. Additionally, the utilization of unsupervised
anomaly detection allows us to overcome the huge
quantities of data, presenting experts with a small
set of candidates to focus on in determining the
existence of media storms. Furthermore, our ap-
proach attempts to bypass inherent amorphousness
by offering a solution that is not based on pre-
defined statistical thresholds designed for specific
texts, but rather relies on the overall dynamics of
news coverage for any given period. The use of

unsupervised anomaly detection allows media dy-
namics to reveal themselves in the data. Our expert
input comes into play in validating these patterns,
confirming they correspond to the theoretical con-
cept. This expert input in the choice of seeds and
dispersion signals can also allow researchers to in-
tegrate their own research perspective within the
process - an advantage when dealing with an in-
herently amorphous concept.Thus, we are able to
uncover additional, more diverse media storms than
in previous studies.

We utilize a large-scale corpus of news articles
spanning 20 years of media coverage (1996-2016)
to demonstrate our method. We employ two dis-
tinct experimental setups, addressing a broad spec-
trum of potential research applications. The first
setup utilizes a seed list of media storms to uncover
additional occurrences within the same time frame.
The second setup utilizes an analyzed time frame
to detect media storms in a new, unlabelled target
period. We conclude with a preliminary analysis
of our findings from both setups, underscoring the
efficacy of our method and its potential for media
storm research. We then test the capability of a gen-
erative large language model (LLM) to perform the
expert validation. The results justify the human-in-
the-loop approach, while pointing to the possibility
of further automation in the future.

Finally, we contribute these findings as a me-
dia storms dataset for the years 1996-2016. We
believe that this dataset opens up a wide array of
exciting research avenues. While the concept of
media storms holds great significance to social ac-
tors, politicians and social scientists from various
fields, empirical exploration has been limited. As
the classification of storms within large-scale news
coverage data improves, we can enhance our un-
derstanding of how these news hypes unfold from
a single story or event to a cascade of public in-
terest. In an era marked by heightened concern
over the media’s impact on the information land-
scape – highlighted by issues like polarization, the
spread of misinformation, and the prominence of
social media – such insights into these significant
elements should offer important contributions.

2 Data

2.1 News Articles

To track the media coverage, we assembled a cor-
pus of 1,187,607 news articles taken from three
major news outlets – the New York Times, the Los
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Media Outlet Articles Tokens Tokens/Article (Avg.)
New York Times 520,648 373,980,075 718.30
Washington Post 360,788 293,024,961 812.18
Los Angeles Times 306,171 240,119,545 784.27
Total 1,187,607 907,124,581 763.83

Table 1: Corpus Statistics

Angeles Times and the Washington Post – between
1996 and 2016. All full-length texts for this time
period purchased and downloaded via a license
agreement with LexisNexis. 2 These were filtered
to include only articles from the News and Editorial
sections. Corpus statistics are detailed in Table 1.

2.2 Seed list of Media Storms

To initialize our method, we build upon a seed list
of media storms to begin calibrating the hyperpa-
rameters of the unsupervised anomaly detection.
We begin with a list of storms from Boydstun et al.
(2014) that has been widely used in media storm
research. The researchers labeled the New York
Times front page for a 10-year period to manually
identify media storms. However, their effort con-
tained several self-acknowledged constraints: they
focused solely on domestic issues, measured only
one national newspaper, and chose arbitrary sta-
tistical thresholds for operationalization. We wish
to capture the essence of a media storm through
a small set of mega-stories of national and global
significance (expected to be present in the three
outlets included in our corpus).

Consequently, we started with the items on their
list as media storm candidates, which we could
use for our first experimental setup of the method
(within the 10-year period overlapping with our
corpus collection: 1996-2006). However, we ad-
justed their list to better suit our use-case. First,
since they analyzed only the New York Times, we
included only national-level stories. For example,
storms regarding local sports teams or municipal
politics were removed. Second, we extended the
list to include significant international stories, such
as wars and foreign disasters, which also meet our
conception ’media storms’. The end result is a mod-
ified list of 48 media storms between the year 1996
and 2006. We used this list to initialize the first
calibration iteration of our unsupervised analysis
of the full corpus in the first experimental setup (de-
scribed in Section 3). We note that these are seed

2https://www.lexisnexis.com

storm candidates used to begin the exploration of
our data; we are aware that some of these events
might not register as media storms after running our
automated method, and that they do not represent
all media storms occurring in the time period.

