
Findings of the Association for Computational Linguistics: EACL 2024, pages 4985–4995
November 12-16, 2024 ©2024 Association for Computational Linguistics

Learning Autonomous Driving Tasks via Human Feedbacks with Large
Language Models

Yunsheng Ma1, Xu Cao2, Wenqian Ye3, Can Cui1, Kai Mei4, Ziran Wang1,
1Purdue University, 2UIUC, 3University of Virginia, 4Rutgers University

Correspondence: ziran@purdue.edu

Abstract

Traditional autonomous driving systems have
mainly focused on making driving decisions
without human interaction, overlooking human-
like decision-making and human preference re-
quired in complex traffic scenarios. To bridge
this gap, we introduce a novel framework
leveraging Large Language Models (LLMs)
for learning human-centered driving decisions
from diverse simulation scenarios and environ-
ments that incorporate human feedback. Our
contributions include a GPT-4-based program-
ming planner that integrates seamlessly with
the existing CARLA simulator to understand
traffic scenes and react to human instructions.
Specifically, we build a human-guided learn-
ing pipeline that incorporates human driver
feedback directly into the learning process and
stores optimal driving programming policy us-
ing Retrieval Augmented Generation (RAG).
Impressively, our programming planner, with
only 50 saved code snippets, can match the
performance of baseline extensively trained re-
inforcement learning (RL) models. Our paper
highlights the potential of an LLM-powered
shared-autonomy system, pushing the frontier
of autonomous driving system development to
be more interactive and intuitive.

1 Introduction

Autonomous driving has the potential to revolu-
tionize transportation and urban mobility and has
been a primary focus of research and development
for the past two decades (Cui et al., 2024b). Tra-
ditional development of autonomous driving has
primarily focused on achieving perfect black box
safe navigation, and the role of humans in the sys-
tem is often minimized, due to the doubts about the
feasibility and benefits of integrating human and
autonomous driving systems collaboratively (Para-
suraman and Riley, 1997; Andrew, 2003). How-
ever, the human-like decision is still an important
factor in designing autonomous driving systems.

Human Instruction: I saw the news that there is
congestion ahead. Let’s take a left at the next light
and re-navigate to my destination.

Simulator
results

Human Feedback

Satisfied
Not Satisfied

Figure 1: Schematic view of human feedback learning
in the CARLA autonomous driving simulation.

There will be instances where autonomous vehicles
must make a choice between undesirable outcomes,
like deciding between harming pedestrians or en-
dangering the vehicle and its occupants to protect
the pedestrians (Bonnefon et al., 2016). Creating
the human-centered decision-making algorithms
that enable these vehicles to navigate such ethical
dilemmas presents a significant challenge.

In recent months, the advancements in large lan-
guage models (LLMs) have shown emerging ca-
pabilities in many aspects. One study (Wei et al.,
2022a) introduced this concept and defined emer-
gence as abilities that are "not present in smaller
models but are present in larger models”. Experi-
ments show that LLMs can tackle complicated lan-
guage tasks on challenges benchmarks including
TruthfulQA (Lin et al., 2022), Massive Multi-task
Language Understanding (MMLU) (Hendrycks
et al., 2021), and Word in Context (WiC) (Pilehvar
and Camacho-Collados, 2019).

This advancement also offers new possibilities
for redefining human-vehicle interaction and has
inspired researchers to reconsider the human roles

4985

mailto:ziran@purdue.edu

within the autonomous driving ecosystem. For ex-
ample, the "Drive as you speak" concept (Cui et al.,
2024a) proposes a more intuitive, human-like in-
teraction inside autonomous vehicles, enabling the
vehicles to understand and respond to natural lan-
guage commands. Moreover, the incorporation
of reasoning and reflective modules in the DiLu
framework (Wen et al., 2024) endows autonomous
vehicles with decision-making processes that mir-
ror human common-sense reasoning. These efforts
show the potential of autonomous vehicle systems
not just as independent units, but as interactive plat-
forms that engage with users.

Essentially, an autonomous driving system is
an AI-infused system (Amershi et al., 2019) that
interfaces with users. Therefore, it is crucial to
incorporate a human-centric approach in its de-
sign and operation. The Human-Computer Inter-
actions (HCI) community has proposed principles,
guidelines, and strategies for AI system interac-
tions. These are becoming increasingly relevant in
autonomous vehicle development.

Drawing from the design patterns suggested in
the People + AI Guidebook (Google PAIR, 2019),
such as "let users supervise automation" and "let
users give feedback," as well as the "shared auton-
omy" concept, which views rich, effective commu-
nication as the most essential design element (Frid-
man, 2018), this paper focuses on two essential
features as shown in Fig. 2: (1) to interact with
users based on spontaneous user instructions, and
(2) to adapt and learn from user feedback in nat-
ural language. Specifically, our contributions are
summarized as follows:

• An LLM-based programming planner is devel-
oped to serve as a plug-in module for classical
autonomous driving pipelines to enable them
to understand traffic scenes and follow human
instructions.

• A human-guided learning pipeline is proposed
for the programming planner to allow it to
continuously learn from human feedback.

• The experiment results from the CARLA au-
tonomous driving simulation show that the
proposed programming planner, using only 50
saved code snippets, matches the performance
of reinforcement learning (RL) methods.

