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Abstract

Teaching language models to use tools is an
important milestone towards building general
assistants, but remains an open problem. While
there has been significant progress on learn-
ing to use specific tools via fine-tuning, lan-
guage models still struggle with learning how
to robustly use new tools from only a few
demonstrations. In this work we introduce a
self-verification method which distinguishes
between close candidates by self-asking con-
trastive questions during (1) tool selection; and
(2) parameter generation. We construct syn-
thetic, high-quality, self-generated data for this
goal using Llama-2 70B, which we intend to
release publicly. Extensive experiments on 4
tasks from the ToolBench benchmark, consist-
ing of 17 unseen tools, demonstrate an aver-
age improvement of 22% over few-shot base-
lines, even in scenarios where the distinctions
between candidate tools are finely nuanced.

1 Introduction

Incorporating external tools into large language
models (LLMs) enhances their real-world appli-
cability (Schick et al., 2023; Shen et al., 2023;
Song et al., 2023). Many tools exist in the form
of APIs (Xu et al., 2023b; Tang et al., 2023; Hsieh
et al., 2023; Schick et al., 2023; Qin et al., 2023),
machine learning models (Shen et al., 2023; Patil
et al., 2023), and other functions (Gou et al., 2023).
Nevertheless, the evolving landscape of existing
tools and APIs, marked by frequent parameter up-
dates and the daily introduction of new tools, poses
a challenge for generalization. LLMs must quickly
adapt to these changes and generalize to previously
unseen tools without additional fine-tuning or ex-
tensive human input.

Several recent studies enable tool usage by fine-
tuning LLMs on real (Schick et al., 2023; Qin et al.,

∗ Work done during an internship at Meta.

2023; Patil et al., 2023) or synthetic tools (Tang
et al., 2023), equipping them to effectively uti-
lize tools present in the training data with a high
success rate. Currently, the integration of unseen
tools into LLMs relies on providing them with
few-shot demonstrations that contain examples of
user instructions and corresponding tool calls (Patil
et al., 2023; Tang et al., 2023). However, these
prompting-based approaches still struggle to accu-
rately generate a complete tool call from a set of
unseen tools.

To address these challenges, we propose
TOOLVERIFIER, a self-verification method tailored
for tool-use scenarios, capable of discerning be-
tween candidate tools and their respective parame-
ters through verification questions. To achieve this,
we decompose the tool call generation task into two
distinct sub-tasks: (1) tool selection, given a user
instruction, the most suitable tool is selected from
a library of options, and (2) parameter generation,
the appropriate parameters for the selected tool are
then generated. Crucially, we propose verification
for each sub-task, to both improve sensitivity and to
curb error propagation. Figure 1 shows an overview
of each sub-task.

In the tool selection stage, our model must
choose one tool among multiple options, given only
the description of the tool. To facilitate learning
how to choose the appropriate tool, we curate a
high-quality, model-generated, synthetic training
dataset containing tools, their descriptions, and user
instructions.1 This dataset comprises 173 synthetic
tools with corresponding descriptions, 555 samples,
each involving reasoning about the tool’s usage.
We then use this dataset to fine-tune a Llama-2 70B
model (Touvron et al., 2023b) to select the correct
tool for an instruction given only a set of tool names
and their descriptions, allowing the model at test

1The dataset is available at https://github.com/
facebookresearch/ToolVerifier
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Q: Are you looking for the level of air 
pollution in a specific location or the 
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A: The question was “How's the air quality 
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data which suggests they want to know air 
pollution levels.
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Figure 1: Overview of TOOLVERIFIER. Starting with a candidate tool list and a user instruction, TOOLVERIFIER
initially identifies the top two tools. Subsequently, it generates a verification question by contrasting the selected
tools and answers it. Finally, this information is appended to the context, leading to the final tool choice. The
parameter generation follows a similar pipeline, wherein two candidate values are obtained for each parameter
(latitude in the above figure). Subsequently, the verification question is used to finalize the parameter value.

time to select from tools never seen during training.
After the tool is selected, parameters are gener-
ated for the selected tool call, which is achieved
through few-shot prompting with demonstrations
corresponding to the chosen tool.

Self-verification is used at each step to reduce
error propagation and enhance overall performance.
As shown in Figure 1, for tool selection verifica-
tion, we extract the top two predictions from the
fine-tuned model. A verification question is then
generated contrasting the two options via 0-shot
prompting, enabling the model to focus on a fine-
grained decision where the answer aids in selecting
one tool from the top two predictions. The model
answers the question, and the context is updated
by appending this answer to the user instruction, to
guide tool selection. A similar approach is adopted
for verifying the parameter generation.

We evaluate our approach on 4 tasks from the
publicly available ToolBench benchmark which
tests generalization to 17 unseen real-life APIs.
TOOLVERIFIER demonstrates a noteworthy 22%
improvement over few-shot prompting baselines.
The proposed self-verification mechanism con-
tributes an improvement of 8%, underscoring its
pivotal role in boosting overall performance.

2 TOOLVERIFIER

TOOLVERIFIER chooses and calls a tool given a
user instruction. It consists of the following steps:

1. Tool selection & verification – selecting the
tool from a library of tools.

2. Parameter generation & verification – gener-
ating the parameters for the tool call.

For step (1) we generate synthetic data consist-
ing of a library of tools, (instruction, tool) pairs,
and reasoning notes explaining the correct choice
of tool, see Figure 2. Fine-tuning on this data pro-
vides improved tool selection performance, even
on new sets of tools. The selection process is then
refined by verifying the choice between the top
two competing choices by asking and answering
contrastive verification questions, see Figure 3.

For step (2) we use few-shot prompting given
demonstrations of the actual tool. We again verify
two competing likely generations.

