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Abstract

Adapting large language models (LLMs) to spe-
cific tasks remains challenging due to the ex-
tensive retraining required, prompting the need
for efficient adapter techniques. Despite this,
the concurrent serving of multiple adapters,
each with unique matrix shapes, poses sig-
nificant system-level challenges. To address
these issues, we identify an opportunity in struc-
turally sparse adapters, which, unlike low-rank
adapters, maintain consistent matrix shapes
while varying in sparsity patterns. Leveraging
this characteristic, we introduce SpartanServe,
a system designed for efficient concurrent serv-
ing of LLMs using multiple structurally sparse
adapters. SpartanServe employs a unified ma-
trix multiplication operation and a novel mem-
ory management technique to enable effective
batching. Furthermore, the incorporation of Tri-
ton kernels enhances the acceleration of matrix
multiplication in the serving process. Experi-
mental results demonstrate that SpartanServe
achieves 2.12× speedup over S-LoRA when
serving 96 adapters using a single NVIDIA
A100 GPU (40GB), showcasing its efficacy in
concurrent LLM serving.

1 Introduction

As the field of natural language processing (NLP)
continues to advance, large language models
(LLMs) (Brown et al., 2020) have emerged as a
cornerstone technology, powering a wide range
of applications from automated customer ser-
vice (Pandya and Holia, 2023) to sophisticated con-
tent generation (Imani et al., 2023).

The Need for Adapters. Large Language Mod-
els (LLMs) require adapters like Low-Rank Adap-
tation (LoRA) (Hu et al., 2021) to efficiently fine-
tune their performance on specific tasks while
managing computational and resource constraints.
LLMs, with their extensive parameters and capa-
bilities, still face challenges in adapting to new

or niche applications without exhaustive retrain-
ing. Adapters offer a solution by introducing
lightweight, task-specific adaptations that modify
only a subset of the model’s parameters (Dettmers
et al., 2024; Liu et al., 2024; Qiu et al., 2023; Liu
et al., 2023). This approach significantly reduces
the memory and computational power needed for
fine-tuning, making it feasible to deploy LLMs in
varied and resource-limited environments.

Expensiveness of Multi-Adapter Concurrent
LLM Serving. With the rise of LLM adaptation
techniques, serving multiple adapters on the same
base LLM has become standard practice. As a
consequence, finding efficient methods to serve
several adapters concurrently has become an in-
teresting research area. One intuitive approach to
efficient adapter serving is batching the input re-
quests and their corresponding adapters for faster
inference. However, this concurrent serving of
multiple adapters is costly due to the irregularity of
the adapters. Specifically, adapters like LoRA re-
quire specifying the hidden low-rank dimension as
a hyper-parameter, resulting in different adapters
having different low-rank matrix shapes. To ad-
dress this issue, Sheng et al. (2024) proposed S-
LoRA, which tackles the heterogeneous shapes
of low-rank matrices. Despite these significant
system-level improvements, challenges persist in
concurrently serving LLMs with numerous, hetero-
geneous LoRA adapters.

An Opportunity from Structural Sparse
Adapters. In this work, we identify an opportunity
for efficient adapter batching presented by struc-
turally sparse adapters (Qiu et al., 2023; Liu et al.,
2023). We argue that there is a fundamental dif-
ference between structurally sparse adapters and
low-rank adapters: for the same large language
model (LLM), structurally sparse adapters main-
tain the same matrix shape but exhibit different
sparsity patterns. Leveraging this advantage, we
propose a unified matrix multiplication approach
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for concurrent LLM serving.
Our Contributions. In this work, we propose

SpartanServe, a system designed for concurrent
LLM serving using multiple structurally sparse
adapters. We present a unified matrix multipli-
cation operation for these adapters, along with a
memory management technique that enables effi-
cient batching. Additionally, we incorporate Triton
kernels to further accelerate matrix multiplication
in the concurrent LLM serving process. We show
that SpartanServe is able to achieve 2.12× speedup
over S-LoRA when serving 96 adapters using a
single NVIDIA A100 GPU (40GB).

2 Structural Sparse LLM Adapters

2.1 LLM Fine-Tuning

Fine-tuning allows pre-trained LLMs to adapt to
specific tasks through retraining on domain spe-
cific data and updating model weights. Given
the substantial parameter counts in LLMs, fine-
tuning models in entirety is resource-intensive.
Thus, parameter-efficient fine-tuning (PEFT) ap-
proaches (Hu et al., 2021; Dettmers et al., 2024;
Qiu et al., 2023) have garnered considerable inter-
est. These PEFT methods involve modifying or
inserting only a small set of parameters, reducing
computational costs and making the fine-tuning
process more feasible for practical applications.