3 Method

In this section, we present our method to detect
media storms in a large corpus. First, we describe
the representation of our texts into dispersion sig-
nals. Second, we detail the unsupervised anomaly
detection model employed to analyze the signals.
Finally, we outline the integration of the dispersion
signals, anomaly detection and human-in-the-loop
validation in a media storm detection method. A
diagram of the method’s pipeline is given in Fig-
ure 1.

Figure 1: Diagram mapping our approach - from the
initial raw news articles, through several stages of pro-
cessing before analyzing with the anomaly detection
model, implementing expert validation, and resulting in
the final output: a list of media storms.

3.1 Representation
Our basic assumption is that during media storms,
the news coverage converges surrounding a sin-
gle story or event, decreasing its variance. Thus,
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we utilize the following method to refine the raw
text into a one-dimensional signal representing the
daily media dispersion. For each day in the dura-
tion of our research period, the corresponding news
articles are converted into a multi-dimensional em-
bedding. We calculate a covariance matrix based
on this embedding, to capture the variance between
all the day’s articles over all of the embeddings’
dimensions. However, since we are interested in
capturing the dynamic of the dispersion over time,
we calculate the commonly-used trace value - the
sum of the diagonal of the covariance matrix. We
then normalized the trace by the number of arti-
cles published that day. This provides us with a
single value for the daily dispersion of the news
articles. These are then aggregated to compile one-
dimensional dispersion signals for the full duration
of the research corpus.

In identifying media storms, we seek to include
multiple representations of the texts, capturing di-
verse discursive attributes. We do this due to the
complexity of media storms. In some cases, they
might correspond to a single event; in others, they
might evolve to encompass multiple stories and
news "angles". In some cases, such as in crises or
scandals, we might expect to find specific textual
styles expressing drama or surprise. However, in
cases such as groundbreaking court cases or an-
ticipated political events, the storm is signaled by
the sheer volume of coverage rather than any spe-
cific reporting approach. With this complexity in
mind, we incorporated four types of document em-
beddings to create four separate dispersion signals.
This offers a level of robustness, ensuring that we
rely on various types of discursive attributes.

3.1.1 Actors & Settings
Actors are integral components of news stories. Pre-
vious research on automated identification of news
events does so by focusing on entities, assuming
that texts referring to the same people, places and
times in the same period, refer to the same news
event (Nicholls and Bright, 2019; Trilling and van
Hoof, 2020). Therefore, we include these same
features in our own approach in order to identify
convergence in coverage around specific events.
We used the spaCy open-source natural language
processing (NLP) named-entity recognition (NER)
package (Honnibal and Montani, 2017) to extract
the actors and settings of each article. For each
document, we generated an embedding based on
the frequency of each entity within an entity vocab-

ulary computed over the full corpus.3

3.1.2 Topics
In many cases, news coverage focuses more on a
general issue than a specific story. For instance,
strings of unrelated violent incidents could trigger
a general spike in attention to crime without any
of the individual events being newsworthy on their
own. Thus, we sought to include storms being ex-
pressed in categories as opposed to only distinct
stories, aligning with previous studies identifying
storms as dramatic increases in coverage to an is-
sue (Boydstun et al., 2014; van Atteveldt et al.,
2018). To generate embeddings for this feature, we
utilized an unsupervised topic model – top2vec –
which leverages joint document and word seman-
tic embedding to find topic vectors in a corpus
(Angelov, 2020). Such topics focus on the issues
expressed in the news articles. We trained a model
containing 100 topics, so each document was rep-
resented by a 100-dimensional vector. The number
of topics (100) was chosen following several ex-
perimentations, and was found to provide a good
balance considering the large time frame of the
study.