2.1 Tool Selection Dataset Generation
Our first goal is to train a language model capable
of selecting an appropriate tool for a given user
instruction by reasoning about a candidate list of
tools solely based on their names and descriptions.
We intentionally exclude demonstrations for tool
selection in our approach to handle a larger set of
tools in one go, using only their names and descrip-
tions. In this section, we elaborate on the process
of creating the training dataset for training such a
tool selection language model.

Since the primary objective in this step is to se-
lect the correct tool (but not execute the tool call),
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User: While I was coming back home from the office,
I saw a kid in Audi Q7. Where can I buy this car
within 10 miles?

Tool Choices:
• CarLocator: Lists car dealers given price range.
• BankAccount: Creates a bank account in a bank.
• CarFinder: Finds dealers given car model and radius.
• CurrentWeatherCity: Current weather given city.
• . . . [more choices] . . .

Thought: Since I need to find the car within 10 miles,
“Car Finder” tool seems to be the right choice here. I
need to use this tool.

Act: CALLTOOL[CarFinder()]

Figure 2: Illustrative training example from our synthet-
ically constructed tool selection dataset ToolSelect.
Given a user instruction and a set of tools to choose
from, the output consists of reasoning notes (“Thought”)
and the final tool selection (“Act”).

synthetically generated tools and their correspond-
ing descriptions can easily be used in this setting,
as we do not require their actual inner workings (in
order to execute them). In our generated dataset,
each training sample is thus composed of a user in-
struction, a candidate set of tools that includes the
ground truth tool, and a reasoning note elucidating
the correct choice of tool. An illustrative training
sample is given in Figure 2.

2.1.1 Synthetic Tool Library Generation

Generation Procedure We generate a set of syn-
thetic tools along with their corresponding descrip-
tions, which are used to build the training exam-
ples. We start by first manually annotating a “seed
set” of eight tools and their descriptions. Subse-
quently, we employ the Llama-65B (Touvron et al.,
2023a) model to generate additional tools using
few-shot prompting with the manually annotated
tools (specified in Appendix A.4.1). This process
then involves multiple iterations of prompting with
different random seeds, where the tools generated
in each iteration are integrated into the prompt for
subsequent iterations to generate more diverse tools.
Specifically, in each iteration, for every newly intro-
duced tool, we identify the most similar tool in the
prompt based on cosine similarity using RoBERTa
sentence similarity (Reimers and Gurevych, 2019).
We replace the most similar tool in the prompt with
the new addition, ensuring a balanced diversity of
tools in the prompt. Using this iterative approach,

I am confused to choose one of these two classes. Here
are their names and descriptions:

a CarLocator - Lists car dealers given price range.
b CarFinder: Finds dealers given car model and radius.

A contrastive question is a question that upon asking
would resolve such confusion. Generate a contrastive
question that I can ask myself whose answer would
help me make the right choice.

Verification Question: What is the primary purpose of
the class I need? Is it to find a car dealership based
on a specific car model and location (CarFinder), or
is it to list car dealerships within a given price range
(CarLocator)?

Figure 3: Verification method for tool selection: a con-
strastive question is generated that can then be answered
to help discern among the top two predicted tools.

we generate a total of 60 tools.2 It is noteworthy
to highlight that this process yields a diverse set of
tools from various domains including travel, bank-
ing, and calendar, with almost no manual effort.

Generating Challenging Tool Sets In generat-
ing these synthetic tools, we endeavor to have a tool
set that is diverse, but also sufficiently challenging.
An overly simplistic training set would contain only
easy choices (e.g., a weather tool versus an email
tool) and this would impede the model’s ability
to generalize to challenging instances during test
time. To address this, we generate two related tools
for each of our previously generated 60 tools. Re-
lated tools are defined as tools closely resembling
a given tool but differing in either functionality
or parameters. For instance, “Bank account for a
person name ” and “Bank account for an account
number” are related tools. We use only the tool
names, and not the descriptions, for generating
related tools. After manually annotating related
tools for our seed set of eight tools, we generate
two related tools for each of the remaining tools
with few-shot prompting with these examples, as
indicated in Appendix A.4.3.

Finally, after manual inspection and curation,
our dataset contains a total of 173 tools.

2.1.2 Generating Training Examples
Using the generated tool library, we can now gener-
ate training examples for our tool selection dataset.

2These tools were manually reviewed, and 7 duplicates
were removed.
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This requires generating inputs (instructions), curat-
ing candidate lists of tools, and generating outputs
(reasoning notes that explain which tools should be
selected, and actions to call those tools).

Generating Instructions We first manually an-
notate three instructions per tool for the seed set
of eight tools. Using these examples, we generate
three instructions per tool for all remaining tools
by few-shot prompting Llama-2 70B.

Curating Candidate List of Tools For each gen-
erated instruction, a candidate list of tools is created
by randomly selecting 7 tools and adding the orig-
inal ground truth tool for which we generated the
instruction. To introduce complexity, for a sub-
set of the training set, we deliberately create chal-
lenging samples by restricting the candidate set to
include only the ground truth tool and its related
tools. This deliberate selection aims to increase
the difficulty level, as distinguishing among these
options is inherently more challenging than with
randomly selected tools from the entire set.

Generating Target Outputs After generating
the set of instructions along with their respective
ground truth tool and a candidate list of tools, we
create a reasoning note for each sample elucidat-
ing the rationale behind the selection of the ground
truth tool, which becomes the target output for that
training example (see Figure 2). Such reasoning
notes have been observed to enhance reasoning
abilities (Wei et al., 2022; Yao et al., 2022; Lan-
chantin et al., 2023). Reasoning note generation
is accomplished by prompting Llama-2-Chat-70B
with the instruction, list of tools, and the ground
truth tool, and asking the model why the tool was
chosen. The exact prompt used is provided in Ap-
pendix A.4.2.

