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Abstract

Retrieval-Augmented Large Language Models
(RALMs) have made significant strides in en-
hancing the accuracy of generated responses.
However, existing research often overlooks the
data quality issues within retrieval results, often
caused by inaccurate existing vector-distance-
based retrieval methods. We propose to boost
the precision of RALMs’ answers from a data
quality perspective through the Context-Driven
Index Trimming (CDIT) framework, where
Context Matching Dependencies (CMDs) are
employed as logical data quality rules to cap-
ture and regulate the consistency between re-
trieved contexts. Based on the semantic
comprehension capabilities of Large Language
Models (LLMs), CDIT can effectively identify
and discard retrieval results that are inconsis-
tent with the query context and further modify
indexes in the database, thereby improving an-
swer quality. Experiments demonstrate average
improvement of 3.75% in accuracy on chal-
lenging question-answering tasks. Also, the
flexibility of CDIT is verified through its com-
patibility with various language models and
indexing methods, which offers a promising
approach to bolster RALMs’ data quality and
retrieval precision jointly1.

1 Introduction

Retrieval-augmented large language models
(RALMs) have drawn extensive attention, as they
effectively ameliorate hallucination (Huang et al.,
2023), update the knowledge required for LLMs
with minimal cost (Lewis et al., 2020), and provide
explanations for contents generated by LLMs
(Gao et al., 2023). However, recent study has
demonstrated that not all retrieved citations are
useful for the generation result (Liu et al., 2023a;

*These authors contribute equally to this work.
†The corresponding author.
1Our code are available at https://github.com/

makexine/CDIT.

Figure 1: Improve data quality of database to enhance
the accuracy of generated answers by RALMs.

Wang et al., 2023), where retrieval may reduce the
quality of generation. For example, if retrieval
contains information conflicts, the generation
quality may deteriorate, which leads to false
answers to factual questions (Liu et al., 2023b).

In view of the challenges above, the NLP com-
munity mainly focus on enhancing the retrieval
precision, e.g. ARR (Yu et al., 2023), REPLUG
(Shi et al., 2023), and Atlas (Izacard et al., 2022),
which learns to align the retriever outputs with the
preferences of LLMs. However, these works pay
little attention to the data quality of knowledge it-
self. More specifically, it is commonly assumed
that data in the knowledge base (usually imple-
mented as vectors in a vector database) is consis-
tent, which is actually not the case in real-world
applications. Some sentences appear contextually
similar yet are actually opposite in reality. For ex-
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ample, consider two sentences "He turned on the
radio" and "He turned off the radio". It is obvious
that the semantic meanings of actions in these two
sentences are completely opposite. However, the
distance between vector representations of the two
tends to be small, as most text embedding mod-
els are trained to project sequences of tokens that
frequently co-occur as neighboring vectors in the
high dimensional semantic space (Li and Yang,
2018). Thus, existing vector-distance-based re-
trieval methods implemented in vector databases
may treat these two sentences as “highly similar”
knowledge, and provide such irrelevant or even
conflicting sentences as referring knowledge to the
down-stream language generator, which confuses
the LLMs and deteriorates the quality of the gener-
ated answer(Lewis et al., 2020).

As shown in Figure 1, we approach the issue of
retrieval quality from the perspective of data qual-
ity. Specifically, inspired by Matching Dependen-
cies(MDs), a classical rule-based data quality man-
agement method in the database community (Fan
et al., 2011), we propose Context Matching De-
pendencies (CMDs) that capture and regulate the
consistency between the knowledge context and its
vector representation. Then we establish a Context-
Driven Index Trimming (CDIT) framework that
mainly utilizes CMDs and LLM to improve the
quality of RALMs answers by trimming the in-
dexes of vector database. The CDIT framework
starts with an initial retrieval by the retriever in
RALMs. Then the preliminary retrieval results are
sent to the CMDs where an LLM is employed to de-
termine whether the retrieved knowledge conforms
to the CMDs constraints. If the retrieval satisfies
the CMDs, it will be passed to LLMs following
conventional RALMs. Otherwise, the retrieval will
be discarded, and the vector-search index related
to this retrieval will be corrected such that future
similar queries can avoid unrelated retrievals return
by the vector database.

We experimentally verify the effectiveness of
CDIT by open-domain question answering. In ad-
dition, we integrate CDIT with different language
generation models and index construction meth-
ods, demonstrating the flexibility of our framework.
CDIT surpasses the basic models with average
accuracy improvements of 3.75% on vairous lan-
guage models. It also boosts the model accuracy
by 3.44%, 4.07%, and 3.75% over IndexFlatL2,
IndexHNSWFlat, and IndexIVFFlat, respectively.
Among them, the highest performance improve-

ment can reach up to 15.21%.
Our main contributions are as follows:

• We propose Context Matching Dependencies
(CMDs) that maintain consistency among vec-
tor data to address the challenge of poor re-
trieval in RALMs from the perspective of data
quality management.

• We develop the Context-Driven Index Trim-
ming (CDIT) framework based on CMDs
and LLMs to improve the quality of RALMs
answers by trimming the indexes of vector
database, which is applicable to any RALM.

• We experimentally verify the effectiveness of
CDIT, where the average and the most signifi-
cant improvement can reach up to 3.75% and
15.21% respectively.