3.1.3 Narrative plot elements
Plot refers to "the ways in which the events and
characters’ actions in a story are arranged" (Kukko-
nen, 2014), and thus provide more information on
the structure and "tellability" (Shenhav, 2015) of
stories at the heart of media storms. In order to in-
clude plot elements, we used NEAT – a multi-label
classifier that was trained on a specially compiled
dataset (Levi et al., 2022) to identify three plot-
driven, narrative elements – complication, resolu-
tion, and success. Each document was represented
by three dichotomous variables to include each of
the three narrative elements.

3.1.4 Large language model (LLM)
Finally, we chose to include document embeddings
based on pre-trained, transformer-based LLMs.
Such models uncover latent features and patterns
found within texts, and have proven to be a stan-
dard for diverse NLP tasks. We used the all-mpnet-
base-v2 sentence-embedding model trained with
a modified pre-trained BERT network that uses

3Documents were truncated to the first 200 tokens, is in ac-
cordance with previous work in media studies showing that the
first section of the article contains the important and relevant
information (Welbers et al., 2021)
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siamese and triplet network structures to derive se-
mantically meaningful sentence embeddings that
can be compared using cosine-similarity (Reimers
and Gurevych, 2019).

We note significant correlations between the four
signals (Table 2). However, the correlations indi-
cate that there is not a complete ‘overlap’. This
attests to each signal’s exclusive information and
ability to capture unique aspects of media storms.

LLM Entities Plot

Topics 0.89 0.92 0.69
LLM 0.86 0.88
Entities 0.70

Table 2: Pearson correlations between the four textual
dispersion signals: Topics, LLM, Entities, and Plot.

3.2 Unsupervised Anomaly Detection
With these media dispersion signals, we can be-
gin the detection of anomalous convergence peri-
ods. To this end, we chose to utilize Facebook
Prophet (Taylor and Letham, 2018). Prophet is an
open-source library that is conceived to be a reli-
able "off-the-shelf" time-series forecasting model
that could be easily applicable in a variety of use
cases. Prophet fits an additive regression model
to a time series while including components for a
linear or logistic growth curve, yearly and weekly
seasonality cycles, and user-designated holidays:
y(t) = g(t) + s(t) + h(t) + εt, where g(t) rep-
resents the trend component, s(t) denotes the sea-
sonal component, h(t) stands for the holiday effect
at time t, and εt is the error term.

The model is fitted to the time series in ques-
tion, flagging data points that significantly deviate
from predicted values as anomalies. The devia-
tion is determined by the interval width hyperpa-
rameter – the width of the uncertainty levels as-
cribed to the model. For example, a wider interval
means only extreme values will be labeled anoma-
lies. Two other hyperparameters - the changepoint
prior scale and the changepoint range - are impor-
tant for our application. The first sets the number
of time-series changepoints to include in the model.
The second specifies the proportion of the time se-
ries used to fit these changepoints. When working
with decades worth of data, such values can sig-
nificantly influence the model’s predictions. For
example, a lower changepoint range means that the
model takes into consideration only the early por-

tions of the time series, while a low changepoint
prior leads to decreased sensitivity to fluctuations.
We chose to focus on these three hyper parame-
ters, fine-tuning them throughout our procedure to
calibrate the unsupervised anomaly detection. For
example, in Figure 2 we see the dispersion signals
for the outbreak of Hurricane Katrina.

Figure 2: Hurricane Katrina – dispersion signals: enti-
ties (green), LLM (purple), narrative plot elements (red)
and topics (blue).

3.3 Media Storm Detection

We define a two-step procedure for identifying me-
dia storms in our corpus.

Step 1: Take as input an initial list of media
storms and a target corpus of media coverage repre-
sented as described in 3.1,4 to run the anomaly de-
tection. Treating the initial input list as the “ground
truth” for the current iteration, we evaluate the
model’s precision and recall as follows:

Precision = D
A and Recall = D

S , where D is the
number of media storms from the initial list labeled
as anomalies by the model, A is the total number
of anomalies detected by the model, and S is the
number of media storms in the initial list.