Our final dataset, called ToolSelect, thus con-
tains 555 samples for our 173 tools, of which 75
samples are hard examples, featuring candidate
tool sets that contain only the ground truth tool and
its related tools.3 The average number of candi-
date tools per instruction is 7.34 with minimum
and maximum number of candidate tools being 2
and 8. The average length of a reasoning note is
1054 characters.

The goal of this dataset is to enable generaliza-
tion capabilities to a wide range of possible tools

3The data was manually reviewed, and 56 noisy and dupli-
cate samples were removed.

and tool libraries, and thus to demonstrate effective-
ness across diverse scenarios. During training, the
user instruction and tool list in each sample have
masked labels, and hence, they do not contribute to
the loss and are not learned.

2.2 Tool Selection Verification
Despite our model being fine-tuned on the above
dataset, tool selection mistakes can still happen,
particularly for related tools that are hard to dif-
ferentiate. Crucially, we observe that those tool
selection predictions typically appear as the top
few predictions – but selection between them is
challenging.

At inference time, we thus perform the following
procedure. Given an instruction:

• First, we use the fine-tuned tool selection model
to zero-shot select a tool.

• We then remove the initially selected tool from
the candidate set of tools, and generate a second
prediction.

• We construct a verification question to make a
fine-grained decision between the model’s top
two selections.

We employ Llama-2-Chat-70B to generate a con-
trastive verification question, where the prompt
asks the model to ask a question that emphasizes
the distinctions between candidate tools given their
names and descriptions (see Appendix A.4.4 for the
exact prompt used and Figure 3 for an instantiation
of it). Self-asking the model regarding its predic-
tions has been noted to reduce hallucinations (Press
et al., 2022; Dhuliawala et al., 2023), suggesting
that posing such verification questions could assist
the model in validating its predictions. Since only
names and descriptions are used for generating con-
trastive questions, they can be generated offline and
utilized as needed to make the method more effi-
cient. The answers to these contrastive questions
are obtained by further prompting Llama-2-Chat-
70B, and these are appended to the context. Finally,
we select the tool by using our fine-tuned Llama-2
70B model, with the top-two tools as candidates.
As the verification answer to the question is in the
context this can help it select the right tool.

2.3 Parameter Generation & Verification
Parameter Generation Following tool selec-
tion, we generate parameters for the selected tool
through few-shot prompting with Llama-2 70B, uti-
lizing demonstrations specific to the selected tool,
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which are assumed to be provided. Note that we
do not use our synthetic tool selection dataset for
parameter generation since the dataset does not
contain this subtask. This procedure is only done
with real tools at inference time, without prior fine-
tuning.

Parameter Verification The generated parame-
ters are then subjected to verification before finaliz-
ing the set, resulting in the final tool call. To vali-
date the generated parameters, we obtain a second
set of parameter predictions. These can be acquired
using sampling or an alternative model for diverse
options; in our experiments, we employ ReAct-
style prompting (Yao et al., 2022) with Llama-2
70B to obtain them. Then, for each individual pa-
rameter, we formulate a multiple-choice question
to contrast the two predictions and further prime
Llama-2-Chat-70B to make a definitive choice be-
tween them, providing the parameter description
and user instruction as indicated in Appendix A.4.5.
The final parameter predictions are then aggregated
to construct the tool call by few-shot prompting
Llama-2 70B as in Appendix A.4.7.

3 Experiments

In our experiments, we assess the effectiveness of
our method using publicly available real-life tools.

3.1 Tasks

We evaluate our proposed method on four tool-
calling tasks: Weather, Cat, Home and Booking
from ToolBench (Xu et al., 2023b) that involve
using the REST APIs. The Weather, Home, and
Cat tasks each comprise 100 evaluation samples,
while the Booking task contains 120 samples. Each
task includes API documentation, parameter de-
scriptions, user instructions, and the corresponding
ground truth API call pairs.

For each task, there are multiple tools available,
where the entire benchmark consists of a total of
17 tools. However, instead of evaluating each task
individually, we make it more challenging by pool-
ing together all available tools. In other words, for
each user instruction, the model is provided a can-
didate list of 17 tools. The ToolBench benchmark
with 17 tools presents an ideal balance between
maximizing the number of tools that could be ac-
commodated within the context window without
requiring the use of a retriever. By eliminating the
dependency on a retriever, we could independently
evaluate the impact of self-verification on perfor-

mance. We follow the evaluation protocol set by
the benchmark and use success rate as the metric,
where the success rate of a predicted tool call is 1
if its API response exactly matches the response
from the ground truth API call.

3.2 Baselines

We conduct a comparison with various tool-
augmented LLMs and prompting baselines using
Llama-2 70B and Llama-2-Chat-70B. Specifically,
for tool-augmented LLMs, we compare with Tool-
LLM 7B (Qin et al., 2023), NexusRaven-V2 13B4,
and Qwen1.5-Chat-72B (Bai et al., 2023)5. Tool-
LLM, NexusRaven-V2, and Qwen1.5 utilize API
documentation to generate tool calls corresponding
to a given instruction.

For prompting baselines, we try two distinct
approaches: (1) Single-step, where the model is
prompted directly for an API call with a single
demonstration per tool; and (2) Two-step, where
we decompose the process into tool selection and
parameter generation, prompting the model indi-
vidually for each step, as in TOOLVERIFIER.

The Single-step method uses 1-shot single
demonstrations of each of the (17) tools to accom-
modate the prompt within the context size.

For the Two-step method, we consider two vari-
ants for the tool selection stage:

• 0-shot: We use a 0-shot prompt that asks to select
from the list of tools, without any demonstrations
for tool selection. See A.4.6 for the exact prompt.