2 Related Work

Retrieval Improvements in RAG. Not all of the
retrieved contexts benefit the final results(Liu et al.,
2023a; Wang et al., 2023). In order to improve
the retrieval quality, previous work mainly fo-
cuses on fine-tuning the retriever to align with
the language model. For example, REPLUG(Shi
et al., 2023) freezes the parameters of language
model LLM and optimizes the retriever to adapt to
the language model. Atlas(Izacard et al., 2022),
by contrast, jointly trains the retriever and the
language model. Additionally, other work ex-
plores improving strategies before and after re-
trieval. Specifically, document segmentation strate-
gies (Touvron et al., 2023b) and embedding models
(Karpukhin et al., 2020) can be improved before re-
trieval. Diversity Ranker in Haystack(Blagojevic)
and LostInTheMiddleRanker(Liu et al., 2023a), on
the other hand, investigates document re-ranking
after retrieval. Different from previous methods,
we approach the retrieval quality issue from the
perspective of data quality management, where the
vector index is trimmed based on data consistency
captured by CMDs and LLMs.
Data Quality Rules. Various logic-based rules and
dependencies have been proposed for data quality
management. For instance, Functional Dependen-
cies (FDs) (Codd, 1971) were first introduced in
the 1970s to represent integrity constraints and re-
lationships among data. Based on FDs, Condi-
tional Functional Dependencies (CFDs) (Fan et al.,
2008) have been proposed for data cleaning pur-
poses. They use conditions to specify the subset
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of tuples on which a dependency holds. Subse-
quently, Matching Dependencies (MDs) (Fan et al.,
2011) have been proposed to identify records rep-
resenting the same real-world entity. Approximate
Functional Dependencies (AFDs) (Karegar et al.,
2021) have been proposed to tolerate partial vio-
lation tuples to handle noisy datasets better. In
addition, Association Rules (ARs), which were
first used to capture item relationships in transac-
tion data, have also been widely studied for data
repair and association analysis on relationship data.
Meanwhile, the mining of data dependencies can
be referred to research in (Song and Chen, 2009;
Schirmer et al., 2020; Fan et al., 2010; Santhya
et al., 2014). Similar rules have been applied on
graphs (Galárraga et al., 2013; Cao et al., 2023;
Fan et al., 2022), to analyze social networks by ex-
tracting relations (Erlandsson et al., 2016; Cagliero
and Fiori, 2013). Graph Association Rules (GARs)
(Fan et al., 2015, 2016, 2020) have defined associa-
tion rules directly on graphs, for graph data analysis
(Fang et al., 2016; Song et al., 2016) and knowl-
edge graph search (Namaki et al., 2017). However,
all these data quality rules are designed for rela-
tions or graphs, which can hardly support vector
data quality management tailored to RALMs.
Vector Indexing Strategies. Vector databases
facilitate efficient similarity search using special-
ized indexing structures such as KD-trees(Bentley,
1975), R-trees(Guttman, 1984), and HNSW
(Malkov and Yashunin, 2016). In Faiss (Douze
et al., 2024), there are numerous indexing im-
plementations available, including IndexFlatL2,
IndexHNSWFlat, IndexIVFFlat and so on. Al-
though IndexFlatL2 is relatively slow and memory-
intensive, it achieves the highest in preci-
sion(Douze et al., 2024). By contrast, In-
dexHNSWFlat is fast during searches, at the
cost of long index building time and large mem-
ory space(Malkov et al., 2014). Moreover, all
these methods are inadequate for RAG since the
ANN-based indexing can hardly distinguish state-
ments that are literally similar but semantically
different(Noonan, 2015). Several studies have
noted the impact of indexing and resorted to re-
ranking after retrieval, such as Diversity Ranker
in Haystack(Blagojevic) and LostInTheMiddleR-
anker(Liu et al., 2023a). However, they failed
to recognize that indexing method of the vector
database supporting RAG is inherently unreliable.

Our research, different from previous studies,
attends to data management of database, modifying

the indexing structure to provide an ideal vector
data source for search potentially.

3 Context Matching Dependencies

We first recall Matching Dependencies (MDs) (Fan
et al., 2011) before introducing our methods. Given
a relational schema R consisting of a set of at-
tributes attr(R), for each attribute A ∈ attr(R),
dom(A) denotes the domain of A. Consider an
instance r of R and a tuple t ∈ r, then for
∀A ∈ attr(R), t[A] ∈ dom(A), where t[A] repre-
sents the projection of t onto A. Matching Depen-
dencies (MDs) are defined to match the attributes
of different tuples as follows.
Definition 1 Matching Dependency

∧

j∈[1,k]

(r1[Aj ] ≈j r2[Bj ]) →
∧

i∈[1,h]

(r1[Ei] ⇀↽ r2[Fi])

where for ∀j ∈ [1, k], ∀i ∈ [1, h], Aj and Ei

are attributes of r1, Bj and Fi are attributes of
r2, ≈ is the similarity predicate which returns true
if the two attributes are regarded as similar, ⇀↽
is the matching operator which indicates that the
attributes are identified (Fan et al., 2011).

Similar to relational database tuples that consist
of multiple attributes, natural language sentences
can be represented by their linguistic components
such as subject, predicate and object(Stefanescu
et al., 2014). Thus, inspired by MDs for entity
resolution in relational databases, we can deter-
mine whether two sentences are semantically sim-
ilar based on the similarity between their corre-
sponding linguistic components. Let sub, pre and
obj denote the subject, predicate and object of a
sentence, respectively. We also define semantic id
(sid) that denote the semantic meaning of a nat-
ural sentence. Similar to "id" as the main key in
relational databases, sid identifies a sentence in the
high-dimensional semantic space. If sentences s1
and s2 have similar semantics, then their semantic
ids are consistent, denoted as s1[sid] ∼ s2[sid].

Example 1 Consider the following two sentences.
s1 : He turned on the radio.
s2 : He turned off the radio.
As shown in Figure 2, s1[sub],s1[pre] and s1[obj]
represents He, turn on and radio in sentence s1,
respectively, while s2[sub],s2[pre] and s2[obj] de-
notes He, turn off and radio in s2, respectively.

Inspired by MDs designed for entity resolution
in databases, in order to serve RAG better, we
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Figure 2: Example relational data of natural language

symbols notations
R, r relational schema, instance
A,B,E, F attribute
X,Y component
s, s1, s2 natural sentences
s[X] the corresponding words in sentence
∼, ̸∼ consistency predicate
≈, ̸≈ similarity predicate
⇀↽ the matching operator

Table 1: Summary of main symbols and notations

propose Context Matching Dependency (CMD) to
manage data consistency in vector databases.