We conduct a random search (Bergstra and Ben-
gio, 2012) of the hyperparameter space, running
multiple instances of the anomaly detection with
varying the three aforementioned hyperparameter
values. We evaluate each instance by its preci-
sion and recall, seeking iterations with the highest
scores in both metrics. In cases of ties, we prioritize
recall. 5 For the optimal instance, we examine the
results of the anomaly detection, noting the dates
of all periods of consecutive anomalies of at least
two consecutive days. We filter these to include
only the time frames where a majority out of the

4Smoothed by finding the 7-day rolling mean
5We assume that our initial storm list is but a portion of

the real media storms in our target period. Therefore, we
prioritize maximizing our identification of these real storms,
before maximizing the sensitivity of the model.
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Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Storm candidates 10 10 15 15 16 15 19 20 15 20
Storms validated 6 9 12 11 12 14 14 16 13 13
Not validated 4 1 3 4 4 1 5 4 2 7

Table 3: Out-Period iterations

four dispersion signals were flagged as anomalies.
This criterion was added due to the inherently am-
biguous nature of media storms; we want to focus
on genuine media storms and not merely statistical
noise originating in the anomaly detection model
or borderline instances that might be contentious
among researchers. This final, filtered list is our
output: a collection of anomalies – media storm
candidates.

Step 2: Take as an input the list of media storm
candidates. We apply expert validation to ascer-
tain which candidate corresponds to a genuine me-
dia storm. For each anomaly cluster, the expert
reviewed newspaper articles from the associated
dates and cross-referenced the time frame with his-
torical events from the corresponding dates. Only
anomaly clusters found to correspond to a genuine
occurrence were provided descriptive labels by our
expert and added to the set of media storms. More
detailed information and guidelines regarding the
expert validation can be found in Appendix A.

3.4 Experimental Setups
We utilized this two-step procedure in two distinct
setups: In-Period and Out-Period implementations.

In-Period. In this setup, we focused on a tar-
get period between 1996-2006, aiming to expand a
seed list and detect all other storms in same period.
We started by applying the two-step procedure de-
scribed in 3.3 to the seed list described in 2.2 and
the dispersion signals for the target years described
in 3.1. The output list of validated storms from the
first iteration was saved, and then used to initialize
a second iteration of the procedure. The output of
this iteration became the seed of the subsequent
iteration. We continuously add the validated media
storms to a list of finalized media storms over all
iterations. We continued the iterations until reach-
ing convergence, defined by identifying new media
storms amounting to less than 1% of our current
list of finalized media storms. We note that it can
be necessary to curate the finalized list of media
storms to consolidate duplicate storms. These were
primarily due to small variations in the anomaly

dates in each iteration that may still encapsulate a
single media storm time frame.

Out-Period. In this setup we utilize the two-step
procedure in 3.3, but begin the first step with input
seed storm lists for one period, to uncover an output
of occurrences in a second, unlabeled time period.
Specifically, we compile data from an analyzed
period together with additional, unlabeled data. As
per Step 1, we use the already-labeled storms to run
the random search and find the optimal anomaly
detection instance. Then, we implement Step 2
on the media storm candidates for the new time
period. In this way, we leverage information from
a previous time frame to create a list of validated
media storms for the unlabeled data.

These two experimental setups correspond with
two common research scenarios. The In-Period
deployment demonstrates the ability to leverage a
handful of qualitatively-identified media storms to
curate a comprehensive list encompassing a full tar-
get period. This challenge becomes especially pro-
nounced when transitioning from qualitative, small-
scale studies to more systematic, big-data-driven re-
search. The Out-Period deployment demonstrates
the ability to leverage an analyzed time period to
detect media storms in a new time frame. This
offers promise both for expanding datasets and for
predictive prospects.