2.2 Low-Rank Adaptation and Variations

Low-Rank Adaptation (LoRA) (Hu et al., 2021)
represents one category of PEFT methods that
has attracted momentum. The fundamental prin-
ciple of LoRA is based on the hypothesis that
the essential updates required during the model
adaptation process can be encapsulated in a low-
dimensional space. In practice, LoRA implements
this by freezing the original weights of the model
and introducing two smaller, trainable matrices
whose product forms a low-rank approximation
of the weight changes. This method significantly
reduces the quantity of trainable parameters, de-
creasing both memory overhead and computational
expense. Consequently, LoRA maintains compa-
rable accuracy to traditional full-parameter fine-
tuning but with much lower resource demands.
Several variants of LoRA have been developed to
enhance adapter efficiency such as Adaptive Low-
Rank Adaptation (AdaLoRA) (Zhang et al., 2023)
and Weight-Decomposed Low-Rank Adaptation
(DoRA) (Liu et al., 2024).

We argue that low-rank style adapters are facing
a similar challenge in LLM concurrent serving: the
matrix shapes of different adapters are not the same.
Specialized optimizations are needed to improve
system-level performance (Sheng et al., 2024).

2.3 Structural Sparse LLM Adapters
Besides low-rank matrices, another class of struc-
tured matrices used for compressed matrix repre-
sentation is structural sparse matrices, which only
store the nonzero elements and their indices, thus
drastically reducing the memory required to store
the matrices’ information.

Butterfly Orthogonal Fine-Tuning (BOFT) is
one such fine-tuning method, using block-sparse
matrices to achieve parameter-efficiency. It builds
upon Orthogonal Fine-Tuning (OFT), which ap-
plies the insight that orthogonal transformations
preserves hyper-spherical energy by maintaining
the pair-wise angle between neurons, and leverages
butterfly factorization to efficiently parameterize
dense orthogonal matrices. Butterfly factorization
was used in the Cooley-Tukey Fast Fourier Trans-
form Algorithm (Cooley and Tukey, 1965), which
uses a recursive structure to write a matrix in Rd×d

as the product of sparse matrix products. This
method has been adopted in other works of fast
linear transforms and efficient training (Chen et al.,
2021; Dao et al., 2019, 2022).

Formally, we start by defining a butterfly fac-

tor BF (k) as BF (k) =

[
D1(k/2) D2(k/2)
D3(k/2) D4(k/2)

]
,

where each Di(k/2) is a diagonal matrix in R
k
2
× k

2 .
Each butterfly component B̃(d, k) ∈ Rd×d is a
block diagonal matrix composed of d

k butterfly fac-
tors of size k × k. i.e.:

B̃(d, k) = diag(BF
1 (k)...B

F
d/k(k))

Using butterfly factorization, for a dense matrix
B(d) ∈ Rd×d, we can write it as

B(d) = B̃(d, d)B̃(d, d/2)...B̃(d, 2)

where each B̃(d, k), k > 2 is a sparse matrix with
fixed sparsity pattern. Each factor’s non-zero pat-
tern can be created by a block-wise permutation
of the B̃(d, 2) non-zero patterns. As a result, we
can preserve the orthogonality of the dense matrix
B(d) by enforcing the blocks of B̃(d, 2) to be or-
thogonal matrices. This can be generalized to using
block butterfly components where each Bb(d, k) is
composed of block butterfly factors of k×k blocks,
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with each block having a size of b× b. Using this
formulation, a foward pass using a BOFT adapter
can be expressed as:

z = ((

m∏

i=1

B̃b(d, i) ·Wbase)
Tx

3 SpartanServe: Concurrent Serving of
Multiple Structural Sparse Adapters

3.1 Our Proposed Optimization

Unified Operation for Multiple Structural
Sparse Adapters. BOFT adapters offers an op-
portunity for simple batching in transformer-based
models. These adapters are particularly suitable
to unified operations due to their inherent struc-
tural properties. This simplicity in batching origi-
nates from the fact that each butterfly component
of a BOFT adapter can be represented in a dense
format as square matrices, where both the rows
and columns correspond to the size of the input
shape. In this section, we introduce our proposed
method, SpartanServe, emphasizing how the con-
sistent shape in BOFT adapters enables a unified
operation that facilitates efficient adapter serving.

Adapter Representation. At every decoder
layer, each BOFT adapter can be represented as
a B ×D ×D tensor, where B represents the num-
ber of butterfly components, and D is the hidden
size. Each D × D component is a block sparse
matrix with a block size of K, which is a hyper-
parameter that affects the sparsity patterns of the
butterfly components.