Definition 2 Context Matching Dependency

s1[sid] ∼ s2[sid]→
∧

i∈[1,k]
(s1[Xi] ≈i s2[Yi])

where ≈ means that the corresponding sentence
components are similar, Xi, Yi denote grammati-
cal components in s1, s2. In addition, ̸∼ and ̸≈
denote sid inconsistency and dissimilarity of sen-
tence components, respectively.

Example 2 Consider the following CMD.

ϕ1 :s1[sid] ∼ s2[sid]→ s1[sub] ≈ s2[sub]∧
s1[pre] ≈ s2[pre] ∧ s1[obj] ≈ s2[obj]

ϕ1 claims that if the semantic meanings of s1 and
s2 are consistent, then their corresponding sub-
jects, predicates, and objects should be similar in
semantics. Similar to FDs and MDs (Codd, 1971;
Fan et al., 2011), CMD can be applied to vector
databases to check data consistency.

Table 1 summarizes symbols and notations.

4 Context Driven Index Trimming

4.1 Method Overview
As shown in Figure 3, CDIT starts with an initial re-
trieval (step 1⃝) and the query will be checked that

whether a similar query has been processed before
(step 2⃝). If a similar query is found by the deter-
miner via semantic similarity search (Gao et al.,
2023), the initial retrieval along with the query will
be used to generate the final answer (step 3⃝). Oth-
erwise, CDIT employs an LLM to extract the main
semantic components of the retrieved sentences
and checks whether the retrieval data and the query
conform with the CMDs (step 4⃝). Retrieval results
that are determined as consistent by the CMDs and
the LLM will be preserved and passed to the follow-
ing steps, while inconsistent results are discarded.
Later in step 5⃝, CDIT trims the vector index based
on the LLM judgments, which enables the database
to update its vector search index for better retrieval
in the future. Key steps 4⃝ 5⃝ will be introduced in
following sections.

4.2 Extracting and Comparing Components
An LLM is employed to extract and compare the
subjects, predicates and objects of sentences and
further judge whether the retrieval data and the
query are consistent based on CMDs. Specifically,
a prompt consisting of rules and instructions is de-
signed for extraction, comparison and judgment
(see Appendix B.1 for details). In the rule part
of the prompt, we explain the meaning of CMDs
to the LLM via natural language. In the instruc-
tion part, we ask the LLM to extract and compare
the sentence components based on the CMD and
decide whether the data is consistent. In our exper-
iments, we adopt GPT-3.5-turbo as the extraction
and comparison model, which provides accurate
judgments and is easy to implement with good flexi-
bility and reasonable price. Continue with Example
1, as shown in Figure 2, basic semantic components
sub, pre, obj of s1, s2 are firstly extracted by GPT-
3.5-turbo. After comparison, the LLM finds that
turn on and turn off are dissimilar, which is de-
noted as s1[pre] ̸≈ s2[pre]. Therefore, the CMD
ϕ1 is violated, and the LLM returns "False" which
means that s1[sid] ̸∼ s2[sid].

In summary, the consistency of retrieved con-
texts and queries are checked in this step, where
the LLM decomposes sentences into main compo-
nents and serves as a comparator for matching.

4.3 Trimming indexes
We propose an index trimming algorithm (Algo-
rithm 1) based on the Witness Theorem to prune
incorrect indexes of the retrieved data, such that in-
consistent contexts along with their corresponding
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Figure 3: Overview of our mechanism. The LLM(a) represents the more advanced large-parameter language models
currently, such as GPT-3.5-turbo; LLM(b) stands for LLMs with smaller parameters and easier deployment, such as
Llama2-7b, playing the role of a language generator.

vectors no longer link together.
Witness Theorem identifies the contexts

wrongly considered similar in the vector database.

Theorem 1 Witness Theorem. Given a query q
and sentences s1, s2. If q[sid] ∼ s1[sid] and q[sid]
̸∼ s2[sid], then the query q is a witness to the
separation of the two sentences s1 and s2.

In other words, if the sid consistency judgment
of q, s1 and q, s2 differs, then q witnesses the con-
tradiction between s1 and s2. As a sufficient num-
ber of witnesses are collected, it can be determined
that s1 and s2 are actually dissimilar. In that case,
we modify the vector index by cutting the similarity
linkage between s1 and s2. Algorithm 1 shows this
process of trimming indexes.

To illustrate, we take IndexHNSWFlat in Faiss
as an example. As shown in Figure 4, IndexHN-
SWFlat establishes a vector search index based on
HNSW algorithm (Malkov and Yashunin, 2016),
where data in the knowledge base is organized as a
hierarchical similarity graph to facilitate efficient
searching. From Figure 4(a), we can see that A and
B are regarded as similar and connected by HNSW.
However, as the LLM determines that q1, q2 are
similar to A while dissimilar to B, and q3 is similar

to B but not A (Figure 4(b)), there has been ade-
quate number of witnesses for A and B to separate.
Thus, CDIT will cut the edge between A and B (the
dashed line in Figure 4(c)) and the vector search
index is trimmed.

Although the retrieved contexts are all consid-
ered similar by the vector search index, Witness
Theorem assists in pruning incorrect similarity
links of the retrieval in the search index. This way,
the next time a similar query is encountered, the
retrieved context will have better data consistency
since the index has been previously modified.