4 Results

Iteration 1 2 3 4

Storm candidates 116 141 132 133
Storms validated 94 95 94 93
Not validated 22 46 38 40
New storms 71 18 4 1

Table 4: In-Period iterations

Table 4 shows the results of the In-Period exper-
imental setup. We performed four rounds of our
procedure until reaching convergence – adding a
single new media storm to our collection of 100
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finalized storms. For each round, we count the
number of storm candidates found by the anomaly
detection model, the number of candidates vali-
dated as new storms, and the number of candidates
found to not correspond with storms, as described
in 3.3. Additionally, since in this setup we run
multiple rounds on the same period, we note the
completely newly-discovered media storms – in-
stances that were not detected in previous rounds.

Table 5 displays, for each pair of signal types,
the Pearson Correlation between the anomalies de-
tected based solely on each of the signal types.
An analysis of these correlations reveals that each
signal contains exclusive information - essentially,
each textual dimension reaches anomalous con-
vergence at different time periods. Notably, the
Plot signal shows the lowest correlations, perhaps
due to the NEAT model captures distinct narrative
elements that are more discourse-grounded than
vocabulary-based.

Entities LLM Plot

Topics 0.69 0.64 0.46
Entities 0.72 0.47
LLM 0.53

Table 5: Anomaly-based Pearson Correlations: for each
representation type, we defined a binary-valued vector,
denoting which days were detected as anomalies based
on its signal. This table shows the inter-correlations
between these vectors.

In our implementation of the Out-Period exper-
iment, we ran a single round of the two-step pro-
cedure (described in Section 3.3) for each year
between 2007 and 2016 in our data, utilizing the
media storms found in the previous nine years as
seeds for detection in the final year. For example,
we utilized the media storms identified in the In-
Period experiment in the years 1997-2006 as our
input to find the media storms of 2007. Then, to
analyze the year 2008, we utilized the storms from
the years 1998-2007, and so forth.

Table 3 displays the results from our Out-Period
experiments. There are slight fluctuations in the re-
sults of each round. For example, in 2007 and 2008
we identified only 10 candidates, while reaching
peaks of 20 candidates in 2014 and 2016. Addi-
tionally, there is a slight variance in the number of
candidates verified as media storms (second row)
and the number of candidates not corresponding
to genuine storms. The existence of slight fluctu-

ations seems reasonable; we would expect slight
differences between periods when working with
long-period temporal data.

Year # Storms Duration Avg. Duration STD

1996 9 8.33 5.96
1997 9 6.56 1.59
1998 14 9.14 4.59
1999 9 7.78 3.80
2000 11 9.73 7.40
2001 4 9.00 6.73
2002 10 12.60 7.82
2003 10 19.00 22.77
2004 11 13.00 10.14
2005 9 8.33 5.32
2006 5 7.80 3.35
Total 101 10.38 9.54

Table 6: Storms statistics – 1996 to 2006

Year # Storms Duration Avg. Duration STD

2007 7 10.57 4.04
2008 9 9.22 4.94
2009 12 8.50 5.28
2010 11 7.73 5.66
2011 12 8.33 4.66
2012 14 8.64 5.33
2013 14 8.79 4.25
2014 16 8.56 6.36
2015 13 10.54 5.50
2016 12 9.42 4.64
Total 120 8.96 5.06

Table 7: Storms statistics – 2007 to 2016

The end result of these experiments is 101 storms
for the first period (1996-2006), and 120 storms for
the second period (2007-2016) for a total of 221
media storms found in our corpus. These lists in-
cluded many significant events, such as Hurricane
Katrina (2015), the Sandy Hook school shooting
and ensuing gun control debate (2012), and the
Snowden NSA revelations (2013). For a descrip-
tive overview, see Appendix B.

In addition to these unanticipated events, many
of the storms detected correspond to routine,
planned events such as elections or sporting events.
However, there were also intriguing cases such as
a 2010 spike in discussion on issues of airline secu-
rity and privacy. That storm does not correspond to
any specific major event, perhaps arising due to the
proximity to the Thanksgiving transit peak. This is
an interesting example of a media storm that does
not arise from a specific event directly linked to
the issue (We stress that this is merely a hypothesis
that invites focused examination).