2 Related Work

2.1 Human-Centered Autonomous Driving

Human-centered autonomous driving prioritizes
the demand for the safety and comfort of street
stakeholders in the system design (Xing et al.,
2021). Unlike traditional autonomous driving tech-
nologies, which primarily focus on the efficiency
and performance of the vehicle itself, human-
centered autonomous driving emphasizes integrat-
ing user feedback into the driving planning and con-
trol to create more intuitive, trustworthy, and user-
friendly autonomous driving experiences (Fridman,
2018). Previous research has demonstrated that lan-
guage models can facilitate smoother interactions
by answering questions between humans and vehi-
cles (Deruyttere et al., 2019). Nonetheless, these
advancements are often constrained by the mod-
els’ scale and performance, grappling with safety
and efficiency challenges that are important for
real-world application. Moreover, human-centered
autonomous driving recognizes the critical role of
interactions with other street stakeholders, not only
language-based communication with drivers. To
address these complexities, recent studies suggest
leveraging large language models such as GPT-4
to understand and integrate key street stakeholders’
information and user’s verbal feedback (Fu et al.,
2024b; Yang et al., 2024b; Cui et al., 2024b).

2.2 Reasoning with Large Language Models

Reasoning is a fundamental aspect of human in-
telligence. It is defined as a cognitive concept in-
volving the use of evidence, arguments, and logic,
playing a central role in intellectual activities such
as problem solving, decision making, and critical
thinking. Recently, LLMs have shown some emer-
gent behaviors, including the ability to "reason".
One approach to encourage LLMs to reason is us-
ing chain-of-thought (CoT) prompting (Wei et al.,
2022b). CoT decomposes a complicated reasoning
task, such as a multi-step math word problem into
intermediate steps, and solves each before giving
the final answer. Additionally, LLMs have demon-
strated zero-shot reasoning abilities by introducing
phrases like "Let’s think step by step" before each
answer (Kojima et al., 2022). Tree-of-Thoughts
(Yao et al., 2023) further generalizes CoT by ex-
ploring multiple reasoning paths. A closely related
previous study is Auto-CoT (Zhang et al., 2023),
which leverages zero-shot CoT to generate diverse
reasoning chains as demonstrations and samples

4986

Structured
Language
Generator

Execuation

Simulator

Code Generation

You	are	a	helpful	assistant	who
writes	Python	code	to	complete
any	autonomous	driving	task
speci�ied	by	me.

System
Message

Knowledge
Database

Language Model Program

Let’s	take	a	right	at	the
next	light	and	re-navigate
to	my	destination.

Instruction

There	is	a	traf�ic	light	and	it	is
Red.	It	is	5.52	m	ahead.	My
current	speed	is	7.0	m/s.	There
are	no	obstacles	in	the	vicinity.

Driving Context

Retrival
Augmented
Generation

(RAG)

Figure 2: An overview of the proposed programming planner. Initially, the Large Language Model (LLM) is given a
prompt composed of human instruction, driving context, and system message. It then conducts chain-of-thought
reasoning to generate language model programs, which serve as driving policies. This policy code is executed in the
CARLA simulator to complete the driving task as specified in the instructions. Verified code is then added to the
knowledge database for future reference, utilizing Retrieval Augmented Generation.

them as examples for in-context learning. Concur-
rently, there also exist some pioneer autonomous
driving works (Sima et al., 2023; Wen et al., 2024)
focusing on the reasoning in the driving context.

2.3 Language-Guided Autonomous Driving

LLMs have shown remarkable potential in com-
plicated scenarios such as driving scene under-
standing and decision-making (Rufus et al., 2021;
Marcu et al., 2023; Mao et al., 2023; Malla
et al., 2023; Nanwani et al., 2023; Cao et al.,
2024). Recent advancements focus on build-
ing visual-language models to generate driving
policy such as DriveMLM (Wang et al., 2023b)
and DriveVLM (Tian et al., 2024). An equally
crucial area of research is the development of
language-guided closed-loop autonomous driving
systems. These systems leverage multimodal sen-
sor data from simulators, as demonstrated by Lim-
Sim++ (Fu et al., 2024a) and LMDrive (Shao et al.,
2024). Additionally, RAG-Driver (Yuan et al.,
2024) introduces a novel retrieval-augmented in-
context learning approach, significantly enhancing
the zero-shot generalization capabilities of driving
LLMs.

Building on LLMs’ success in NLP, there are
also a great number of research works utilizing

LLMs in the code understanding and generation
domain (Liu et al., 2023). Furthermore, this suc-
cess catalyzed the exploration of utilizing LLMs for
robotics planning and control (Yang et al., 2024a),
as evidenced by studies such as Voyager (Wang
et al., 2023a) and Code as Policies (Liang et al.,
2023). Recent advancements have seen LLMs
generate executable code that interfaces with driv-
ing planning and control APIs, including LaMPi-
lot (Ma et al., 2024), LangProp (Ishida et al., 2024).
Despite these advancements, there still needs im-
provement in current works to embed LLMs in
enhancing human-centered human-vehicle interac-
tions and teaming within driving models.

3 Methodology

3.1 Overview
This section elaborates on the framework of our
proposed programming planner. It integrates the
world knowledge and reasoning capabilities of
LLMs into the autonomous driving system that
powers two essential shared autonomy features,
namely following user instructions and integrat-
ing human feedback. As illustrated in Fig. 2, the
programming planner has the following key de-
signs: (1) Inspired by the ‘code as policies’ con-
cept (Liang et al., 2023), we let LLMs generate

4987

System Message (X0
sys)

You are a helpful assistant that writes python code to complete any autonomous driving task specified by me.
Here are the APIs you can use: {apis}
Here are some useful programs written with the provided APIs: {programs}
At each round of conversation, I will give you
Code from last round: ... Command: ... Context: ... Feedback: ...
You should then respond to me with
Explain (if applicable): Are there any steps missing in your plan? Why is the code not satisfactory?
Plan: How to complete the task step by step.
Code: 1) Write a function taking NO argument. 2) Only use the APIs that I provided. 3) Anything defined outside a function will be ignored, define
all your variables inside your functions. 4) Name your function in a meaningful way (considering both command and context). 5) You should only
write one function, which will be called by me. Do not write multiple functions. 6) When calling ‘proceed()’ or ‘stop()’ function, you should always
‘yield’ the return value of the function. 7) You can reuse the above useful programs. 8) Do not write infinite loops. 9) Do not use any constant from
the context, as it may dynamically change. Call the APIs to get the latest values. 10) Always provide feedback to the user using the ‘say’ function.
You should only respond in the format as described below: {response_format}