5 Experiments

5.1 Experimental settings

Datasets. We verify the effectiveness of CDIT
on a range of downstream tasks, including ARC-
Challenge, PubHealth, PopQA and TriviaQA-
unfiltered, which are well-accepted and challenging
factual question benchmarks for RAG(Asai et al.,
2023; Gao et al., 2023), evaluating the correctness
of models. We clarify our tasks as the followings.
Multi-Choice. ARC-Challenge(Clark et al., 2018)
is a multiple-choice reasoning dataset that re-
quires far more powerful knowledge than previous
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Figure 4: Diagram of HNSW indexing. A, B, and C denote the data vector and q1, q2, q3 denote the query vector.
(a) The diagram of HNSW structure. (b) A single-layer graph is extracted from the stereoscopic structure in (a).
(c)After trimming the indexes, the relationship pointed to by the dashed line was successfully deleted.

Algorithm 1: Index trimming
Input: Query

1 for q in Query do
2 T ←new empty collection;
3 sC ←new empty collection;
4 C ← Retrieve(q);

// Retrieve contexts similar
with q.

5 add C to sC ;
6 for s in C do
7 result←Judge(s, q);

// Judge sids with CMDs.
8 if result=True then
9 add s to T ;

// Record similar
sentences.

10 else
11 Accumulate(s, T );

// Accumulate the number
of witnesses.

12 for s1, s2 in sC do
13 if Witness(s1, s2) then
14 Cutoff(s1, s2);

// If the contexts have been
witnessed a certain number
of times, then cut off the
link for s1 and s2.

tasks. It contains challenging questions that most
retrieval-based algorithms can hardly answer cor-
rectly. Accuracy is utilized as the evaluation metric,
calculated by the given ground-truth answers.

Fact-Checking. PubHealth is a fact-checking task
about public health, containing 987 non-disputed
factual and faked claims for evaluating the fact-
check performance. Also, accuracy is utilized as
the metric for the task.
Single-Hop includes two datasets. PopQA(Mallen
et al., 2022) contains QA pairs whose questions
are generated by converting a knowledge tuple
(subject_entity,object_entity, relationship_type) re-
trieved from Wikidata. TriviaQA-unfiltered(Joshi
et al., 2017) has complex and compositional ques-
tions, raising the need for more precise retrieval.
We follow the rough matching in (Asai et al., 2023;
Mallen et al., 2022) as the performance metric,
where a generation is correct when the ground-
truth answer is included.
Configurations in CDIT. We employ Contriever-
MS MARCO(Izacard et al., 2021) as the retriever
and Faiss(Douze et al., 2024) as the vector search
interface. Meanwhile, zero-shot evaluations are
conducted on our experiments, which describes
tasks without few-shot demonstrations(Wei et al.,
2021; Sanh et al., 2021). By default, the top-
10 documents returned by the retriever are se-
lected in CDIT and the official April 2018 English
Wikipedia dump is used as the knowledge base.
GPT-3.5-turbo is employed to extract and judge the
consistency of sids. CMD rules ϕ1 are used as the
constraints. More details of the experiments can be
found in Appendix A.

5.2 Baselines
Language models. We have tested CDIT on
various baseline language models which serve
as the answer generator in the RAG stage, in-
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Basic Model Index PopQA(acc) TQA(acc) ARC(acc) Pub(acc) Avg-Impro
orignal CDIT orignal CDIT orignal CDIT orignal CDIT

Llama-7b
IndexFlatL2 14.35 19.02 23.82 32.48 27.47 32.94 23.10 27.03 ↑ 5.69
IndexHNSWFlat 20.85 23.94 26.48 32.48 27.39 30.97 25.53 29.10 ↑ 4.06
IndexIVFFlat 20.43 24.44 26.74 32.90 32.93 34.22 23.71 26.94 ↑ 3.67

Llama2-7b
IndexFlatL2 15.76 17.85 22.61 30.52 27.47 29.35 24.51 26.24 ↑ 3.40
IndexHNSWFlat 19.52 27.61 24.49 32.33 28.16 29.27 23.30 26.13 ↑ 4.97
IndexIVFFlat 20.26 25.44 26.45 30.78 30.80 31.06 26.34 28.74 ↑ 3.05

Alpaca-7b
IndexFlatL2 21.85 27.19 33.57 43.40 26.45 27.99 56.34 60.56 ↑ 5.23
IndexHNSWFlat 30.44 35.20 37.84 47.32 28.16 30.46 56.53 63.26 ↑ 5.82
IndexIVFFlat 29.85 34.02 37.57 44.14 27.05 32.00 56.53 63.21 ↑ 5.59

Llama3-8b
IndexFlatL2 42.00 41.87 39.03 39.66 33.02 32.08 46.30 50.11 ↑ 0.80
IndexHNSWFlat 41.79 41.87 38.99 39.45 31.22 32.00 43.26 48.41 ↑ 1.62
IndexIVFFlat 41.37 42.20 38.23 39.15 31.31 33.53 44.78 49.02 ↑ 2.05

Mistral-7b
IndexFlatL2 40.12 42.70 60.21 62.41 55.29 57.25 21.48 23.46 ↑ 2.18
IndexHNSWFlat 31.11 34.28 57.58 60.48 53.13 56.74 21.58 24.23 ↑ 3.08
IndexIVFFlat 35.45 41.87 61.09 62.59 54.93 56.48 23.10 29.21 ↑ 3.90

Bloomz-7b1
IndexFlatL2 24.86 27.52 49.71 51.14 40.10 48.89 56.84 57.98 ↑ 3.51
IndexHNSWFlat 23.52 24.10 47.71 49.73 43.51 48.55 53.19 55.26 ↑ 2.43
IndexIVFFlat 24.19 29.53 48.37 53.29 43.60 48.63 57.34 59.21 ↑ 4.30

Falcon-7b
IndexFlatL2 28.69 32.53 40.02 45.89 20.04 21.08 25.32 27.68 ↑ 3.28
IndexHNSWFlat 20.60 25.35 27.47 42.68 21.50 25.26 23.91 26.21 ↑ 6.51
IndexIVFFlat 22.52 29.94 37.84 41.71 20.01 21.59 27.56 29.54 ↑ 3.71