What is particularly interesting about these statis-
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tics is the relative consistency of the results be-
tween the two setups. Upon examination of the
results in Tables 6 and 7, we see that there are no
strongly discernible differences between the me-
dia storms found in each of the setups. During the
years 1996 to 2006, the annual average number of
storms was 9.18. This contrasts with the period
from 2007 to 2016, which recorded an average
of 12 storms annually. This difference was statis-
tically significant, t(18) = −2.422, p = 0.026.
However, it would appear such differences might
be due to real-world trends over time. Specifically,
we see that the first years of the second period
(2007 and 2008) reveal fewer storms than some of
the first setup’s years. Meanwhile, an examination
of the storm durations does not reveal statistical
differences (t(146.15) = 1.343, p = 0.181). Such
results support the utility of both setups, suggesting
that both are detecting the same phenomena.

Finally, to understand the importance of the do-
main expertise, we examined the validation statis-
tics between the two setups: The four rounds of
the first setup found 522 media storm candidates
- anomaly clusters flagged by the Prophet model.
Of these, 28% did not correspond to a true media
storm according to the expert. The yearly rounds of
storm detection in the second setup yielded a total
of 155 media storm candidates, of which 22% were
not deemed as storms by the expert. These numbers
seem to justify the role of human validation.

5 Automated Validation

The second step in our proposed procedure (Sec-
tion 3.3) involves manual validation of media storm
candidates by an expert. In order to estimate the
possibility to automate this step, we performed
an experiment designed to test the capability of a
generative LLM to perform this task. We assem-
bled all the media storms candidates produced in
the first step in the procedure, during both exper-
imental setups described in Section 3.4, resulting
in a set of 320 unique candidates. For each can-
didate, we prompted the GPT-4 model (OpenAI,
2024) to decide whether or not it constitutes a me-
dia storm, providing it with a sample of 75 news
articles from the relevant dates as well as their pair-
wise cosine-similarities (see Appendix C for full
details). Table 8 shows the confusion matrix sum-
marizing GPT’s decisions vs. our expert validation.

Notably, the expert and GPT-4 were in agree-
ment about 45% of the storm candidates. Among

these, they agreed on the storm’s label in 74% of
the cases. However, GPT-4 failed to identify a
large number of media storms found by the expert.
These include some clear cases, such as the British
Petroleum oil spill in the Gulf of Mexico (2010),
the shooting of U.S. Representative Giffords in
Arizona (2011), and the Ebola outbreak (2014).
While these results justify the human-in-the-loop
approach, they merit further exploration into the
possibility of utilizing computational models in per-
forming (or at least aiding in) the validation step.

Expert
Storm not Storm

G
PT Storm 19% 10%

Not Storm 45% 26%

Table 8: Expert-GPT confusion matrix

This analysis further offers a unique opportunity
to explore possible false-negatives by the expert
(media storms they had missed). A total of 32
candidates were validated as media storms by the
GPT-4 model but not by the expert. After review-
ing these, five were determined to qualify as media
storms by our expert: one new event, the Khobar
Tower Bombing (1996), and four cases of addi-
tional peaks in coverage surrounding media storms
previously validated as such by the expert.

6 Conclusion & Future Work

In this paper, we offer several contributions. First,
we present a human-in-the-loop method to detect
media storms in a large corpus of news texts. We
describe a two-step iterative procedure, combining
unsupervised anomaly detection and expert valida-
tion, to identify these rare events within a larger
dataset. Significantly, whereas previous studies
build upon ‘arbitrary’ statistical thresholds, we uti-
lize an unsupervised anomaly detection algorithm
to allow the media dynamics to reveal themselves
in the data. Our expert input comes into play in val-
idating these patterns, confirming they correspond
to the theoretical concept. Consequently, we are
able to uncover additional, more nuanced media
storms than in previous studies. By incorporat-
ing expert validation, we can set the granularity
or type of the storms which we seek to identify;
researchers can express their research agenda to
decide what types of media storms they are inter-
ested in detecting. Additionally, we performed a
comparison between the expert and GPT-4, demon-
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strating that while not fully capable of replacing a
human expert, there is some potential in utilizing a
generative LLM during the validation process.