The vanilla implementation stored butterfly com-
ponents in a block sparse format. This means that
only one N ×K×K matrix is stored, where N de-
notes the number of non-zero blocks. At inference
time, these N blocks are used to reconstruct the full
D ×D matrix. This does not leverage the memory
efficiency of sparse matrices during inference, and
creates slowdowns due to the matrix reconstruction
process.

To optimize memory usage and compute effi-
ciency during inference, SpartanServe stores two
parts of the D ×D butterfly components: the first
part is the N × K × K tensor, which contains
the non-zero weight values, arranged in a row-
wise traversal order; the second component is a
(D/K) × (D/K) layout matrix, where each ele-
ment is a binary value indicating the presence (1) or
absence (0) of a non-zero block in the correspond-
ing block position in the D ×D matrix.

Adapter Batching. For batching M adapters to-
gether, SpartanServe consolidates the block sparse
weights into a single tensor, and merges the lay-
outs of each individual tensor into a unified lay-
out. The unified layout thus has a shape of
M × (D/K) × (D/K). During inference, the
batched adapters are multiplied with the computa-
tion result from the base model. For this purpose,
we applied Triton’s block sparse matrix multiplica-
tion, which generates a Triton kernel based on the
created unified layout and block size to facilitate
efficient batch computation. Figure 1 illustrates the
adapter batching pipeline.

Notably, when different adapters have different
block sizes, we cannot simply batch the non-zero
blocks together due to their varying shape. To
address this issue, we select a maximal common
block size that divides all block sizes. Using this
common block size, we generated a layout for each
butterfly component, which specifies the placement
of each block within the sparse matrix relative to
its position in the corresponding full matrix. Fig-
ure 1 demonstrates batching multiple adapters with
different block sizes.

Memory Management. The batching of BOFT
adapters requires the creation of a new adapter ten-
sor, effectively doubling the number of adapters in
the GPU memory. This increase often leads to out-
of-memory issues when batching multiple adapters
simultaneously. We developed a solution where
adapter weights are initially loaded onto CPU mem-
ory. Only the necessary adapter weights are loaded
to GPU memory during the batching process and
subsequently offloaded to the CPU upon comple-
tion. This approach limits the number of adapters in
a single batch to the capacity of the GPU memory
at the batch’s conclusion, rather than the consider-
ably higher memory demands during the batching
process itself, mitigating the risk of memory over-
flow during extensive batching operations.

Speed Up Triton Kernels. Due to the design of
the JIT compiler used to create the Triton (Tillet
et al., 2019) block-sparse matrix multiplication
API, initializing the kernel induces significant over-
head even with warm-up, causing inference to slow
down. To address this issue, we used PyTorch’s
CUDA graph integration to optimize kernel launch-
ing. CUDA graph enables us to define and store
CUDA kernels as a single unit, rather than a se-
quence of individually launched operations. This
allows us to launch Triton kernels in one single
CPU operation, reducing launch overheads.
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Figure 1: Batching adapters of different block size. We
use BOFT adapters with 1 butterfly component as an ex-
ample. The top three matrices represent butterfly compo-
nents with different block sizes (k, 2k, and k). The stack
of yellow squares represent batched non-zero matrices
with the maximal common block size (k), with p denot-
ing the total number of such blocks. The stack of green
squares represent the unified layout for all adapters. The
unified layout is then used to create a Triton kernel for
block sparse matrix multiplication between base model
outputs and batched adapters.

4 Experiment

4.1 Settings

Models. We evaluated BOFT adapter inference
performance on foundation models using LLama2-
7B (Touvron et al., 2023), one of the most popular
generative text models that uses transformer ar-
chitecture as a core component. The adapters are
added to the “k_proj", “q_proj", “v_proj", “o_proj"
modules in each self-attention layer. We consid-
ered 3 different model and adapter configurations,
listed in Table 1. The settings are chosen based
on previously reported parameter count ratio that
yielded similar performance between BOFT and
LoRA (Liu et al., 2023). The evaluation was con-
ducted with a single A100 GPU with 40GB of
memory.

Table 1: Model and adapter settings. m denote the num-
ber of butterfly components used to create the BOFT
adapter, b denote the block size. The %Params column
denotes the percentage of parameters of one adapter
compared to the base model parameter count.

Setting BOFT LoRA
m b %Param Rank %Param

1 2 32 0.48% 64 0.96%
2 2 {64, 32} 0.72% 64 0.96%

Baselines. We evaluated our results against
two systems capable of serving multiple LoRA
adapters: Huggingface PEFT (Mangrulkar et al.,
2022) and S-LoRA (Sheng et al., 2024).