Table 2: Experiment results on different language models and index structure. Bold numbers indicate the best
performance among models. "Avg-Impro" refers to the average improvement of CDIT of all types of datasets.
PopQA, TQA, ARC and Pub refer to PopQA, TriviaQA-unfiltered, ARC-Challenge, and PubHealth, respectively.

cluding Llama-7b(Touvron et al., 2023a), Llama2-
7b(Touvron et al., 2023b), Alpaca-7b(Dubois et al.,
2023), Llama3-8b(Dubey et al., 2024), Mistral-
7b(Jiang et al., 2023), Bloomz-7b1(Muennighoff
et al., 2022) and Falcon-7b(Almazrouei et al., 2023)
in consideration of their convenience, accessibility,
and versatility. Bloomz is a Multitask Prompting
Fine Tuned (MTF) version of the BLOOM(Le Scao
et al., 2023), and Alpaca is replicated based on
Llama, and the instruction-tuned LM adopts an of-
ficial system prompt during training.
Vector search indexes. We have also tested CDIT
on various representative vector similarity search
indexes including IndexFlatL2, IndexHNSWFlat
and IndexIVFFlat(Douze et al., 2024). Specifically,
IndexFlatL2 performs Euclidean distance search on
all vectors, which is the most accurate but slow in
search and memory-intensive. IndexHNSWFlat is
built on the Navigable Small World (NSW) graph,
which provides extremely fast search at the cost of
both long building time and large memory space
for the index. IndexIVFFlat reduces the search
space via clustering, which strikes a balance be-
tween search quality and speed. Unless otherwise

specified, the default configuration for the experi-
ment shall be IndexL2Flat.

5.3 Main Results

Table 2 compares the answer accuracy of the origi-
nal RAG and CDIT, where we find the following:
CDIT works for various language models. CDIT
surpasses the basic models with average accuracy
improvements of 4.47%, 3.80%, 5.54%, 1.49%,
3.05%, 3.41% and 4.50% on Llama-7b, Llama2-7b,
Alpaca-7b, Llama3-8b, Mistral-7b, Bloomz-7b1
and Falcon-7b, respectively, and the most signifi-
cant increase reaches up to 15.21% when applying
CDIT framework to Falcon-7b model on TriviaQA
dataset with IndexHNSWFlat index. This is be-
cause retrieval information that is unrelated or in-
consistent with the query is discarded by CDIT,
which reduces the distracting inputs to LLMs.
CDIT works for different indexing methods.
CDIT has on average boosted the model accuracy
by 3.44%, 4.07%, and 3.75% over IndexFlatL2,
IndexHNSWFlat, and IndexIVFFlat, respectively,
which proves its effectiveness in modifying the
original vector index. Moreover, CDIT achieves
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higher improvements on more coarse-grained in-
dexing structures, such as IndexHNSWFlat.

5.4 Analysis
As CDIT is a method of pruning indexes and can
be flexibly integrated with other RALMs as a func-
tional module, it is actually an atomic component
and is difficult to conduct ablation studies. Thus,
we analyze the impact of hyper-parameters and
CMDs on CDIT. Specific results are shown in Ap-
pendix C.
Effects of varying top-k. In order to analyze how
the number of documents returned by the retriever
affects the performance of CDIT, we vary the num-
ber of retrieved documents (top-k) from 5 to 10 and
test on PopQA dataset for all three vector indexes
with llama2-7b as the generator. As shown in Fig-
ure 5, CDIT shows improvements across various
top-k, and the improvement is more significant un-
der larger top-k. The main reason for this is that
larger top-k may return more useless information,
which deteriorates the performance and can be fil-
tered out by CDIT, while smaller top-k provides
little space for trimming where the performance
gain is limited.

Figure 5: Top-k analysis on PopQA with Llama2-7b
and IndexL2Flat index structure.

In particular, as for Llama3, a generator with
strong language abilities, We test its performance
with a much larger top-k to evaluate how CDIT
helps resolve the retrieval information explosion.
Previously, as shown in Table 2, the performance
gain of applying CDIT to Llama3 is limited, where
the possible reason may be that the strong lan-
guage ability of Llama3 allows more contexts and
better identifies irrelevant retrieval contexts inde-
pendently without CDIT. In order to investigate
Llama3’s ability limit of processing retrieval in-
formation explosion and whether CDIT can still
help to improve, we vary (top-k) from 10 to 50 and
test on PopQA with Llama3 as the generator. As

Top-k 10 20 30 40 50

original 42.20 41.03 41.20 39.86 16.51
CDIT 42.37 41.25 41.45 40.95 24.35

impro ↑ 0.17 ↑ 0.22 ↑ 0.25 ↑ 1.09 ↑ 7.84

Table 3: The performance of CDIT on Llama3 as top-k
ranks from 10 to 50.

shown in Table 3, the performance gain of CDIT
is significantly enhanced as top-k increases, which
means that CDIT plays a better role when exces-
sively large context information is fed to the LLM.

Effects of CMDs. The CMD ϕ1 does not describe
all constraints of retrieved data. In order to specify
the constraints more accurately, we need to con-
sider the relationship between other components
of the sentences. For example, attributives and ad-
verbials also constraint the consistency of the sen-
tences, and the corresponding CMD can be written
as below:

ϕ2 :s1[sid] ∼ s2[sid]→
s1[att] ≈ s2[att] ∧ s1[adv] ≈ s2[adv]

where att, adv denotes the attributive and adverbial
of the sentence. We add CMD ϕ2 to the comparing
step, such that the consistency of sid requires si-
multaneous satisfaction of both CMD ϕ1 and CMD
ϕ2. As shown in Figure 6, different CMDs have
an influence on the accuracy of CDIT. Thus, it is
desirable to investigate the optimized combinations
of various CMDs in future.