• 1-shot: We show one demonstration per tool: a
user instruction and corresponding tool name.

For parameter generation in the Two-Step method,
we use three demonstrations for the selected tool.

3.3 TOOLVERIFIER Details and Ablations

Our model is denoted as TOOLVERIFIER. For tool
selection it uses 0-shot prompting with Llama-
2 70B fine-tuned on our synthetic ToolSelect
dataset to select two tools and finalize one through
our proposed contrastive-question-based tool ver-
ification. Subsequently, we generate two sets of
parameters by employing standard few-shot and
ReAct-style prompting Llama-2 70B with three
demonstrations, and finalize the parameter set us-
ing our proposed parameter verification.

4
https://nexusflow.ai/blogs/ravenv2

5We attempted comparing with ToolAlpaca (Tang et al.,
2023), however, it led to context overflow.
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Method Weather Booking Home Cat Average

Tool-Augmented LLMs
ToolLLM 7B 18.00 0.00 0.00 11.00 6.90
NexusRaven-V2 13B 55.00 27.50 43.00 82 50.71
Qwen1.5-Chat-72B 74.00 55.00 52.00 89 66.90

Prompting Baselines
Single-Step Llama-2 70B (1-shot) 70.00 7.50 85.00 83.00 58.81
Two-Step Llama-2 70B (1-shot tool selection) 80.00 34.17 85.00 78.00 67.62
Two-Step Llama-2-Chat-70B (0-shot tool selection) 77.00 64.17 84.00 83.00 76.43

TOOLVERIFIER (without verification) 76.00 82.50 85.00 82.00 81.43
TOOLVERIFIER (tool selection verification only) 84.00 82.50 85.00 83.00 83.57
TOOLVERIFIER (param selection verification only) 81.00 84.17 88.00 96.00 87.14
TOOLVERIFIER (tool verification+param verification) 90.00 84.17 88.00 97.00 89.52

Table 1: Tool call (tool selection + parameter generation) results. We report percentage (%) success rate for each
task. Our fine-tuned Llama-2 70B model TOOLVERIFIER, even without verification, results in higher performance
compared to the baselines. Our proposed verification mechanism further improves the success rate by 8 points –
with both types of verification, for tool and parameter selection, each giving a separate boost in performance.

We additionally compare against ablated ver-
sions of our method: with tool selection verification
only (but not parameter verification), with parame-
ter selection verification only (but not tool verifica-
tion), and without verification (in either stage).

3.4 Experimental Results

Tool Call (Selection + Parameters) The com-
plete tool call performance results are presented
in Table 1. Our approach, TOOLVERIFIER, out-
performs all baselines both on average and indi-
vidually across all tasks. TOOLVERIFIER outper-
forms all compared tool-augmented LLMs by a sig-
nificant margin. Comparing TOOLVERIFIER with
Single-Step 1-shot highlights the challenges in gen-
erating complete tool calls at once, emphasizing
the efficacy of the two-step decomposition. It also
surpasses Single-Step 1-shot and Two-Step 1-shot
tool baselines by a substantial margin of more than
50 points on the challenging Booking task.

A comparative analysis between
TOOLVERIFIER with and without parameter
verification illustrates that parameter verification
significantly enhances performance, showing
improvements of up to 14 points in the Cat task and
6 points in the Weather task, leading to an average
improvement of 6 points across all tasks. Similarly,
the comparison between TOOLVERIFIER with
and without tool verification demonstrates that
tool verification contributes significantly to the
performance, such as up to 8 points in the Weather
task. Notably, both types of verification help, each
giving a separate boost, as shown by comparing

the without verification results to tool selection
verification only and tool+parameter verification.
These results underscore the significance of
verification in both steps for the tool call success.

Tool Selection Only We report the performance
of tool selection (choosing the tool correctly,
but without generating parameters) in Table 2.
TOOLVERIFIER outperforms all baselines on av-
erage and individually across the majority of tasks
as well. TOOLVERIFIER performs better than al-
most all compared tool-augmented LLMs, demon-
strating its superior performance. While Qwen1.5
performs well at selecting the right tool, it struggles
to generate parameters correctly. In contrast, our
method’s focus on parameter generation, facilitated
by the two-step approach, yields improved overall
performance as shown in Table 1. A compara-
tive analysis between TOOLVERIFIER with tool
selection verification and without underscores the
substantial enhancement in performance achieved
through the verification process. Specifically, in
tasks such as Weather and Home, we observe that
the verification procedure not only improves per-
formance in specific examples of lower baseline
performance, but also does not adversely affect
cases where verification may be unnecessary.

TOOLVERIFIER (both with and without verifica-
tion) shows that our zero-shot Llama-2 70B fine-
tuned on our synthetically generated dataset per-
forms better than other baselines, including a 0-shot
Llama-2-Chat-70B, with an improvement of up to
6 points. The average number of candidate tools
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Method Weather Booking Home Cat Average

Tool-Augmented LLMs
ToolLLM 7B 27.00 22.00 84.00 26.00 38.90
NexusRaven-V2 13B 84.00 93.33 100.00 98.00 93.81
Qwen1.5-Chat-72B 93.00 95.00 99.00 96.00 95.71

Prompting Baselines
Single-Step Llama-2 70B (1-shot) 79.00 43.30 100.00 98.00 78.32
Two-Step Llama-2 70B (1-shot tool selection) 86.00 45.00 100.00 92.00 79.05
Two-Step Llama-2-Chat-70B (0-shot tool selection) 83.00 75.80 99.00 97.00 88.09

TOOLVERIFIER (without verification) 82.00 98.33 100.00 96.00 94.28
TOOLVERIFIER (tool selection verification) 91.00 98.33 100.00 97.00 96.67