Second, our method offers a procedure that can
be applied in various research scenarios, over di-
verse and large corpora, while leveraging expert
knowledge for validation. Within the realm of
this paper, we included three English-language
newspapers for a specific time-frame. However,
the method could plausibly be applied on any
news corpora in any language, provided the nec-
essary techniques could be utilized (e.g., entity-
detection, sentence transformers). Additionally,
researchers might be able to use this approach on
non-mainstream media sources as well, including
identifying periods of textual convergence in social
media platforms and digital news.

Third, through the two experimental setups, we
collected a comprehensive list of media storms.
This time frame we chose to focus on is of particu-
lar significance for media scholars. Between 1996
and 2016, the media landscape underwent dramatic
transformations, with the rise of 24-hour news cy-
cles, the interactivity of social media and the frag-
mentation of the attention landscape (Chadwick,
2017; Edy and Meirick, 2018). These validated
storms provide opportunities to examine intriguing
theoretical questions, including how the volatility
of the media landscape has evolved, changes in the
events triggering storms, and perhaps developing
predictive capabilities regarding storm outbursts
and durations. Thus we use the results of this study
to provide a dataset consisting of media storms
with their start and end dates, which will be made
publicly available to researchers together with the
dispersion signals extracted from the corpus.

7 Limitations

We note two main limitations of this project. First,
the procedure described here assumes that our me-
dia storms are all mutually exclusive. We locate
time frames of anomalous coverage and associate
each period with a single, discrete media storm.
In reality, a single time frame might contain more
than one major news story, or the anomaly might
actually be identified as one story declines and the
other begins. Such findings correspond to issues
that arose during the expert validation stage: some
anomalous clusters contained a few potential storm
stories. Only upon close examination of the time
series’ peaks and the articles that were published

in correspondence with them, could we decide on
a single story for the storm. Additionally, some
of the periods actually did include two separate
media storm stories, one following the other (See
comments in Appendix A). In this project, we lim-
ited ourselves to choosing a single media storm per
each period. In future work, however, we could
integrate a clustering method to further distinguish
and track stories within the media storms.

A second limitation is that our method does not
include systematic steps to prevent the existence
of false negatives - media storms undetected by
the anomaly detection. Since we do not have a
gold-standard to initiate our storm detection, there
remains a possibility that our procedure may have
failed to detect instances within our corpus. In
general, our approach relies on high-quality seeds
to initiate the search for additional media storms.
We assume that these instances fully represent the
phenomenon, and that, therefore, all media storms
should be similar enough in characteristic to them.
In this way, multiple iterations of anomaly detec-
tion should uncover all true media storms. How-
ever, we note that this is not a complete solution
to the issue of false negatives. In future work, we
would examine potential solutions, such as ran-
domly sampling the non-storm time periods to ex-
amine for storms, utilizing computational models
to produce “competing” validations (as in the pre-
liminary experiment described in Section 5, or per-
haps generating additional textual signals which
might reveal more storm instances.
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described in Section 3.3, the expert received a set
of storm candidates (i.e. anomaly period) encom-
passing news articles’ start and end dates. For each
such anomaly period, the expert was given two
tasks: (1) decide if a media storm is occurring, and
(2) if a storm has been identified, decide on a de-
scriptive label of the dominant news story or group
of stories.
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In order to address these tasks the expert per-
formed the following steps:

Review the news article titles. For this pur-
pose, the expert was aided by t-distributed stochas-
tic neighbor embedding (t-SNE) visualization of
the spread of all the articles published during
this period. The visualization embedded the ar-
ticles in the latent semantic space based on the
all-mpnet- 335base-v2 sentence-embedding model
as described in 3.1. The t-SNE visualization allows
for improved efficiency in browsing news coverage,
helping to identify clusters of similar articles and
understand if there is a dominant story or group of
stories among them. The expert reviewed the titles
of news articles and, if necessary, further explored
the articles in context.