Instruction (X0
q)

Take a left at the next light.
Driving Context (X0

c)
There is a traffic light and it is Red. It is 5.52 m ahead. My current speed is 7.0 m/s. There are no obstacles in the
vicinity.
Chain-of-Thought Reasoning (X0

r)
1) First, check the status of the traffic light. If it’s red, the vehicle should stop before the intersection. 2) Once the
traffic light turns green, the vehicle should prepare to take a left turn at the intersection. 3) The vehicle will then turn
left at the next intersection. 4) Throughout the process, provide feedback to the passenger about what actions the
vehicle is planning to take.
Code as Policies (X0

p)

def take_left_at_next_light ():
if check_red_light ():

yield stop()
say("Stopping for the red light.")

say("The light is green now. Preparing to take a left turn.")
turn_left_at_next_intersection ()
say("Taking a left turn at the intersection.")
yield proceed(check_speed_limit ())

Human Feedback (X1
f)

You should have slowed down a little bit while making turns.
Explanation (X1

r)
Reducing the speed slightly below the speed limit during a turn can enhance safety, especially in autonomous driving
scenarios where precise control is crucial for both passenger comfort and safety.
Code as Policies (X1

p)

... [omitted]
Reduce speed by a small factor (e.g., 90% of the speed limit) to ensure a safer turn
safe_turn_speed = check_speed_limit () * 0.9
... [omitted]
yield proceed(safe_turn_speed)

Human Feedback (X2
f)

The turning speed was too fast.
Explanation (X2

r)
It appears that the safe turning speed calculated as 90% of the speed limit was too fast for a safe left turn. To address
this, we can further reduce the target speed for the turn to ensure safety.
Code as Policies (X2

p)

... [omitted]
Reduce the speed to 70% of the speed limit for a safer turn
safe_turn_speed = check_speed_limit () * 0.7
... [omitted]

Table 1: This example illustrates the reasoning and code generation process of the proposed programming planner.
The three blocks indicate that the generations occur in different iterations. Content with blue titles (chain-of-thought
reasoning, explanation, and code as policies) is generated by LLMs. Content with red titles (instruction and human
feedback) is provided by humans. The initial prompt includes three components: a system message (Xsys), human
instruction (Xq), and the current driving context (Xc). Subsequent prompts also include human feedback (Xf) and
the policy code (Xp) from the last round. For brevity, the system message, human instruction, driving context, and
code from the last round are not included in subsequent prompts.

4988

Method Learning Navigation DS (↑) RC (↑) IP (↑)

Roach Expert (Zhang et al., 2021) Reinforcement Learning Waypoint 63.4 100.0 0.63
TCP Expert (Wu et al., 2022) Reinforcement Learning Waypoint 68.1 95.8 0.71

Programming Planner Expert (Ours) 0-Shot CoT Human Instruction 0.00 48.7 0.00
Programming Planner Expert (Ours) 3-Shot CoT Human Instruction 17.3 65.3 0.31
Programming Planner Expert (Ours) Human-Feedback CoT Human Instruction 65.4 95.1 0.68

Table 2: Driving performance of expert drivers on CARLA leaderboard testing routes. The driving score (DS) is
calculated by multiplying the route completion percentage (RC) by the infraction penalty (IP). The "Navigation"
column specifies the format of the navigation information. Here, "Waypoint" refers to a predetermined sequence of
GPS-style coordinates and enum route instructions, while "Human Instruction" refers to natural language navigation
commands like "turn right at the next light", which is a more challenging setting. ↑: Higher values are better.

language model programs (LMPs). These LMPs
serve as the action space, leveraging the inherent
potential of programs to symbolize actions that are
both temporally extensive and hierarchically struc-
tured. For instance, a complex maneuver like over-
taking can be programmatically split into a series
of actions, including lane changes, acceleration,
and possibly another lane change, composed with
conditional logic. (2) We propose a human-guided
learning pipeline to allow it to continuously learn
from user’s feedback.

As our experiments are based on the
CARLA (Dosovitskiy et al., 2017) (the most
widely used and realistic publicly available
autonomous driving simulator), with Python as the
programming language for code generation, We’ll
use specific terminologies related to this setup for
clarity, but it’s important to note that our approach
isn’t restricted to this setting.

The programming planner with the LLM back-
bone ℓ takes inputs including system messages
(Xsys), human instructions (Xq), driving context
(Xc). It leverages CoT reasoning (Xr) (Wei et al.,
2022b) to write policy code (Xp), which can be
formulated as:

[Xr,Xp] = ℓ([Xsys,Xq,Xc]) (1)

An example to show the generation process is
provided in Table 1. The system message (Xsys) is
a high-level instruction that guides the behavior of
the model ℓ, which sets the overall objective for the
generation. It also includes the API documentation
(detailed in Section 3.2) and retrieved programs
(detailed in Section 3.3). The human instructions
(Xq) are spontaneous commands from users. The
driving context (Xc), including information on cur-
rent road conditions and other road users, forms
the foundation for the planning process. This in-
formation can be derived from sensor data with

perception modules or directly communicated by
humans.