Table 2: Tool selection results. We report accuracy in percentage (%) for each task. Our fine-tuned Llama-2 70B
model TOOLVERIFIER, even without verification, demonstrates superior performance compared to prompting-based
baselines, with a higher average performance. Our proposed tool selection verification mechanism contributes
another 2.5% improvement in accuracy on average.

per instruction in the generated training data for
tool selection is 7.34 which is notably smaller than
the 17 tools encountered during test time. This dif-
ference underscores the generalization capability of
our method, demonstrating its effectiveness across
diverse scenarios. The performance of 1-shot base-
lines reveals the difficulty in selecting the appropri-
ate tool from an unseen set using prompting-based
approaches. In contrast, fine-tuning the model on
our synthetically generated dataset with examples
of using a diverse set of tools significantly improves
tool selection accuracy. Moreover, the verification
procedure further improves tool selection perfor-
mance by an additional 2.4 points on average.

4 Analysis

4.1 Self-verification improves tool-augmented
LLMs

Our proposed self-verification method does not re-
quire any specific training process. To demonstrate
its effectiveness on tool-augmented LLMs, we ex-
periment with ToolLLM 7B, NexusRaven-V2 13B,
and Qwen1.5-Chat-72B. We obtain two sets of pre-
dictions as in TOOLVERIFIER, where the first pre-
dicted tool is removed from the set of tools to ob-
tain the second prediction. After tool verification,
we identify the final selected tool. We obtain two
parameter predictions using two different sampling
parameters while generation. We then perform
parameter verification to finalize the parameters
and construct the tool call. The complete tool call
success rate comparison, with and without self-
verification, is presented in Table 3. We observe a
significant improvement in average performance: 6

points for ToolLLM-7B, 9 points for NexusRaven-
V2 13B, and 4 points for Qwen1.5-Chat-72B. In
certain tasks, such as the Weather task, the suc-
cess rate of NexusRaven-V2 improved by 23 points
through self-verification. This demonstrates that
self-verification can be effectively applied to tool-
augmented LLMs, enhancing their performance.
The tool selection results are in Appendix A.1,
where we also note significant improvements in
performance post tool verification.

4.2 Verification Question Analysis

Qualitative Analysis Verification questions
should ideally reference the distinguishing charac-
teristics between two given tools in order to best
help the model consider the differences between
the two choices. This capability is particularly
crucial for closely related tools. For instance, the
tools "Forecast Air Pollution" and "Current Air
Pollution" both provide air pollution data, but for
future and current times, respectively. Verifica-
tion question generation by Llama-2-Chat-70B
identifies this nuanced difference and articulates
it in the verification question: Are you looking
for data on the current air pollution levels in a
specific location, or do you need to forecast the air
pollution levels for a future date in that location?
Responses to such questions precisely address
the identified distinction. An example response
is: "It appears that the user is looking for current
air pollution data for a specific location with
latitude -24.7 and longitude -57.3. Therefore, the
answer is: A. Retrieve current air pollution data
for a specific location." Inserting this response
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Method Weather Booking Home Cat Average

ToolLLM 7B 18.00 0.00 0.00 11.00 6.90
ToolLLM 7B + Tool, Param Verification 23.00 7.50 9.00 15.00 13.33

NexusRaven-V2 13B 55.00 27.50 43.00 82.00 50.70
NexusRaven-V2 13B + Tool, Param Verification 78.00 34.17 46.00 84.00 59.29

Qwen1.5-Chat-72B 74.00 55.00 52.00 89.00 66.90
Qwen1.5-Chat-72B + Tool, Param Verification 76.00 57.50 59.00 91.00 70.24

Table 3: Tool verification and parameter verification improve tool call success rate for tool-augmented LLMs.
We report percentage (%) success rate for each task. Our proposed verification mechanism significantly improves
the success rate of all tool-augmented LLMs.

into the context improves tool selection accuracy,
guiding the model towards the correct choice. For
more distinct tools, the model captures higher
level differences. For example, for "Forecast
Air Pollution" and "Get favorite cat images", the
generated question is: Which aspect are you more
interested in: predicting environmental air quality
or exploring feline visuals?

Significance of Contrastive Questions To
demonstrate the significance of contrastive-
question-based verification, we conduct an exper-
iment by zero-shot prompting Llama-2-Chat-70B
to choose one tool from the top-2 without employ-
ing a verification question. Instead, we present the
names and descriptions of the top-2 tools and frame
it as a multiple-choice question, asking Llama-2-
Chat-70B to make a selection. We experiment on
the Weather task and the accuracy of Llama-2-Chat-
70B is 70% whereas the accuracy of contrastive
question-based verification is 91 %. This signifi-
cant enhancement over straightforward prompting
illustrates effectiveness of contrastive questions.

Instruction-Conditioned Verification In our
proposed approach we generate verification ques-
tions using solely the names and descriptions of
the top-2 selected tools, see Figure 3. We com-
pare this to conditioning on the user instruction as
well, by adding it to the prompt. Conditioning on
the instruction during verification still shows im-
provement over the no-verification baseline (89 ver-
sus 82), however, slightly decreases performance
compared to the non-user-conditioned verification,
dropping accuracy from 91 to 89, perhaps because
the decision is biased to be more similar to the orig-
inal top choice being verified, which was also based
on the instruction. Note that, using only names and
descriptions has the benefit that the questions can
be precomputed and cached.
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Figure 4: We analyze various aspects of our synthetic
ToolSelect training data including the ordering of the
candidate tool list (“No Shuffle”), difficulty level (”No
Hard Data”), and the length of reasoning notes (“Short
Reasoning”). We find samples with longer reasoning
notes, difficult samples, and randomly ordered candidate
tool lists contribute to high performance (“Full Data”).

