
Findings of the Association for Computational Linguistics: EACL 2024, pages 43–51
November 12-16, 2024 ©2024 Association for Computational Linguistics

Should Cross-Lingual AMR Parsing go Meta? An Empirical Assessment
of Meta-Learning and Joint Learning AMR Parsing

Jeongwoo Kang1,2 Maximin Coavoux1 Cédric Lopez2 Didier Schwab1

1Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
2Emvista, Immeuble Le 610, 10 Rue Louis Breguet Bâtiment D, 34830 Jacou, France

1{firstname}.{lastname}@univ-grenoble-alpes.fr
2{firstname}.{lastname}@emvista.com

Abstract
Cross-lingual AMR parsing is the task of pre-
dicting AMR graphs in a target language when
training data is available only in a source lan-
guage. Due to the small size of AMR training
data and evaluation data, cross-lingual AMR
parsing has only been explored in a small set
of languages such as English, Spanish, Ger-
man, Chinese, and Italian. Taking inspiration
from Langedijk et al. (2022), who apply meta-
learning to tackle cross-lingual syntactic pars-
ing, we investigate the use of meta-learning
for cross-lingual AMR parsing. We evaluate
our models in k-shot scenarios (including 0-
shot) and assess their effectiveness in Croat-
ian, Farsi, Korean, Chinese, and French. No-
tably, Korean and Croatian test sets are devel-
oped as part of our work, based on the existing
The Little Prince English AMR corpus, and
made publicly available. We empirically study
our method by comparing it to classical joint
learning. Our findings suggest that while the
meta-learning model performs slightly better
in 0-shot evaluation for certain languages, the
performance gain is minimal or absent when k
is higher than 0.

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013, AMR) represents the meaning of texts as
rooted and directed acyclic graphs. AMR graphs
capture the underlying semantics of input texts
while abstracting away from their syntactic real-
izations. Nodes in AMR graphs are not explic-
itly mapped to their input token. Hence, it is an
unanchored formalism. AMRs are widely used to
enhance the capabilities of NLP systems such as
question answering (Deng et al., 2022; Kapanipathi
et al., 2021), text summarization (Liao et al., 2018;
Liu et al., 2015), or human-robot interaction (Bo-
nial et al., 2019, 2023).

AMR was originally designed for English texts
only. However, Damonte and Cohen (2018) demon-
strated that AMR could be used for other languages

(a) AMR graph (b) linearized AMR

Figure 1: “The dog eats a bone.”

such as Spanish, Italian, Chinese, and German.
Since then, many approaches have adopted AMR
parsing for multilingual AMR parsing (Procopio
et al., 2021; Blloshmi et al., 2020; Xu et al., 2021;
Cai et al., 2021; Sheth et al., 2021). However, one
of the main challenges for this task is the lack of
data. Currently, training data are only available in
English (Knight et al., 2017, 2020) and evaluation
data in 6 languages: English, German, Spanish,
Italian, Chinese (Damonte and Cohen, 2018; Li
et al., 2021),1 and French (Kang et al., 2023). To
overcome the lack of training data in target lan-
guages, previous approaches create silver training
data in the target languages. This is done through
machine translation (Damonte and Cohen, 2018;
Blloshmi et al., 2020) under the assumption that
a text conveying the same meaning should have
a shared AMR graph across languages. Similarly,
parallel corpora with English AMR parsers are also
employed to create silver data (Xu et al., 2021;
Blloshmi et al., 2020). Another approach uses En-
glish data for training and then evaluates the model
in the target language in a zero-shot manner (Proco-
pio et al., 2021). Since evaluation data is available
in five languages, most of these proposals focus on
this small set of languages.

In this study, our goal is to apply AMR pars-
ing for more diverse languages that have been less
explored in previous work and tackle the lack of
training data with k-shot learning. Taking inspi-
ration from Langedijk et al. (2022), who applied

1In Chinese AMR 2.0 (Li et al., 2021), AMR concepts are
annotated in Chinese.
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meta-learning for k-shot cross-lingual syntactic
parsing, we apply meta-learning for cross-lingual
AMR parsing. To examine the efficiency of the
method, we compare the meta-learning approach
to a classical joint learning method.