3.2 Programming Planner

LLMs have shown remarkable abilities in compre-
hending complex contexts and creating high-level
plans by leveraging their inherent common-sense
knowledge. However, despite their proficiency in
high-level reasoning, LLMs face challenges when
it comes to generating precise low-level control
signals for autonomous vehicles. As highlighted
by Cui et al. in their survey (Cui et al., 2024b),
LLMs struggle with accurately interpreting spatial
coordinates and creating detailed motion control
commands. Moreover, the substantial size and au-
toregressive nature of these models often introduce
significant latency in output generation, posing ma-
jor obstacles for real-time objectives such as obsta-
cle avoidance. This gap between high-level plan-
ning and low-level execution necessitates a novel
approach to effectively harness the capabilities of
LLMs in autonomous driving systems.

To address these limitations, we propose a plug-
and-play programming planner that seamlessly in-
tegrates with existing autonomous driving systems,
rather than attempting to replace them entirely.
This design allows our approach to synergize the
emerging capabilities of LLMs with the proven effi-
ciency of classical autonomous driving algorithms.
Instead of directly generating real-time, low-level
control signals like steering or throttle changes,
which LLMs are ill-suited for, our planner operates
at a higher level of abstraction. It generates code
snippets at lower frequencies, which serve as tem-
porary policies to guide the strategic navigation of
the ego vehicle based on user instructions. These
policy code snippets are structured as Python gen-
erator functions, which gracefully unfold until the
completion of each policy.

4989

These generated code snippets involve calls to
various functional primitives — specialized driving
APIs based on classical planning and control algo-
rithms. The API suite covers a broad spectrum of
driving functions, including navigation functions
like turning and lane changing, control functions
such as waiting or proceeding, and perception func-
tions which involve monitoring the immediate driv-
ing environment, including other vehicles, pedestri-
ans, traffic signals, and other functions like check-
ing the vehicle’s current speed or providing user
feedback. The API documentation, which includes
a complete list of these functional primitives and
their details, is provided in the Appendix. The
same documentation is also included in the system
message (Xsys).

The API suite provides substantial flexibility in
formulating driving policies. For example, Naviga-
tion APIs can be used to specify the vehicle’s future
trajectory, dynamically creating waypoints based
on map data and classical planning algorithms.
Control APIs, on the other hand, help with precise
vehicle control by issuing momentary control sig-
nals. Perception APIs, like the check_red_light
function in Table 1, can be used for identifying
and tracking nearby traffic objects. This is vital for
actions that react to the immediate driving context,
enabling a closed-loop control policy.

3.3 Human-in-the-Loop Learning
An additional challenge arises from the phe-
nomenon known as “LLM hallucination", where
LLMs may make up facts as their knowledge is lim-
ited to the data they were trained on (Huang et al.,
2023). This becomes problematic in the context of
generating policy code, where LLMs might make
up non-existent API functions. Additionally, the
generation process of LLMs restricts that tokens
generated early cannot be modified within the cycle.
This constraint limits the models’ ability to revise
initial responses, potentially leading to suboptimal
solutions.

To address these challenges, we introduce a
human-in-the-loop learning approach, based on
Retrieval Augmented Generation (RAG) (Lewis
et al., 2020) to ground LLMs to generate responses
to the input queries based on custom knowledge
databases. The key process is that after a generated
policy code (Xp) has been executed, the human
passenger will provide feedback (Xf) in natural
language, which, will be fed back into the LLM
together with Xp. This feedback loop enables con-

tinuous learning: positive feedback (i.e., the hu-
man is satisfied with the execution) results in the
code (Xp) being committed to the database to be
retrieved for reuse in the future. Otherwise, the
feedback will serve as guidance for another round
of improvement. The new generation process can
be formulated as:

[Xr,X
′
p] = ℓ([Xsys,Xq,Xc,Xp,Xf]), (2)

where X′
p is the improved code based on Xp and

the human feedback Xf as a cue.
The database serves two purposes: firstly, as

a repository for autonomous driving knowledge,
offering insights into corner cases for continu-
ous learning following the knowledge-driven au-
tonomous driving paradigm (Wen et al., 2024); and
secondly, as the database is built with personal
feedback, it automatically incorporates personal-
ized preferences in the interaction process. This
methodology transforms the programming planner
from a static, open-loop system into a dynamic,
continuous learning framework, which we show in
Section 4.4 that improved fundamentally compared
to baselines.

4 Experiments and Results

4.1 Task Description

The experiments utilize the official testing routes
from the CARLA (under CC-BY License) leader-
board 1.0 (CARLA, 2020) but with a more chal-
lenging setting. In each route, the agents start from
a specific point. Originally, agents were provided
with a series of GPS-style coordinates to drive to
a destination (Chen et al., 2019; Prakash et al.,
2021; Chitta et al., 2021; Toromanoff et al., 2020;
Chen et al., 2021; Chekroun et al., 2023; Chen and
Krähenbühl, 2022; Zhang et al., 2021; Wu et al.,
2022). However, in our setting, agents are given
only natural language navigation instructions based
on their current position (e.g., turn left at the next
intersection). As our study mainly focuses on rea-
soning and planning tasks, the driving context infor-
mation is crafted using a structured language gener-
ator (Chen et al., 2024) derived from the CARLA’s
privileged information, eliminating the influence
of perception.

4.2 Evaluation Metrics

The evaluation metrics include (1) Route Comple-
tion (RC), which measures the percentage of the

4990

route distance that an agent completes; (2) Infrac-
tion Penalty (IP), which keeps track of various in-
fractions (e.g., collisions, running a red light) in
the simulation. The IP aggregates these infrac-
tions committed by an agent as a geometric series.
Agents start with an ideal 1.0 base score, which
is reduced each time an infraction is committed;
(3) Driving Score (DS), the principal metric, is de-
fined as the product of the route completion and
the infraction penalty.