4.3 Parameter Verification Error Analysis

In the parameter verification step, we identify a con-
sistent pattern in errors while answering the verifi-
cation questions, predominantly involving common
sense errors where the model tends to hallucinate
values instead of adhering to the user instruction,
which is also observed in Mekala et al. (2023). A
notable example of such errors occurs with the min-
price parameter in Booking tool, which signifies
the minimum price the user is willing to pay for a
booking. In 5 instances out of 19 wrong predictions
for the Booking task, when the user specifies only
their maximum budget, the model generates the
maximum value for the min-price parameter rather
than 0. Similar errors are observed with the min-
area parameter in the Home task. In 4 instances
out of 12 mistakes, when the user expresses the
desire for a home given only a maximum area, the
model incorrectly predicts the mentioned value as
the minimum, instead of using 0.
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4.4 Synthetic Training Data Analysis
We analyze our synthetic ToolSelect training data
through various ablations, with results on tool se-
lection for the Weather task given in Figure 4.

Challenging training samples (samples that have
a candidate tool list containing related tools to
the ground truth tool, see subsubsection 2.1.1) are
found to improve generalization. To assess the
impact of these challenging samples, we remove
them and train a model solely with easier samples
(“No Hard Data”). The results indicate a notable
6-point drop in performance after excluding the
hard samples, highlighting their significance.

Next, we experiment by reducing the maximum
reasoning note length from 480 tokens to 200 to-
kens (“Short Reasoning”) and observe a significant
drop in performance, up to 19 points. Shorter rea-
soning texts are significantly less helpful in guiding
appropriate tool selection.

Lastly, we compare performance with different
orderings of the candidate tool list. In the “No Shuf-
fle” scenario, the ground truth tool in the training
data is always positioned first. Implementing this
ordering strategy results in a 5-point drop in perfor-
mance, underscoring the significance of randomly
shuffling the candidate tool list in the training data.

More studies regarding parameter generation-
only performance, and prompts are detailed in Ap-
pendix A.2, A.4 respectively.

5 Related Work

Self-Verification Iterative improvement of
LLMs typically involves prompting an LLM to pro-
vide feedback on given generated facts or answers
and subsequently refining their outputs (Madaan
et al., 2023; Shridhar et al., 2023a; Lu et al., 2023)
which has also been shown to reduce halluci-
nation (Dhuliawala et al., 2023). Additionally,
some studies involve the fine-tuning of custom
LLMs to better accommodate feedback (Yu et al.,
2023; Shridhar et al., 2023b; Zhang et al., 2023),
aiming to enhance reasoning in chain-of-thought
prompting for improved downstream performance.
In this paper, we focus on tool usage, whereas
previous works typically focus on generation. Our
approach contrasts the choice between selecting
options, whereas previous work typically verifies
single facts or answers in responses.

Enabling Tool Use in LLMs Many approaches
have emerged for enabling tool usage in LLMs,
involving techniques such as few-shot prompting

with tool-use demonstrations across diverse tool
categories, including APIs (Qin et al., 2023; Chen
et al., 2023), machine learning models (Shen et al.,
2023; Patil et al., 2023), and code interpreters (Gao
et al., 2022; Chen et al., 2022). Additionally, sev-
eral approaches advocate for fine-tuning LLMs
on custom-generated datasets tailored for tool us-
age (Schick et al., 2023; Tang et al., 2023; Parisi
et al., 2022; Xu et al., 2023b; Patil et al., 2023;
Srinivasan et al., 2023; Yang et al., 2023). Recent
works introduce tool documentation (Hsieh et al.,
2023) and tool tokens (Hao et al., 2023) to facilitate
tool usage. Despite the plethora of works focused
on enabling tool usage in LLMs, to the best of our
knowledge none has explored verification methods
for this purpose. This paper aims to fill this gap by
introducing multi-step contrastive verification.

LLMs for Data Generation LMs have been
used for generating training data for various tasks
including classification (Mekala et al., 2021, 2022),
semantic similarity (Schick and Schütze, 2021),
and instruction tuning (Wang et al., 2022; Hon-
ovich et al., 2022; Xu et al., 2023a; Taori et al.,
2023). Several works (Tang et al., 2023; Qin et al.,
2023; Tang et al., 2023; Schick et al., 2023; Patil
et al., 2023; Srinivasan et al., 2023) have employed
LLMs to generate synthetic tools or tool use data.

6 Conclusion

In this paper, we present a self-verification method
for enhancing the performance of tool calls for
LLMs. This involves decomposing the tool call
generation task into tool selection and parameter
generation, where we apply verification at each
step. Additionally, we open-source a synthetic
dataset for improved reasoning and generalization
to unseen tools. Experimental results on four tasks
from the ToolBench benchmark demonstrate sub-
stantial improvements using our approach.

7 Limitations

Our self-generated verification questions and an-
swers are produced in a zero-shot manner, making
them effective for general-purpose tools but may
necessitate further training for niche tools. Addi-
tionally, our framework is currently designed for
single-tool-usage tasks and does not support in-
structions requiring multiple or compositional tool
usage.
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8 Ethics Statement

This paper introduces a self-verification method
for tool calling that generates verification questions
to aid in making accurate choices with confidence.
As such, we do not expect that the fine-tuning self-
verification process should introduce biases not
already observed in the model, and we do not an-
ticipate any significant additional ethical concerns
beyond those issues already seen in standard sys-
tems (Weidinger et al., 2021).
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A Appendix

A.1 Self-verification improves tool selection of
Tool-Augmented LLMs

We apply our proposed self-verification on tool-
augmented LLMs, and present their performance
on tool selection alone in Table 4. We note sig-
nificant improvements in tool selection accuracy,
post tool verification. For instance, the average
accuracy of ToolLLM 7B increases by 9 points,
NexusRaven-V2 13B by 5 points, and Qwen1.5-
Chat-72B by 4 points. This demonstrates that the
tool verification enhances the performance of tool-
augmented LLMs.