Our contributions to cross-lingual AMR parsing
are as follows:

• This work presents the first empirical study
on meta-learning applications on cross-
lingual AMR parsing.

• We train and evaluate our model in languages
less explored for AMR parsing: Korean, Croa-
tian, French, and Farsi.

• We publish new evaluation data in Korean
and Croatian, based on The Little Prince.

• We release a multilingual AMR parser that
can be evaluated in many languages in k-shot.
We also release the code to train and evaluate
the model.2

2 Meta Crosslingual AMR

Seq2seq AMR Parsing In sequence-to-sequence
AMR parsing (Bevilacqua et al., 2021), AMR pars-
ing is viewed as generating a sequence of tokens
representing AMR nodes and edges. AMR graphs
should be first linearized in a single-line format
(see Figure 1) to feed it to a sequence-to-sequence
model. We linearize AMR graphs following van
Noord and Bos (2017), which includes light pre-
processing such as removing variables and wiki
links.3 We refer the readers to van Noord and Bos
(2017) for a comprehensive understanding of the
linearization process. To generate AMR graphs
from multi-lingual inputs, we employ the mBart
(Tang et al., 2020) model, a pre-trained multilingual
sequence-to-sequence model, as done by Procopio
et al. (2021).

MAML for Cross-lingual AMR Parsing We
use MAML (Finn et al., 2017) for cross-lingual
AMR parsing. MAML learns good initial parameters
θ that can be tuned to unseen tasks with only a few
optimization steps and a few training data exam-
ples. MAML trains a model to be good at adapting
to new tasks only with a few examples by simulat-
ing the k-shot training and evaluation during the
training. We apply MAML to train our multilingual

2The datasets and codes are both available at https://
github.com/Emvista/Meta-XAMR-2024.git

3We employ the implementation code available at https:
//github.com/RikVN/AMR for graph preprocessing and post-
processing.

AMR parser so that it adapts quickly to new tasks,
which are in our case, new languages. The training
procedure is described below.
Step 1: At each iteration step, the initial model (Θ)
is copied once per language i. For each i, 2 ×K
examples are randomly sampled from Dtrain

i and
divided into the support and the query set (K each).
Using the support set, the model is temporarily up-
dated with stochastic gradient descent with learning
rate α (Eq. 1). Iterate through the support set for P
adaptation steps to obtain Φi:

Φi ← Θ− α▽Θ L(Θi). (1)

Next, the loss is computed to evaluate the
temporary model Φi on the query set. The loss
Li(Φi) is saved for the next step. The entire step
is called an ‘inner loop’ and the inner loop is
repeated over the entire task batch, that is, for the
number of all training languages I .

Step 2: Li(Φi) is summed up over training lan-
guages to update the initial model Θ by stochastic
gradient descent with a learning rate β. This entire
step is called an ‘outer loop’:4

Θ← Θ− β
∑

i

▽ΦiLi(Φi). (2)

Step 3: Repeat Step 1 and Step 2 until the total
number of training steps.

3 Experimental Setup

Silver Training/Validation Data We aim to train
a multilingual AMR parser that adapts quickly to
new languages, specifically French, Chinese, Ko-
rean, Farsi, and Croatian, with k examples. Our
method is similar to that of Langedijk et al. (2022)
in applying meta-learning for a k-shot cross-lingual
parsing task, but our training data is only avail-
able in English, whereas they have multilingual
training data. To create multilingual training data,
we apply machine translation as in previous ap-
proaches (Damonte and Cohen, 2018; Xu et al.,
2021; Blloshmi et al., 2020). We adopt DeepL5

and translate English AMR training data (Knight
et al., 2020, LDC2020T02) into 13 languages: Ger-
man, Italian, Romanian, Finnish, Russian, Turkish,
Japanese, Czech, Dutch, Polish, Swedish, Estonian,
and Indonesian. The 13 languages were chosen