4.3 Implementation Details
Our programming planner leverages GPT
Model APIs (gpt-4-turbo-preview and
gpt-3.5-turbo)(OpenAI, 2023) as the LLMs.
Specifically, we use GPT-4 as the planning LLM
(ℓ). For the database implementation, we utilize
the open-source vector database Chroma(Chroma,
2023), where the key is the embedding vector for
the program description generated by GPT-3.5,
and the value is the policy code itself, following
the approach in (Wang et al., 2023a).

To facilitate efficient retrieval, we employ
text-embedding-ada-002 APIs for text embed-
ding. In the RAG process, we include the top-3
retrieved programs in the prompt to provide ad-
ditional context for generating the driving policy.
The navigation instructions used in our experiments
are provided by (Shao et al., 2024). We generate
the driving environment context using a structured
language generator, following (Chen et al., 2024).

The execution of an LMP involves using the
Python exec function, which takes the LMP code
as an input string, along with two dictionaries
defining the execution scope: (i) apis, contain-
ing all driving APIs the code may call, and (ii)
local_vars, initially empty, but later holding a
generator variable named policy once executed.

4.4 Results
In the experiments, the programming plan-
ner—without human-in-the-loop learning and RAG
integration—is referred to as either the 0-shot or
3-shot chain-of-thought baselines, in line with stan-
dard practices (Wei et al., 2022b). Both baselines
use the same API documentation for all test routes.

In the few-shot setting, in-context examples
are created by a human programmer proficient in
Python. These programmers are given API docu-
mentation and allowed to write and test their code
on the official training routes. The same examples
are used across all test routes. The human-in-the-

loop learning process is conducted on the official
training routes and concludes once the database
contains 50 programs.

We compare our programming planner-based
agent with RL experts that have access to privi-
leged information, such as Roach (Zhang et al.,
2021) and TCP (Wu et al., 2022). It’s important
to note that these comparisons aren’t necessarily
fair. Our setting of following user instructions is
inherently more difficult than following waypoints.
The comparison aims to reference previous works,
and the results can be found in Table 2.

From these results, we make the following obser-
vations: Initially, without any few-shot examples,
the out-of-the-box LLM struggles with the precise
reasoning needed for complex closed-loop driving
in CARLA. The 3-shot baseline also falls short,
resulting in significantly lower scores according to
CARLA’s standard metrics. However, our program-
ming planner with 50 code snippets learned from
human feedback, performs on par with the Roach
Expert RL baseline. Most of the programming
planner’s failures stem from the trade-off made for
the LLM low-level planning frequency. Here’s an
example of this failure:
Command: Alright , you can start driving.
Context Info:
There is a vehicle at a distance of 6.8 m.
It is moving at a speed of 0.0 m/s.
It is at an angle of 1.9 degrees.
The angle between the headings is 0.0 degrees.
My current speed is 0.0 m/s.
def start_driving_with_front_vehicle_check ():

(is_front_vehicle ,
distance_to_front_vehicle ,
speed_of_front_vehicle)
= check_front_vehicle ()

if (is_front_vehicle
and distance_to_front_vehicle < 5
and speed_of_front_vehicle == 0.0):
yield stop()

else:
speed_limit = check_speed_limit ()
yield proceed(speed_limit)

In this case, the vehicle could collide with a front
vehicle if it starts to move. This issue arises because
the LLM reasoning is based on the current context
information, not accounting for all potential future
actions of surrounding agents. However, due to the
latency of LLM reasoning, it’s not feasible to em-
ploy LLM to reason at every single timestamp. We
leave this issue to be addressed in future research.

5 Discussion

5.1 The Benefits and Risks of Driving with
Human Feedback Learning

Many previous autonomous driving strategies have
relied heavily on data-driven approaches, such as

4991

reinforcement learning and meta-learning, facing
challenges like data selection bias, long-tailed fail-
ure cases, lack of interpretability, and difficulties
in transferring weights of models. Thus those RL-
based methods have poor sample efficiency and
it is quite challenging to collect massive amounts
of offline data to pretrain the model. To address
these issues, our approach integrates human driver
feedback with LLMs to steer the creation of driv-
ing policy programs within the driving environ-
ments. Leveraging the advanced capabilities of
CodeLLMs and RAG, our proposed framework
matches the performance of reinforcement learning-
based methods, even under a more challenging con-
dition where access to waypoints during driving is
restricted. This demonstrates the potential of com-
bining human insights with the power of LLMs to
enhance the capability of autonomous driving.

There are also some potential risks of human
feedback learning. Creating an efficient and sta-
ble continual learning mechanism is essential in
human feedback learning due to the absence of a
clear mathematical or logical method to accurately
capture subjective human preferences. However,
collecting human feedback from a limited demo-
graphic with similar behavior preferences can lead
to skewed model performance, especially when
applied across diverse user groups or in contexts
affected by evaluators’ inherent biases. This issue
particularly appears in driving scenarios, where
varying driving styles, such as aggressive or defen-
sive, significantly influence the feedback, under-
scoring the need for a broad approach to feedback
collection to ensure the model’s safety, versatility,
and fairness.

5.2 Future Works
In autonomous driving, there exists an often over-
looked area — adaptability to the individual driv-
ing preferences of users. Traditional autonomous
driving systems have largely ignored the personal-
ization factor, focusing instead on creating a cen-
tralized and general solution. However, the core
objective of the autonomous driving system is not
only transportation, but also to serve human needs.
This perspective highlights the notion that the au-
tonomous driving system should not only follow
basic self-defined navigational commands but also
understand and adapt to the unique driving styles of
its users. To build better personalized autonomous
driving systems, our proposed method provides a
potential direction, that is using LLMs to under-

stand the human needs for driving and embed hu-
man needs via code generation into existing driving
pipelines.