A.2 Parameter Generation Only Comparison

We additionally compare TOOLVERIFIER in the
tool selection upperbound scenario, where the
groundtruth tool selection is provided, and a model
is only required to generate parameters through
three-shot prompting. Results are given in Ta-
ble 5. TOOLVERIFIER outperforms Llama-2-Chat-
70B by 16 points as well as both Llama-2 70B
and GPT-3.5-Turbo by an average of 6 points on
a majority of the tasks, with an improvement of
up to 14 points compared to Llama-2 70B in the
Cat task and 8 points in the Home task compared
to GPT-3.5-Turbo. TOOLVERIFIER also demon-
strates superior performance compared to GPT-4
on Weather and Cat tasks by 6 and 4 points, re-
spectively. This shows that our proposed method
outperforms few-shot prompting approaches, even
compared to stronger base models.

A.3 Self-Verification vs Self-Consistency

Our self-verification approach entails three separate
LLM inferences: one for each model, Llama-2 70B
and Llama-2-Chat-70B, followed by another to an-
swer the verification question. To evaluate the per-
formances of self-consistency and self-verification,
we use the same number of inference calls for both
methods and present a comparison in Table 6. The
results indicate that self-verification achieves signif-
icantly greater improvements than self-consistency.

A.4 Prompts & Configurations

We use top-p sampling while generating with a
temperature set to 0.7.

A.4.1 Tool Generation
The prompt for tool generation using few-shot
prompting LLaMa-65B is:

Name: Humidity
Description: Computes humidity at a location on a date

Name: Trip Booking
Description: Makes a travel booking

Name: Currency Conversion
Description: Converts an amount from one currency to
another.

Name: Age Calculator
Description: Calculates the age based on a given
birthdate and the current date.

Name: Search Engine
Description: Searches online about a query

Name: Restaurant Finder
Description: The Restaurant Finder tool finds the
restaurants based on its location, cuisine and the
number of people.

Name: Movie Review
Description: The Movie Review tool gets top-rated
movie reviews for a particular movie.

Name: Pizza Order
Description: The Pizza Order tool orders a pizza with
provided toppings and size.

Name:

A.4.2 Reasoning Note Generation

The prompt for reasoning note generation using
Llama-2-Chat-70B is:

[INST] «SYS»
You are a helpful assistant.
«/SYS»

Here are the list of available tools:
{Candidate tool list}

A user said, "{instruction}".

To answer this, you found Tool "{name}" to be the
most suitable than other tools. Why?[/INST]

In the above prompt “{instruction}” denotes the
user instruction and “{name}” denotes the ground
truth tool. “{Candidate tool list}” contains names
and descriptions of each tool.

A.4.3 Related Tools Generation

The prompt for related tool generation using few-
shot prompted Llama-2 70B is:
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Method Weather Booking Home Cat Average

ToolLLM 7B 27 22 84 26 38.90
ToolLLM 7B + Tool Verification 34 30 95 33 47.14

NexusRaven-V2 13B 84 93.33 100 98 93.81
NexusRaven-V2 13B + Tool Verification 93 100 100 99 98.10

Qwen1.5-Chat-72B 93 95 99 96 95.71
Qwen1.5-Chat-72B + Tool Verification 97 100 100 99 99.05

Table 4: Tool verification improves tool-augmented LLMs on tool selection. We report accuracy in percentage
(%) for each task. The tool verification improves ToolLLM 7B by 8 points, NexusRaven-V2 13B by 5 points, and
Qwen1.5-Chat-72B by 4 points on average respectively.

Method Weather Booking Home Cat Average

GPT-4*
93 96.70 97 96 95.72

GPT-3.5-Turbo*
90 85.80 80 92 86.90

Llama-2 70B 93 84.17 85 86 86.91
Llama-2-Chat-70B 89 45 91 88 76.67

TOOLVERIFIER 99 85.80 88 100 92.85

Table 5: Parameter generation results. We report success rates (%) in the upperbound setting where the model is
provided the ground truth tool selection, and must only generate parameters. We observe our fine-tuned Llama-2
70B model TOOLVERIFIER outperforms Llama-2 70B and GPT-3.5-Turbo models in the majority of tasks and on
average in this setting. Results with ∗ are taken from the Toolbench Leaderboard (Xu et al., 2023c,b).

Name1: Humidity
Name2: Humidity at timezone
Name3: Humidity Altitude Location date

Name1: Book Review
Name2: Book Review By Date
Name3: Book Review By Day

Name1: Car Rental
Name2: Car Rental with insurance
Name3: Car Rental with driver

Name1: {name}
Name2:

In the above prompt {name} denotes the name of
the tool whose related tools are being generated.
While generating multiple related tools per original
tool, we generate one related tool after another
with different seeds, to improve the diversity of the
related tools.

A.4.4 Contrastive Question Generation

[INST] «SYS»
You are a helpful assistant.
«/SYS»

I am confused to choose one of these two classes. Here
are their names and descriptions:
a. {name1} - {description1}
b. {name2} - {description2}

A contrastive question is a question that upon asking
would resolve such confusion. Generate a contrastive
question that I can ask myself whose answer would
help me make the right choice.[/INST]

In the above prompt “{name1}”, “{description1}”
and “{name2}”, “{description2}” are names and
descriptions of two selected tools respectively.
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Method Weather Booking Home Cat Average

Llama-2 70B + Self-Consistency@3 84.00 80.83 85.00 83.00 83.09
TOOLVERIFIER (tool verification+param verification) 90.00 84.17 88.00 97.00 89.52

Table 6: Self-consistency vs Self-verification We consider the same model and same number of inference calls (i.e.
3), and compare self-consistency and self-verificaiton. We report the percentage (%) success rate for each task. We
notice that self-verification performs significantly better than self-consistency.