Examination of historical context of storm
candidates. For this purpose, the expert used
lists of key events (such as www.infoplease.
com/current-events) and other sources, such as
Google and Wikipedia. We note that key historical
events helped identify many media storms; how-
ever, in some cases, media storms evolved from
increased attention to specific issues or policy do-
mains, rather than historical events.

B Media Storms

Between the years 1996 and 2016, we found 221
media storms utilizing our method. These storms
include several categories of news stories. First,
43 of the instances were relating to U.S. elections
and election campaigns - including the elections
themselves, debates, party primaries, and coverage
of the campaign trail.

Another relatively prevalent category are unan-
ticipated violent events. These include the Versace
murder (1997), the Columbine School Shooting
(1999), the September 11th terror attacks (by far the
most prominent storm as attested to by the conver-
gence levels), the shooting of U.S. Representative
Giffords in Arizona (2011), and the riots killing
of police officers in Dallas (2016). Overall, there
were 30 such media storms.

42 of the media storms were considered foreign
news, in that they occurred outside of the U.S.
These include wars in the Balkans (1997-1999),
violent outbreaks in the Middle East (e.g., 2002,
2012, 2013), disasters (e.g., the 2010 earthquake
in Haiti, the 2005 tsunami in the Indian Ocean and
the Fukushima nuclear accident in 2011), and sig-
nificant deaths (e.g., Princess Diana in 1997 and

Pope John Paul II in 2005).
Another category of interest was media storms

that included intense coverage of stories that did
not correspond to a specific event, but rather related
to policy-driven matters. For example, there have
been several periods of intense attention on the U.S.
involvement in Iraq that would encompass multi-
ple stories - daily insurgent attacks, visits by U.S.
government officials, interviews with local leaders
- occurring long after specific events such as the
original invasion or the start of the "Surge" troop
increase. These were cases where we could discern
intense discussion of an issue for a period, without
linking the media storm to a specific trigger. An-
other interesting and surprising example of such
a storm occurred in 2010, when the media cover-
age reveals high levels of attention to issues of air
travel, airport security and debates about passenger
privacy. While we could not find any clear trigger
event behind such coverage, the proximity of the
discussion to the Thanksgiving holiday rush hints
at what might be a heightened public attention to
such issues. Perhaps an online discussion on a so-
cial media platform might have even initiated such
a media discussion.

Table 9 summarizes the 10 longest media storms
found in our dataset.

Title Year Duration

2003 invasion of Iraq 2003 80
2004 Presidential Election 2004 41
Iraq War coverage 2003 30
US Ebola outbreak 2014 30
2000 Presidential Election 2000 29
Trent Lott Scandal 2002 26
Operation Defensive Shield 2002 23
AIG Bonuses 2009 23
1996 Olympics 1996 22
2010 Midterm Elections 2010 22

Table 9: 10 longest media storms

C GPT-4 Prompts

For each media storm candidate (anomaly in-
stance), we provided the following prompt to the
model via the OpenAI API:

"A media storm is a dramatic increase in media
attention to a specific issue or story for a short
period of time. In such a case, we expect most news
articles for a given period to discuss a single story

4796

www.infoplease.com/current-events
www.infoplease.com/current-events


or issue. I have a corpus of news articles published
between [START DATE] and [END DATE]. For
this period, please use the article titles and the
dates to first decide if a media storm is occurring.
If a media storm is occurring, respond with ’YES’
and provide a label to describe the story behind
the media storm. If a media storm is not occurring,
respond with ’NO’. Please respond concisely in the
format: ’YES: [LABEL]’ or ’NO’."

This prompt included the dates of the anomaly
period, the titles of a random sample of news ar-
ticles published during that period, and a matrix
containing the pairwise cosine distances between
the sample articles’ embeddings. This information
was provided to match the details provided to the
human coder in the validation stage.

We randomly sampled articles for each period
due to the large number of documents for each
anomalous interval. We experimented with several
sample sizes, finding that sampling 75 articles to
provide with the prompt yielded the best results.
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