Besides, real-world driving demands interaction
with other road users. Interacting with human-
driven vehicles and understanding human behav-
ior poses a significant challenge in autonomous
driving. Human drivers often rely on non-verbal
signals, such as slowing down to yield the right-
of-way or using visible gestures to communicate
with other road users. These non-verbal cues play
a vital role in communication on the road. In the
past, there have been numerous accidents involving
autonomous driving systems because they behaved
unexpectedly. In the future, LLMs with human
feedback learning can be utilized to enhance au-
tonomous driving systems, where they can incorpo-
rate context-rich information from various sources
and also analyze drivers’ driving styles to better
understand these social cues and make informed
decisions. By estimating other drivers’ character-
istics (such as selfishness or altruism) and types
of social interaction (such as cooperation, conflict,
competition, coercion, or exchange) based on these
social cues, LLMs can improve autonomous driv-
ing systems’ decision-making capabilities and over-
all safety.

6 Conclusion

In this paper, we proposed a human-centered
autonomous driving learning pipeline with
CodeLLMs supported by Retrieval-Augmented
Generation (RAG). Our method exhibits strong
learning abilities to embed human driving knowl-
edge and preference into the decision-making
process of autonomous driving. We conducted
interactive experiments in the CARLA autonomous
driving simulator by letting experienced human
drivers provide feedback. After learning with
human feedback, our programming planner
achieves much better performance than zero-shot
and few-shot chain-of-thought baselines. More
importantly, our framework can perform com-
pelling results using only 50 committed code
snippets in the Knowledge Database for RAG
without any parameter updates. Although our
framework has shown promising results in the
current setting, there are still some limitations.
Future improvements could focus on a better
personalization and understanding of human
behavior in real-world scenarios.

4992

Limitations

While LLMs can act as a bridge to connect users
and vehicles, they have inherent limitations, in-
cluding significant computational costs and high
latency. To enhance time efficiency during infer-
ence, we leverage RAG and human feedback learn-
ing to collect user input and optimize action code.
However, this process also requires considerable
time. Ideally, human feedback could be replaced
by another LLM acting as a code debugging agent,
a promising area for future research.

A pertinent question is whether humans provide
optimal solutions during human feedback learning.
Our experiments indicate that users may sometimes
mislead the autonomous driving system by pro-
viding incorrect feedback, potentially endangering
other road users. Consequently, our experiments
and research conclusions are currently limited to
simulation environments. There remains a signif-
icant journey ahead to fully integrate LLMs into
human-centric autonomous driving systems. The
primary objective of our paper is not to propose a
framework ready for deployment in real vehicles
but to introduce a novel human-centric framework
for autonomous driving tasks and emphasize the
critical role of human-vehicle interaction in enhanc-
ing AI systems for human use.

Ethical Statement

We acknowledge that our work is aligned with the
ACL Code of the Ethics and will not raise ethical
concerns. We do not use sensitive datasets/models
that may cause any potential issues.

References
Saleema Amershi, Dan Weld, Mihaela Vorvoreanu,

Adam Fourney, Besmira Nushi, Penny Collisson, Jina
Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz.
2019. Guidelines for Human-AI Interaction. In CHI.

Alex M. Andrew. 2003. Humans and Automation:
System Design and Research Issues. Kybernetes,
32(9/10).

Jean-François Bonnefon, Azim Shariff, and Iyad Rah-
wan. 2016. The social dilemma of autonomous ve-
hicles. Science, 352(6293):1573–1576. Publisher:
American Association for the Advancement of Sci-
ence.

Xu Cao, Tong Zhou, Yunsheng Ma, Wenqian Ye, Can
Cui, Kun Tang, Zhipeng Cao, Kaizhao Liang, Zi-
ran Wang, James M Rehg, et al. 2024. Maplm: A

real-world large-scale vision-language benchmark
for map and traffic scene understanding. In CVPR,
pages 21819–21830.

CARLA. 2020. Autonomous Driving Leaderboard.

Raphael Chekroun, Marin Toromanoff, Sascha Hor-
nauer, and Fabien Moutarde. 2023. GRI: General
Reinforced Imitation and Its Application to Vision-
Based Autonomous Driving. Robotics, 12(5):127.

Dian Chen, Vladlen Koltun, and Philipp Krähenbühl.
2021. Learning To Drive From a World on Rails. In
ICCV.

Dian Chen and Philipp Krähenbühl. 2022. Learning
From All Vehicles. In CVPR.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp
Krähenbühl. 2019. Learning by Cheating. In CoRL.

Long Chen, Oleg Sinavski, Jan Hünermann, Alice Karn-
sund, Andrew James Willmott, Danny Birch, Daniel
Maund, and Jamie Shotton. 2024. Driving with
LLMs: Fusing Object-Level Vector Modality for Ex-
plainable Autonomous Driving. In ICRA.

Kashyap Chitta, Aditya Prakash, and Andreas Geiger.
2021. NEAT: Neural Attention Fields for End-to-End
Autonomous Driving. In ICCV.

Chroma. 2023. The AI-native open-source embedding
database.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Zi-
ran Wang. 2024a. Drive as You Speak: Enabling
Human-Like Interaction with Large Language Mod-
els in Autonomous Vehicles. In WACVW.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang
Zhou, Kaizhao Liang, Jintai Chen, Juanwu Lu, Zi-
chong Yang, Kuei-Da Liao, Tianren Gao, Erlong Li,
Kun Tang, Zhipeng Cao, Tong Zhou, Ao Liu, Xinrui
Yan, Shuqi Mei, Jianguo Cao, Ziran Wang, and Chao
Zheng. 2024b. A Survey on Multimodal Large Lan-
guage Models for Autonomous Driving. In WACVW.