4We apply First-Order MAML to avoid computation over-
head (second-order derivative requires heavy computation)

5https://www.deepl.com

44

https://github.com/Emvista/Meta-XAMR-2024.git
https://github.com/Emvista/Meta-XAMR-2024.git
https://github.com/RikVN/AMR
https://github.com/RikVN/AMR
https://www.deepl.com


Figure 2: One training step for MAML cross-lingual AMR parsing.

for compatibility with our training model, mBart
(Tang et al., 2020), and for language diversity. They
cover 5 language families: Indo-European (Ger-
manic, Romance, Slavic), Uralic, Turkic, Japonic,
and Austronesian. For each training language, there
are 55,635 pairs of sentences and their correspond-
ing AMR graph. To assess the translation quality,
we evaluated the training data with the reference-
free evaluation metric COMET (Rei et al., 2020).
The COMET score of 13 languages is 83.8±0.8. We
use a total of 14 languages including English for
our training data. We use Spanish as the valida-
tion language and use the Spanish evaluation set
from AMR 2.0 (Damonte and Cohen, 2020). For k-
shot evaluation during the validation and test step,
k random examples from the English dev set are
translated to each evaluation language.

Gold Test Data We evaluate our model in French,
Chinese, Korean, Farsi, and Croatian. For French,
Chinese, and Farsi, we employ The Little Prince
AMR corpus annotated in each language, respec-
tively from Kang et al. (2023), https://amr.isi.
edu/ and Takhshid et al. (2022).6 For Croatian and
Korean, we create our test sets by manually align-
ing The Little Prince corpus in each language to
corresponding English AMR graphs. After manual
alignment, we excluded pairs exhibiting semantic
discrepancies between the aligned sentence and its
English counterpart, such as pairs where additional
or omitted information was observed in the aligned
sentences.7 This leaves us with, respectively, 1,527
and 1,543 pairs for Korean and Croatian. A few ex-
amples of the final dataset are given in Appendix A.

6The original Farsi dataset consists of AMR concepts in
Farsi. Since we employ AMR graphs with English concepts,
we use only the input texts of the corpus and graphs from the
English AMR corpus.

7The first author of this article, a native Korean speaker,
manually aligned and filtered the data. For Croatian, we au-
tomatically translated Croatian text into English with Google
Translate (https://translate.google.com/) and checked
the semantic discrepancy with its English counterpart.

We make the test set publicly available.

Meta-Training and Evaluation We adopt
mBart-large-50 model (Tang et al., 2020) from
the transformers library (Wolf et al., 2020) to
train our multilingual AMR parser. To imple-
ment model-agnostic meta-learning, we employ
the learn2learn library (Arnold et al., 2020). Pa-
rameters used for the training are provided in Ap-
pendix B. Our goal is to evaluate the model’s perfor-
mance in new languages that were not seen during
the training, specifically, French, Chinese, Korean,
Farsi, and Croatian. To this end, for both valida-
tion and testing, we employ k-shot learning, where
the model is fine-tuned with k examples for the
test language before evaluation. We report evalua-
tion scores with varying k size using SMATCH (Cai
and Knight, 2013), an evaluation metric for AMR
graphs.

Baseline with Joint Learning We train a base-
line model with a joint learning method for com-
parison with our approach. We use the same mBart
model and the training data as described above. To
assess the effectiveness of our method compared
to joint learning, we carry out the two experiments
in settings as similar as possible (e.g. training data,
hyper-parameters, learning scheduler, k-shot eval-
uation). Hyperparameter details are given in Ap-
pendix B.