Figure 6: CMDs analysis on PopQA with Llama2-7b
and IndexL2Flat index structure.

Integration with other RALMs. We analyze the
performance of CDIT when integrated with en-
hanced RAG models. As CDIT directly modifies
the indexes of database, it has strong flexibility and
can be easily integrated with existing RAG models
to improve the answer quality. We integrate CDIT
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with Self-RAG(Asai et al., 2023), which is a refined
RAG model by improving knowledge retrieval, and
evaluate the accuracy of the answers. Llama2-7b is
used in this test, and other settings are unchanged.
As shown in Figure 7, CDIT consistently improves
the accuracy of answers after integrating with self-
rag, where the average increase is 3.62%. This
shows that based on existing state-of-the-art RAG
models that mainly improve 12.3%, CDIT could
further enhance the performance by refining data
quality.

Figure 7: Self-RAG Integration analysis on IndexL2Flat
with Llama2-7b.

LLM costs. We analyze the costs of utilizing
LLMs in CDIT, which has been validated as accept-
able. Time to call LLMs is considered to assess the
cost with results as follows. We determine the aver-
age time expenditure for LLM invocations through
multiple experimental measurements across vari-
ous language models and indexes. As shown in
Table 4, even with the maximum number of calls
to LLMs, without considering repeated queries, the
time did not exceed 6 minutes. Compared to the
time required for the inference of language model
itself, we consider this cost to be reasonable.

Dataset PopQA TQA ARC Pub

Time(s) 59.94 351.05 58.62 29.61

Table 4: Time to call LLMs in CDIT.

Case Study. We use the scenario depicted in Fig-
ure 1 as an example to explain the working princi-
ple of CDIT, as shown in Figure 8. In this scenario,
the input query is:
q: "Who turned on the radio?",
and the two relevant retrieved contexts are:
s1: "Mary turned off the radio."
s2: "Jack turned on the radio."
In conventional approaches, the basic RALMs

will answer "Mary." due to the first retrieved con-

texts, while they actually give a wrong answer.
For CDIT, the query q and contexts s1, s2 are

first sent to GPT-3.5-turbo. Given that s1[pre]
refers to "turn off ", s2[pre] refers to "turn on",
and s1[pre] ̸≈ s2[pre], the LLM deduces that
s1[sid] ̸∼ s2[sid] according to CMD ϕ1. Hence
these two retrieved contexts are inconsistent. As
a result, context s1 is discarded and s2 is reserved.
Meanwhile, the link between the vectors of s1 and
s2 on the index structure is cut off. At this point,
the language model only receives query and context
s2. According to context s2, RALMs with CDIT
can answer "Jack." correctly. Similarly, next time
when the model encounters a query:

q1: "Please tell me who turned on the radio."
which resembles q, the retrieved contexts will

only be s2 due to the trimmed index structure.

Figure 8: Case study for CDIT.

6 Conclusion

Our study presents a Context-Driven Index Trim-
ming (CDIT) framework, which enhances the accu-
racy of RALMs by focusing on data quality within
vector databases. Experiments show an average
3.75% increase in accuracy, highlighting the robust-
ness of CDIT across models and indexing methods.
While challenges in long text handling and reliance
on LLMs are noted, the adaptability and potential
of CDIT suggest a bright future in NLP.
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Limitations

Limitations still exist in our work. Firstly, long
texts may cause a subpar performance of CDIT.
A possible reason is the complexity of long texts,
making it difficult to extract and compare basic
semantic components. What’s more, the basic com-
ponents mentioned above may be incompetent to
represent long text, resulting in error judgements.
Secondly, the CMDs in this article are proposed
manually based on our experience, so they may not
be thorough and accurate enough to describe all
the constraints of retrieved data. Regarding the two
limitations, we plan to conduct further research on
the mining of CMDs in the future to enable it to rep-
resent the constraints of various types of text more
accurately. Finally, over-reliance on GPT is another
potential problem. The extraction and comparison
of components need online LLMs, which may be a
trouble for a completely offline environment with
considerable costs. We may subsequently consider
employing proper lexical analyzers such as depen-
dency parsing(Manning et al., 2014), Stanza(Qi
et al., 2020), etc, to mitigate this issue.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Yang Li and Tao Yang. 2018. Word embedding for
understanding natural language: A survey.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023a. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Yi Liu, Lianzhe Huang, Shicheng Li, Sishuo Chen,
Hao Zhou, Fandong Meng, Jie Zhou, and Xu Sun.
2023b. Recall: A benchmark for llms robustness
against external counterfactual knowledge. ArXiv,
abs/2311.08147.

Yury Malkov, Alexander Ponomarenko, Andrey Logvi-
nov, and Vladimir Krylov. 2014. Approximate near-
est neighbor algorithm based on navigable small
world graphs. Inf. Syst., 45:61–68.

Yury Malkov and Dmitry A. Yashunin. 2016. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 42:824–836.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Hannaneh Hajishirzi, and Daniel Khashabi. 2022.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Annual Meeting of the Association for Com-
putational Linguistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Annual Meeting of the Associ-
ation for Computational Linguistics.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey
Schoelkopf, et al. 2022. Crosslingual generaliza-
tion through multitask finetuning. arXiv preprint
arXiv:2211.01786.