Thierry Deruyttere, Simon Vandenhende, Dusan Gruji-
cic, Luc Van Gool, and Marie-Francine Moens. 2019.
Talk2Car: Taking Control of Your Self-Driving Car.
In EMNLP-IJCNLP.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. 2017. CARLA:
An Open Urban Driving Simulator. In CoRL.

Lex Fridman. 2018. Human-Centered Autonomous
Vehicle Systems: Principles of Effective Shared Au-
tonomy. arXiv.

Daocheng Fu, Wenjie Lei, Licheng Wen, Pinlong Cai,
Song Mao, Min Dou, Botian Shi, and Yu Qiao. 2024a.
LimSim++: A Closed-Loop Platform for Deploying
Multimodal LLMs in Autonomous Driving. arXiv.

4993

https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1108/k.2003.06732iae.001
https://doi.org/10.1108/k.2003.06732iae.001
https://doi.org/10.1126/science.aaf2654
https://doi.org/10.1126/science.aaf2654
http://leaderboard.carla.org/
https://doi.org/10.3390/robotics12050127
https://doi.org/10.3390/robotics12050127
https://doi.org/10.3390/robotics12050127
https://doi.org/10.48550/arXiv.1912.12294
https://doi.org/10.48550/arXiv.2310.01957
https://doi.org/10.48550/arXiv.2310.01957
https://doi.org/10.48550/arXiv.2310.01957
https://github.com/chroma-core/chroma
https://github.com/chroma-core/chroma
https://doi.org/10.48550/arXiv.2309.10228
https://doi.org/10.48550/arXiv.2309.10228
https://doi.org/10.48550/arXiv.2309.10228
https://doi.org/10.18653/v1/D19-1215
https://doi.org/10.48550/arXiv.2402.01246
https://doi.org/10.48550/arXiv.2402.01246

Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong
Cai, Botian Shi, and Yu Qiao. 2024b. Drive Like a
Human: Rethinking Autonomous Driving with Large
Language Models. In WACVW.

Google PAIR. 2019. People + AI Guidebook.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring Massive Multitask Language Un-
derstanding. In ICLR.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A Survey on Hallucination in Large Lan-
guage Models: Principles, Taxonomy, Challenges,
and Open Questions. arXiv.

Shu Ishida, Gianluca Corrado, George Fedoseev, Hud-
son Yeo, Lloyd Russell, Jamie Shotton, João F. Hen-
riques, and Anthony Hu. 2024. LangProp: A code
optimization framework using Language Models ap-
plied to driving. arXiv.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large Lan-
guage Models are Zero-Shot Reasoners. In NeurIPS.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In NeurIPS.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2023. Code as Policies: Language Model
Programs for Embodied Control. In ICRA.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring How Models Mimic Human
Falsehoods. In ACL.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is Your Code Generated by Chat-
GPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. In NeurIPS.
arXiv.

Yunsheng Ma, Can Cui, Xu Cao, Wenqian Ye, Peiran
Liu, Juanwu Lu, Amr Abdelraouf, Rohit Gupta,
Kyungtae Han, Aniket Bera, James M. Rehg, and
Ziran Wang. 2024. LaMPilot: An Open Bench-
mark Dataset for Autonomous Driving with Lan-
guage Model Programs. In CVPR.

Srikanth Malla, Chiho Choi, Isht Dwivedi, Joon Hee
Choi, and Jiachen Li. 2023. DRAMA: Joint Risk
Localization and Captioning in Driving. In WACV.

Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone,
and Yue Wang. 2023. A Language Agent for Au-
tonomous Driving. arXiv.

Ana-Maria Marcu, Long Chen, Jan Hünermann, Al-
ice Karnsund, Benoit Hanotte, Prajwal Chidananda,
Saurabh Nair, Vijay Badrinarayanan, Alex Kendall,
Jamie Shotton, and Oleg Sinavski. 2023. LingoQA:
Video Question Answering for Autonomous Driving.
arXiv.

Laksh Nanwani, Anmol Agarwal, Kanishk Jain,
Raghav Prabhakar, Aaron Monis, Aditya Mathur,
Krishna Murthy Jatavallabhula, AH Abdul Hafez,
Vineet Gandhi, and K Madhava Krishna. 2023.
Instance-level semantic maps for vision language
navigation. In RO-MAN, pages 507–512. IEEE.

OpenAI. 2023. GPT-4 Technical Report. arXiv.

Raja Parasuraman and Victor Riley. 1997. Humans and
Automation: Use, Misuse, Disuse, Abuse. Human
Factors, 39(2):230–253.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2019. WiC: the Word-in-Context Dataset for Evalu-
ating Context-Sensitive Meaning Representations. In
NAACL. ArXiv:1808.09121 [cs].

Aditya Prakash, Kashyap Chitta, and Andreas Geiger.
2021. Multi-Modal Fusion Transformer for End-to-
End Autonomous Driving. In CVPR.

Nivedita Rufus, Kanishk Jain, Unni Krishnan R Nair, Vi-
neet Gandhi, and K Madhava Krishna. 2021. Ground-
ing linguistic commands to navigable regions. In
IROS, pages 8593–8600. IEEE.

Hao Shao, Yuxuan Hu, Letian Wang, Steven L. Waslan-
der, Yu Liu, and Hongsheng Li. 2024. LMDrive:
Closed-Loop End-to-End Driving with Large Lan-
guage Models. In CVPR.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen,
Hanxue Zhang, Chengen Xie, Ping Luo, Andreas
Geiger, and Hongyang Li. 2023. DriveLM: Driving
with Graph Visual Question Answering. arXiv.