4 Results and Discussion

We assessed our model across five languages in
k-shot learning. Table 1 displays the evaluation
results for different shot settings (k) where k =
0, 32, 128. In the 0-shot evaluation, MAML demon-
strates higher performance for most evaluation lan-
guages, except for Croatian. Nevertheless, the per-
formance gap is minimal, making it difficult to
draw firm conclusions regarding the method’s ad-
vantage. In the k-shot evaluation, the performance
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gap between the two models diminishes, with either
the average score showing no significant difference
(128-shot) or the baseline model outperforming
the MAML model (32-shot). These observations
suggest that while MAML may offer benefits in
0-shot evaluation for certain languages, its advan-
tage is not consistent across all languages. In k-
shot learning scenarios, the benefit is minimal or
null. On the other hand, the joint-learning method
shows competitive results regardless of its method-
ological simplicity. We hypothesize that substantial
overlap between inputs and outputs in the train-
ing data across languages has contributed to these
results. Our training data comprises translations
of AMR 3.0 into multiple languages, resulting in
overlapped AMR graphs and shared patterns in in-
put texts. In this context, the joint-learning model
may learn the similarities between training data
directly, allowing the model to learn the task more
efficiently.

Surprisingly, both MAML and baseline models
exhibit a performance decrease when fine-tuned in
32-shot, compared to not being fine-tuned at all. We
hypothesize that the mBart pre-trained model has
already enough knowledge of our target languages
and fine-tuning the model with only a few examples
in each language may impair the model’s capacity.
This could also be attributed to the domain differ-
ence between the fine-tuning dataset and the test
dataset. The fine-tuning dataset includes content
from general fields such as online forums, journals,
and web blogs, whereas the test dataset consists
of The Little Prince, a novel written in the 1940s.
Consequently, the domain shift between the two
datasets may have contributed to the model’s in-
ability to generalize effectively to the test domain.

We provide additional analysis of our models in
Appendix C (effect of the number of considered
languages and of the translation quality).

5 Related Work

Meta-learning, also known as learning to learn, is
a learning paradigm that allows a model to quickly
learn a new task with only a few examples. This
is made possible by the prior knowledge that the
model has acquired through a series of different
tasks. In cross-lingual applications, each task cor-
responds to a different language. The closest ap-
proach to ours is Langedijk et al. (2022), who adopt
MAML for cross-lingual dependency parsing. They
train a dependency parser on a set of languages

fr zh ko fa hr avg

base_0-shot 56.4 45.6 42.1 46.3 51.4 48.4
MAML_0-shot 56.5 46.1 42.2 46.7 50.8 48.5

base_32-shot 56.3 45.4 42.0 46.1 51.3 48.3
MAML_32-shot 55.5 45.1 41.1 45.9 48.9 47.3

base_128-shot 56.5 45.9 42.0 46.6 51.5 48.5
MAML_128-shot 56.0 46.2 42.2 46.8 51.3 48.5

Table 1: SMATCH scores of the baseline and the MAML
model (k-shot evaluation).

using MAML and then evaluate the model on un-
seen languages to investigate the model’s ability
to adapt quickly. In contrast, we focus on a se-
mantic parsing task with an unanchored formalism.
In addition, they have multilingual training data
at hand, whereas we generate our silver multilin-
gual data by machine translation from English data.
Another difference is that they use a graph-based bi-
affine model for parsing, whereas we use a seq2seq
model with a linearized graph. Sherborne and Lap-
ata (2023) applied meta-learning to cross-lingual
SQL parsing. While useful at representing (and
executing) database queries expressed in natural
language, SQL is not a general-purpose semantic
formalism like AMR. To the best of our knowl-
edge, our work is the first to apply MAML for cross-
lingual AMR parsing.

6 Conclusion

This study investigates the effectiveness of meta-
learning compared to joint learning in cross-lingual
AMR parsing. We assess our models across less-
explored languages for AMR parsing, including
French, Chinese, Korean, Farsi, and Croatian. To
facilitate evaluation, we develop new test sets for
Korean and Croatian and release the data to pro-
mote AMR parsing in diverse languages. Our find-
ings reveal that meta-learning exhibits minor per-
formance gain compared to joint learning in 0-shot
evaluation. The small gain diminishes for k-shot
learning (when k > 0). Consequently, our results
suggest that the joint learning method serves as
a robust baseline, while meta-learning appears to
be a sub-optimal approach for cross-lingual AMR
parsing. We believe that this research provides valu-
able insights into the comparative efficacy of meta-
learning and joint learning in cross-lingual AMR
parsing, offering important guidance for future de-
velopments in cross-lingual AMR parsers.
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Limitations