Huggingface PEFT is a framework engineered
to adapt extensive pretrained models to diverse
tasks while optimizing resource utilization. This
library collaborates seamlessly with various other
libraries such as Transformers, Diffusers, and Ac-
celerate. Although it supports the batching of mul-
tiple adapters, its efficiency in this regard is limited.

S-LoRA is designed for the scalable deployment
of multiple LoRA adapters across single or multiple
GPUs. It achieves high adapter capacity by hosting
adapters on main memory and dynamically load-
ing requested ones to GPU memory. S-LoRA also
improves throughput and latency through the imple-
mentation of Unified Paging and specialized CUDA
kernels. However, it operates independently and
lacks integration with other large language model
frameworks and libraries.

Dataset. We created a dataset comprised of 960
text data samples. These samples have lengths rang-
ing from 10 to 50 words, intentionally structured
to simulate a spectrum of user queries that might
be observed in real-world settings. In each experi-
ment setting, for the n input text data samples, the
corresponding adapter configuration was selected
using a round-robin approach. For each request,
we set the output length to 100 tokens.

4.2 Main Results
Comparison with Huggingface PEFT. We com-
pare SpartanServe and Huggingface PEFT LoRA
adapters for performing inference with multiple
adapters in terms of request latency. BOFT
adapters consistently exhibit lower latency, as
shown in Table 2. Furthermore, as the num-
ber of adapters scales up, the latency associated
with Huggingface PEFT LoRA adapters increases,
whereas SpartanServe maintain a stable latency
profile. Here, we don’t compare with Huggingface
PEFT using larger number of adapters as it already
performs much slower under small adapter counts.

Comparison with S-LoRA We evaluated Spar-
tanServe and S-Lora on performing inference for
512 user requests with varying numbers of adapters.
We use setting 1 for comparing larger number of
adapters as setting 2 would cause out-of-memory is-
sues for SpartanServe when using one 40GB GPU.
In Table 3, we present the average latency com-
parison between SpartanServe and S-LoRA. Our
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Table 2: Average latency (s/req) for SpartanServe and
Huggingface PEFT when serving multiple adapters

Setting # adapters SpartanServe LoRA

S1 2 19.23 13.77
S1 4 8.99 22.22
S1 16 18.90 76.28
S1 32 11.67 142.24
S1 64 12.10 260.79

Table 3: Average latency (s/req) for SpartanServe and
S-LoRA when serving multiple adapters

Setting # adapters SpartanServe S-LoRA

S2 2 17.88 13.27
S2 4 21.51 12.46
S2 16 23.07 15.12
S2 32 19.23 22.33
S2 64 21.78 27.49

S1 72 13.04 29.52
S1 84 14.14 30.37
S1 96 15.30 32.46

results indicate that as the number of adapters in-
creases, SpartanServe exhibits lower latency. When
serving 96 adapters, SpartanServe is able to achieve
2.12 × speedup compared to S-LoRA, demonstrat-
ing its concurrent adapter serving ability.

5 Conclusion

In this work, we study the concurrent LLM serving
with multiple adapters. We have explored the poten-
tial of structurally sparse adapters, which maintain
consistent matrix shapes while varying in sparsity
patterns, unlike low-rank adapters. This insight led
to the development of SpartanServe, a system de-
signed for the efficient concurrent serving of LLMs
using multiple structurally sparse adapters. Spar-
tanServe leverages a unified matrix multiplication
operation and an innovative memory management
technique to enable effective batching. Addition-
ally, the use of Triton kernels enhances the accelera-
tion of matrix multiplication during the serving pro-
cess. Experimental results demonstrate that Spar-
tanServe achieves 2.12× speedup over S-LoRA
when serving 96 adapters using a single NVIDIA
A100 GPU (40GB).

Limitations

In our existing batching mechanism, different users
can specify varying block sizes for their adapters;
however, the batching process is constrained by
the requirement that all adapters share the same

number of butterfly factors. Due to the recursive
characteristics of butterfly factorization, it is the-
oretically feasible to merge consecutive butterfly
factors while maintaining the sparsity of the re-
sulting butterfly factor, thus aligning the butterfly
factor count across all batched adapters. Exploring
efficient methods for such butterfly factor merging
represents a promising avenue for future research.

Ethics Statement

The primary focus of our research was on improv-
ing model performance during inference time, with
minimal direct ethical concerns. We expect that
the methodologies developed will foster more sus-
tainable and efficient use of natural resources in
machine learning. However, this progress requires
careful regularization to prevent potential misuses
in harmful applications. Such considerations are
essential for ensuring that the deployment of new
technologies is aligned with societal well-being
and ethical standards.
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