Mohammad Hossein Namaki, Yinghui Wu, Qi Song,
Peng Lin, and Tingjian Ge. 2017. Discovering graph
temporal association rules. Proceedings of the 2017

4896

https://api.semanticscholar.org/CorpusID:17583740
https://api.semanticscholar.org/CorpusID:17583740
https://api.semanticscholar.org/CorpusID:258676297
https://api.semanticscholar.org/CorpusID:258676297
https://api.semanticscholar.org/CorpusID:4090850
https://api.semanticscholar.org/CorpusID:4090850
https://api.semanticscholar.org/CorpusID:4090850
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:266359151
https://api.semanticscholar.org/CorpusID:876601
https://api.semanticscholar.org/CorpusID:876601
https://api.semanticscholar.org/CorpusID:265067168
https://api.semanticscholar.org/CorpusID:265067168
https://api.semanticscholar.org/CorpusID:265067168
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:249097975
https://api.semanticscholar.org/CorpusID:251371732
https://api.semanticscholar.org/CorpusID:251371732
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:26501419
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:65057131
https://api.semanticscholar.org/CorpusID:65057131
https://api.semanticscholar.org/CorpusID:259360665
https://api.semanticscholar.org/CorpusID:259360665
https://api.semanticscholar.org/CorpusID:265157546
https://api.semanticscholar.org/CorpusID:265157546
https://api.semanticscholar.org/CorpusID:9896397
https://api.semanticscholar.org/CorpusID:9896397
https://api.semanticscholar.org/CorpusID:9896397
https://api.semanticscholar.org/CorpusID:8915893
https://api.semanticscholar.org/CorpusID:8915893
https://api.semanticscholar.org/CorpusID:8915893
https://api.semanticscholar.org/CorpusID:254877603
https://api.semanticscholar.org/CorpusID:254877603
https://api.semanticscholar.org/CorpusID:254877603
https://api.semanticscholar.org/CorpusID:14068874
https://api.semanticscholar.org/CorpusID:14068874
https://api.semanticscholar.org/CorpusID:23873984
https://api.semanticscholar.org/CorpusID:23873984


ACM on Conference on Information and Knowledge
Management.

Harold W. Noonan. 2015. Relative identity. Philosoph-
ical Investigations, 38(1-2):52 – 71. Cited by: 3.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

R Santhya, S Latha, S Balamurugan, and S Charanyaa.
2014. Further investigations on strategies developed
for efficient discovery of matching dependencies. Int.
J. Innov. Res. Comput. Commun. Eng.(An ISO 3297:
2007 Certified Organization), 3:18998–19004.

Philipp Schirmer, Thorsten Papenbrock, Ioannis
Koumarelas, and Felix Naumann. 2020. Efficient
discovery of matching dependencies. ACM Transac-
tions on Database Systems (TODS), 45(3):1–33.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen tau Yih. 2023. Replug: Retrieval-augmented
black-box language models. ArXiv, abs/2301.12652.

Qi Song, Yinghui Wu, and Xin Dong. 2016. Min-
ing summaries for knowledge graph search. 2016
IEEE 16th International Conference on Data Mining
(ICDM), pages 1215–1220.

Shaoxu Song and Lei Chen. 2009. Discovering match-
ing dependencies. In Proceedings of the 18th ACM
conference on Information and knowledge manage-
ment, pages 1421–1424.

Dan C. Stefanescu, Rajendra Banjade, and Vasile Rus.
2014. A sentence similarity method based on chunk-
ing and information content. In Conference on Intelli-
gent Text Processing and Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cantón Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,

Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023b. Llama 2: Open foundation
and fine-tuned chat models. ArXiv, abs/2307.09288.

Yile Wang, Peng Li, Maosong Sun, and Yang Liu. 2023.
Self-knowledge guided retrieval augmentation for
large language models. ArXiv, abs/2310.05002.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Zichun Yu, Chenyan Xiong, Shih Yuan Yu, and Zhiyuan
Liu. 2023. Augmentation-adapted retriever improves
generalization of language models as generic plug-in.
In Annual Meeting of the Association for Computa-
tional Linguistics.

A Implementation

A.1 Datasets Details
For all the datasets, we set the maximum new to-
ken number to 100 tokens. For PopQA and ARC-
Challenge, we retrieve top-k documents from the
2018 English Wikipedia. For TriviaQA, we ad-
ditionally retrieve documents using Google Pro-
grammable Search.

A.2 Query Rewriting.
After the indexes have been trimmed, we rewrite
the query to test the performance. We follow the
approach of Feng et al., combining the original
query and the top-1 retrieval document to form a
new query. Therefore, the new query sent to the
language generator is shown in Table 5.

A.3 Configuration for self-rag
We follow the method of Asai et al., employing the
pre-trained weights2. The integration experiment
uses CDIT first to modify indexes, then self-rag is
employed to test the overall quality. The default
configuration is employed for everything else.

2https://huggingface.co/selfrag/selfrag_
llama2_7b
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B Prompting

Based on time and performance considerations, we
choose OpenAI3 GPT-3.5-turbo API as the em-
ployed LLM. CDIT primarily utilizes LLM in two
parts, with detailed prompts as follows.

B.1 Extraction and Comparison.
Prompting is used in GPT-3.5 to achieve the func-
tionality of extracting components and utilizing the
CMDs for comparison. Prompt 1 and 2 in Table 6
are utilized respectively for trimming with CMD
ϕ1 and CMD ϕ1 & ϕ2.

B.2 Prompt for Answers
After retrieval, we combine the retrieval contexts
and other instructions to prompt the language gen-
erator for the final answers. For ARC-Challenge,
we follow Asai et al., designing task instructions
shown in Table 8. For other tasks, we do not design
additional task instructions. The final prompts are
shown in Table 7.

C Experiment Results

Table 9 shows the specific results of the top-k exper-
iment. In this experiment, Llama2-7b, IndexL2Flat
are employed as the language generator and the in-
dexing structure. Top-k varies from 10 to 5. Table
10 shows the results of the cmd expended experi-
ment. In this experiment, Llama2-7b, IndexL2Flat
are employed as the language generator and the
indexing structure. CMD ϕ1, ϕ2 are employed dif-
ferently. Table 11 shows the results of the integra-
tion experiment between CDIT and Self-RAG(Asai
et al., 2023). CDIT is employed firstly to enhance
the data quality of retrieved contexts. Then, the
model was trained and tested using the Self-RAG
approach. Llama2-7b is employed as the language
generator in this experiment, and top-k is 10.