Our model does not outperform a simple mono-
lingual model which is trained with AMR data
in the target language translated by a MT system.
However, our approach can be explored for low-
resource languages for which machine translation
is not available. In addition, we did not apply grid
search to find the best learning rates for the baseline
models and used the same learning rate as done by
Procopio et al. (2021), who also employed mBart
for sequence-to-sequence cross-lingual AMR pars-
ing. This could have affected the results in favor
of meta-learning. Nonetheless, this does not affect
our conclusion of the empirical study to reveal the
weakness of the meta-learning approach for cross-
lingual AMR parsing. This study does not include
evaluation scores on the AMR 2.0 multilingual test
set, which could help position our models relative
to the state-of-the-art models. There are two moti-
vations for the omission. Firstly, the Spanish test
set in AMR 2.0 is already used as our validation set.
Therefore, the AMR graphs (they are shared across
the 4 languages) are already exposed during the
validation step. Secondly, German and Italian, eval-
uation languages in AMR 2.0, are already included
in our training data. Since our goal is to evalu-
ate our model for unseen target tasks, evaluating
our model on these languages is not coherent with
the objective. Despite the limitations, we believe
that our study empirically shows the constraints of
meta-learning for cross-lingual AMR parsing and
provides valuable insights into the meta-learning
application in the task.
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A Aligned Data Samples

en In the book it said : " Boa constrictors swallow
their prey whole , without chewing it .
ko 그 책에는 이렇게 씌어 있었다. "보아 구렁이
는먹이를씹지도않고통째로집어삼킨다

hr U knjizi je pisalo: »Udavi gutaju svoj plijen
cijel cjelcat, bez žvakanja.

en I pondered deeply , then , over the adventures
of the jungle .
ko나는그래서밀림속에서의모험에대해한참
생각해봤다.
hr Zatim sam mnogo razmišljao o prašumskim
pustolovinama,

en The little prince , who asked me so many
questions , never seemed to hear the ones I asked
him .
ko어린왕자는내게많은것을물어보면서도내
질문에는귀를기울이는것같지않았다.
hr Činilo se da mali princ, koji mi je postavljao
brojna pitanja, nikada ne čuje moja.

en I was more isolated than a shipwrecked sailor
on a raft in the middle of the ocean .
ko대양한가운데에떠있는뗏목위의표류자보
다나는더고립되어있었다.
hr Bio sam usamljeniji od brodolomca na splavi
usred oceana.

B Training Hyperparameters

Meta Crosslingual AMR We train our model
for 30,000 steps and evaluate the model every
500 steps with the Spanish validation set. Early
stopping is applied, terminating training if the dev
SMATCH score fails to improve for more than 7,500
steps. The number of fine-tuning cycles, called an
adaptation step, is denoted as P . Unless specified
otherwise, we set P = 0 and k = 0 (0-shot learn-
ing). MAML requires two learning rates, one for the
inner loop (α) and one for the outer loop (β). We
conducted a grid search to identify an optimal learn-
ing rate set and used α = 1× 10−5, β = 3× 10−5

throughout the experiments. For β, we use a linear
learning rate scheduler with 1,500 warm-up steps.
Unless specified otherwise, we apply 1× 10−5 to
fine-tune a model before validation/testing. At each
iteration step during the training, 2 ×K are sam-
pled to form a query and a support set for each
training language. As a result, the batch size N
equals 2×K × I , where I denotes the number of
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training languages. By default, we assign K = 8
and I = 14, unless stated otherwise.

Baseline Model For the training set, we use a
concatenation of the multilingual AMR training
sets described in Section 3. At each iteration step,
we randomly select N training examples from the
concatenated training sets to calculate the loss and
optimize the model accordingly. For the rest of the
hyperparameters and test/evaluation method, we
apply the same settings as described as above (e.g.
learning rate scheduler, k-shot size) except for the
learning rate since maml requires two learning rates
α and β whereas joint-learning requires only one.
We use a uniform learning rate for training 3×10−5

with a linear scheduler with 1500 warm-up steps.