Xiaoyu Tian, Junru Gu, Bailin Li, Yicheng Liu, Chenxu
Hu, Yang Wang, Kun Zhan, Peng Jia, Xianpeng Lang,
and Hang Zhao. 2024. DriveVLM: The Convergence
of Autonomous Driving and Large Vision-Language
Models. arXiv.

Marin Toromanoff, Emilie Wirbel, and Fabien
Moutarde. 2020. End-to-End Model-Free Reinforce-
ment Learning for Urban Driving Using Implicit Af-
fordances. In CVPR.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023a. Voyager: An Open-
Ended Embodied Agent with Large Language Mod-
els. arXiv.

Wenhai Wang, Jiangwei Xie, ChuanYang Hu, Haoming
Zou, Jianan Fan, Wenwen Tong, Yang Wen, Silei
Wu, Hanming Deng, Zhiqi Li, Hao Tian, Lewei Lu,
Xizhou Zhu, Xiaogang Wang, Yu Qiao, and Jifeng
Dai. 2023b. DriveMLM: Aligning Multi-Modal

4994

https://doi.org/10.48550/arXiv.2307.07162
https://doi.org/10.48550/arXiv.2307.07162
https://doi.org/10.48550/arXiv.2307.07162
https://pair.withgoogle.com/guidebook
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2009.03300
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2209.07753
https://doi.org/10.48550/arXiv.2209.07753
https://doi.org/10.48550/arXiv.2109.07958
https://doi.org/10.48550/arXiv.2109.07958
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2312.04372
https://doi.org/10.48550/arXiv.2312.04372
https://doi.org/10.48550/arXiv.2312.04372
https://doi.org/10.48550/arXiv.2311.10813
https://doi.org/10.48550/arXiv.2311.10813
https://doi.org/10.48550/arXiv.2312.14115
https://doi.org/10.48550/arXiv.2312.14115
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1518/001872097778543886
https://doi.org/10.1518/001872097778543886
https://doi.org/10.48550/arXiv.1808.09121
https://doi.org/10.48550/arXiv.1808.09121
https://doi.org/10.48550/arXiv.2312.07488
https://doi.org/10.48550/arXiv.2312.07488
https://doi.org/10.48550/arXiv.2312.07488
https://doi.org/10.48550/arXiv.2312.14150
https://doi.org/10.48550/arXiv.2312.14150
https://doi.org/10.48550/arXiv.2402.12289
https://doi.org/10.48550/arXiv.2402.12289
https://doi.org/10.48550/arXiv.2402.12289
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2312.09245

Large Language Models with Behavioral Planning
States for Autonomous Driving. arXiv.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. 2022a. Emer-
gent Abilities of Large Language Models. Transac-
tions on Machine Learning Research.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022b. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In
NeurIPS.

Licheng Wen, Daocheng Fu, Xin Li, Xinyu Cai, Tao
Ma, Pinlong Cai, Min Dou, Botian Shi, Liang He,
and Yu Qiao. 2024. DiLu: A Knowledge-Driven Ap-
proach to Autonomous Driving with Large Language
Models. In ICLR.

Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan,
Hongyang Li, and Yu Qiao. 2022. Trajectory-guided
Control Prediction for End-to-end Autonomous Driv-
ing: A Simple yet Strong Baseline. In NeurIPS.

Yang Xing, Chen Lv, Dongpu Cao, and Peng Hang.
2021. Toward human-vehicle collaboration: Review
and perspectives on human-centered collaborative
automated driving. Transportation Research Part C:
Emerging Technologies.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R.
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai.
2024a. If LLM Is the Wizard, Then Code Is the
Wand: A Survey on How Code Empowers Large Lan-
guage Models to Serve as Intelligent Agents. ICLR
Workshop on LLM Agents.

Yi Yang, Qingwen Zhang, Ci Li, Daniel Simões Marta,
Nazre Batool, and John Folkesson. 2024b. Human-
Centric Autonomous Systems With LLMs for User
Command Reasoning. In WACVW.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of Thoughts: Deliber-
ate Problem Solving with Large Language Models.
arXiv preprint. ArXiv:2305.10601 [cs].

Jianhao Yuan, Shuyang Sun, Daniel Omeiza, Bo Zhao,
Paul Newman, Lars Kunze, and Matthew Gadd. 2024.
RAG-Driver: Generalisable Driving Explanations
with Retrieval-Augmented In-Context Learning in
Multi-Modal Large Language Model. arXiv.

Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher
Yu, and Luc Van Gool. 2021. End-to-End Ur-
ban Driving by Imitating a Reinforcement Learning
Coach. In ICCV.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic Chain of Thought Prompt-
ing in Large Language Models. In ICLR.

4995

https://doi.org/10.48550/arXiv.2312.09245
https://doi.org/10.48550/arXiv.2312.09245
https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2206.07682
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2309.16292
https://doi.org/10.48550/arXiv.2309.16292
https://doi.org/10.48550/arXiv.2309.16292
https://doi.org/10.48550/arXiv.2206.08129
https://doi.org/10.48550/arXiv.2206.08129
https://doi.org/10.48550/arXiv.2206.08129
https://doi.org/10.1016/j.trc.2021.103199
https://doi.org/10.1016/j.trc.2021.103199
https://doi.org/10.1016/j.trc.2021.103199
https://doi.org/10.48550/arXiv.2401.00812
https://doi.org/10.48550/arXiv.2401.00812
https://doi.org/10.48550/arXiv.2401.00812
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2305.10601
https://doi.org/10.48550/arXiv.2402.10828
https://doi.org/10.48550/arXiv.2402.10828
https://doi.org/10.48550/arXiv.2402.10828