3https://platform.openai.com/docs/
api-reference
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Original Query: What is Henry Feilden’s occupation?

Retrieved Documents:
[1] Henry Feilden (Conservative politician) Henry Master Feilden (21 February 1818 – 5 September
1875) was an English Conservative Party politician.
[2] Henry Wemyss Feilden Colonel. Henry Wemyss Feilden, CB (6 October 1838 – 8 June 1921) was a
British Army officer, Arctic explorer and naturalist.

New Query Structure:
Given a question [original query] and its possible answering passages [top-1 retrieved documents], Now
give a possible answer.

New Query:
Given a question [What is Henry Feilden’s occupation?] and its possible answering passages [Henry
Feilden (Conservative politician) Henry Master Feilden (21 February 1818 – 5 September 1875) was an
English Conservative Party politician.], Give a possible answer.

Table 5: Construction of new queries in query rewriting

CMD: CMD ϕ1

Prompt 1: You are a cautious language assistant.
###[Rules] Here are some language rules:
# If the two sentences can be identified as similar, then the subjects, predicates and objects of the two
sentences are similar. Be especially mindful of predicate phrases that appear similar but actually have
opposite meanings, which make sentences dissimilar.
###[Instructions] Are the following statements similar with the question? Just say True if they are;
otherwise just say False. Only output one word.
Sentences:
He turned on the radio.
He turned off the radio.
Answer: False.

CMD: CMD ϕ1&ϕ2

Prompt 2: You are a cautious language assistant.
###[Rules] Here are some language rules:
# If the two sentences can be identified as similar, then the subjects, verbs and objects of the two sentences
are similar. Be especially mindful of verb phrases that appear similar but actually have opposite meanings,
which make sentences dissimilar.
# If the two sentences can be identified as similar, then the adverbials and attributives of the two sentences
are similar.
###[Instructions] Are the following statements similar with the question? Just say True if they are;
otherwise, just say False. Only output one word.
Sentences:
He turned on the radio at five.
He turned on the radio at six.
Answer: False.

Table 6: Prompts used in extraction and comparison
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Query: What is Henry Feilden’s occupation?

Retrieved Documents:
[1] Henry Feilden (Conservative politician) Henry Master Feilden (21 February 1818 – 5 September
1875) was an English Conservative Party politician.
[2] Henry Wemyss Feilden Colonel Henry Wemyss Feilden, CB (6 October 1838 – 8 June 1921) was a
British Army officer, Arctic explorer and naturalist.

Prompt Structure:
###Background: {retrieved documents}
###Instruction: {query+task instructions}
###Response:

Prompt:
###Background: {[1] Henry Feilden (Conservative politician) Henry Master Feilden (21 February 1818
– 5 September 1875) was an English Conservative Party politician. [2] Henry Wemyss Feilden Colonel
Henry Wemyss Feilden, CB (6 October 1838 – 8 June 1921) was a British Army officer, Arctic explorer
and naturalist.}
###Instruction: {What is Henry Feilden’s occupation?}
###Response:

Table 7: Prompts for generating answers.

Task Instruction

Given four answer candidates, A, B, C and D, choose the best answer choice. Please answer with the
capitalized alphabet only, without adding any extra phrase or period.

Table 8: Task instruction for ARC-Challenge.

Index Method
Top-k Avg-Impro

10 9 8 7 6 5

IndexL2Flat
original 15.76 29.94 34.03 36.36 36.61 36.54

↑ 1.88CDIT 17.85 32.28 36.86 37.11 38.28 38.12
Impro. ↑ 2.09 ↑ 2.34 ↑ 2.83 ↑ 0.75 ↑ 1.67 ↑ 1.58

IndexHNSWFlat
original 19.52 30.52 34.61 34.52 35.69 34.19

↑ 2.84CDIT 27.61 34.62 36.03 36.61 36.11 35.11
Impro. ↑ 7.09 ↑ 4.10 ↑ 1.42 ↑ 1.09 ↑ 0.42 ↑ 0.92

IndexIVFFlat
original 20.26 31.35 34.78 35.94 36.86 37.78

↑ 1.85CDIT 25.44 35.03 35.94 37.86 36.20 37.61
Impro. ↑ 5.18 ↑ 3.68 ↑ 1.16 ↑ 1.92 ↓ 0.66 ↓ 0.17

Table 9: Changes in accuracy for models with and without CDIT on PopQA as the top-k parameter varies.

top-k 10 9 8 7 6 5

no CMD 15.76 29.94 34.03 36.36 36.61 36.54

CMD ϕ1 17.85 32.28 36.86 37.11 38.28 38.12
CMD ϕ1&ϕ2 20.02 33.53 36.53 36.86 36.78 37.70

Table 10: Accuracy of CDIT with different CMDs.
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Index Method PopQA TQA ARC Pub Avg.

IndexL2Flat
original 40.12 38.30 23.63 70.62 43.17
CDIT 46.04 44.02 24.40 71.53 46.50 ↑ 3.33

IndexHNSWFlat
original 41.11 38.29 22.36 70.72 43.37
CDIT 43.54 43.80 24.91 72.68 46.24 ↑ 2.87

IndexIVFFlat
original 40.45 38.82 24.48 70.72 43.62
CDIT 44.04 44.04 26.37 72.34 46.70 ↑ 3.08

Table 11: The performance of CDIT integrated with self-rag on three datasets with top-k being 10.

(a) Top-k Effects on IndexL2Flat. (b) Integration Effects on IndexL2Flat.

(c) Top-k Effects on IndexHNSWFlat. (d) Integration Effects on IndexHNSWFlat.

(e) Top-k Effects on IndexIVFFlat. (f) Integration Effects on IndexIVFFlat.

Figure 9: Additional experiments of top-k and integration with Self-RAG on Llama2-7b.
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