C Additional Analysis

We provide additional analysis of our approach fo-
cusing on how the training is affected by the num-
ber of training languages and translation sources.
The results include 0-shot evaluation for both meta-
learning and joint learning.

Q1: How does the number of languages affect
the performance of the models?
To examine how the number of training languages
impacts the model performance, we incrementally
add more languages to the training data and we
train three models respectively with 8, 12, and 14
languages. The first model is trained in German, En-
glish, Italian, Romanian, Russian, Turkish, Finnish,
and Japanese. Then we add Czech, Dutch, Polish,
and Swedish, and then finally we add Estonian and
Indonesian. Note that for meta-learning, the batch
size depends on the number of training tasks since
we randomly sample K examples per language
(batch size = 2×K × I where I denotes the num-
ber of training languages). To keep the batch size
consistent across experiments while altering only
the number of languages, when more than 8 lan-
guages are used for training, we randomly sample
8 languages per iteration step and select K training
examples per language. Unless specified otherwise,
each model is evaluated in a zero-shot manner for
five languages: French, Chinese, Korean, Farsi, and
Croatian.

Results Table 2 shows that both the MAML and
baseline models have a positive correlation with the
number of training languages. The baseline model
has the largest gain when increasing the number of

fr zh ko fa hr avg

base_14langs 56.3 45.6 42.1 46.3 51.4 48.4
base_12langs 53.6 41.6 40.1 43.4 45.9 44.9
base_8langs 47.5 39.8 39.1 40.5 22.4 37.8

MAML_14langs 56.5 46.1 42.2 46.7 50.8 48.5
MAML_12langs 48.5 39.4 35.1 39.7 45.0 41.5
MAML_8langs 47.7 39.6 34.3 40.1 42.4 40.8

Table 2: SMATCH scores according to the number of
training languages.

languages from 8 to 12 language by 15.7%. MAML

models, on the other hand, have the biggest gain
when increasing the number of languages from 12
to 14 languages by 14.2%. Looking in detail per
target language, however, in the MAML model, not
all target languages benefit from adding more train-
ing languages. Comparing the two MAML models,
trained respectively with 8 languages and 12 lan-
guages, the SMATCH score drops in Chinese and
Farsi when adding four languages to the training
data, whereas the baseline model shows a steady
increase across target languages when adding more
languages. In other words, the baseline model ben-
efits uniformly from the inclusion of more training
languages across all target languages, while the
performance of the MAML model varies depend-
ing on the specific target language. In the MAML

models, certain languages experience a decrease in
performance despite the addition of more training
languages. A caveat of this experiment is that the
results may depend on the order in which the lan-
guages are added and their typological relationship
to evaluation languages (we leave this investigation
to future work).

Q2: How robust is the model with respect to
translation quality?

To assess the impact of the translation source on
our method, we employ an alternative translation
model to translate our training data. Specifically,
we use the mBart translation models, sourced from
the Huggingface hub8, to translate our training data
into 13 languages. COMET score of the 13 trans-
lated texts is 80.7±1.4. Subsequently, we use this
translation to train both the MAML and baseline
models. Following this, we contrast the evaluation
outcomes of these models with those trained using
the DeepL translation.

8https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt
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fr zh ko fa hr avg

base_DeepL 56.3 45.6 42.1 46.3 51.4 48.4
base_mBart 56.2 44.5 41.2 46.1 51.3 47.8

MAML_DeepL 56.5 46.1 42.2 46.7 50.8 48.5
MAML_mBart 55.6 45.1 40.8 46.1 48.9 47.3

Table 3: SMATCH scores according to the translation
source.

Results For both the MAML and the baseline
models, when using an open-source translation
model mBart, the performance drops (see Table 3).
In both cases, the Korean SMATCH score drops
the most when using the mBart translation model.
MAML model is more affected by this change. On
the average score, the baseline model drops by
0.9%, whereas the MAML-model drops by 2.3%.
This result shows that the meta-learning model is
more sensitive to the input texts than the baseline
model.
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