A.4.5 Parameter Verification

[INST] «SYS»
You are a helpful assistant.
«/SYS»

A user said, "{instruction}"

parameter definition

For the above user instruction, I am confused about
choosing one of these two for "{parameter name}".
a. {prediction 1}
b. {prediction 2}

What is the answer? Answer the following question
strictly based on what the user said above. If there is
no mention, respond with "None". If there is, select
the answer from the given options and respond with
the chosen option only in square brackets []. [/INST]

In the above prompt “{instruction}” denotes the
user instruction. “{parameter name}” represents
the parameter name under verification. Addition-
ally, “{prediction 1}”, “{prediction 2}” signify two
parameter predictions obtained from Llama-2 70B
and Llama-2-Chat-70B, respectively.

A.4.6 0-shot Chat LLaMa-70B

[INST] «SYS»
You are a helpful assistant.
«/SYS»

Here are the list of available tools:

{Candidate tool list}

A user said, "{instruction}"

What tool to use for the above instruction? Respond
with just the name of the tool[/INST]

In the above prompt “{instruction}” denotes the
user instruction and “{Candidate tool list}” con-
tains names and descriptions of each tool.

A.4.7 Tool Call Construction

INS: A user says, "Please retrieve the temperature,
humidity, wind, and visibility data at place with
latitude = -37.3, longitute = 1.9."
lat: -37.3
lon: 1.9
units: none
mode: none
lang: none
API: curl -X GET
’https://api.openweathermap.org/data/2.5/weather?lat=-
37.3&lon=1.9&appid=API_KEY&units=none&
mode=none&lang=none’

INS: A user says, "How is the weather now in location
with longitute 125.9 and latitude 39.0? Respond in
simplified Chinese with json format and imperial
units."
lat: 39.0
lon: 125.9
units: imperial
mode: json
lang: zh_cn
API: curl -X GET
’https://api.openweathermap.org/data/2.5/weather?
lat=39.0&lon=125.9&appid=API_KEY&units=imperial
&mode=json&lang=zh_cn’

INS: A user says, "Give me a current weather report
for place where longitute is 174.4 and latitude is
-19.0."
lat: -19.0
lon: 174.4
units: none
mode: none
lang: none
API: curl -X GET
’https://api.openweathermap.org/data/2.5/weather?lat=-
19.0&lon=174.4&appid=API_KEY&units=none
&mode=none&lang=none’

INS: A user says, "{instruction}"
{param_str}
API:

In the above prompt “{instruction}” denotes the
user instruction and “{param_str}” contains param-
eters and their predicted values.

A.4.8 Significance of Contrastive Questions

An example prompt is provided below.
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[INST] «SYS»
You are a helpful assistant.
«/SYS»

A user says, "Please retrieve the temperature, humidity,
wind, and visibility data for next week with latitude =
-37.3, longitute = 1.9."

To address the above instruction which one of the
below tools is the most suitable? Select the answer
from the given options and respond with the chosen
option ONLY in square brackets [].

A. Forecast Air Pollution = Get the future air pollution
data in location with latitude={lat}, longitude={lon}
B. Forecast Weather Latitude Longitude = Get the
weather data for future in location with latitude={lat},
longitude={lon}[/INST]

A.5 Hyperparameters for Llama-2 70B
Fine-tuning

We fine-tune Llama-2 70B for 3 epochs with a
learning rate of 1e-5 with warm up. The effective
batch size is 8 and the weight decay is 0.1. We train
it on 16 A100 GPUs.

A.6 Frequently Asked Questions

Why did you use LLaMa-65B for tool generation
instead of Llama-2 70B? The 70B model was
not released by the time we generated tools. Hence,
we used the available 65B model.

Why only 4 tasks were chosen from ToolBench
benchmark? Our framework is currently de-
signed for single-tool-usage tasks. Therefore, we
experiment on all single-turn tool calling tasks in
the ToolBench dataset that can be completed with
a single tool call without requiring additional ac-
tions and skills. In contrast, VirtualHome involves
generating and executing a sequence of actions in
a single step, which is outside our current scope.
The Google Sheets task requires additional python
coding skill, making it an unsuitable fit for our ex-
periments. As a result, we have excluded these two
tasks from our evaluation.

Why is it not evaluated on a benchmark with
thousands of tools? To accurately assess the ef-
ficacy of our proposed self-verification and fine-
tuning approach, we evaluate our methods on a
benchmark that would not require any retrieval. By
eliminating the dependency on a retriever, we could
isolate the impact of our techniques and demon-
strate a clear performance improvement. The Tool-
Bench benchmark, comprising 17 diverse tools,
presented an ideal balance between maximizing

the number of tools that could be accommodated
within the context window without requiring the
use of a retriever. To make our method work for
thousands of tools a standard approach would be
to combine it with a retrieval system and then our
method to do the final selection step from the top re-
trieved tools, which is an experiment that is beyond
the scope of the paper.

The proposed framework prompts the model
to select tools (or parameters) from two can-
didates. Why the candidate number is set to
2? We observed that the ground truth tool was
typically in the top two tool selections. Further,
asking contrastive verification questions is most
natural/makes most sense as a comparison between
two choices. Therefore, we choose two candidates.
This gives a significant performance improvement.

B API Details

The four APIs pertaining to ToolBench are the
Weather, Booking, Home, and Cat APIs. To ex-
ecute the API calls, we registered for access to the
Weather and Cat API, whereas for Home and Book-
ing we ensured correct syntax, as proposed in the
benchmark (Xu et al., 2023c).
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