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Abstract

Equivocation and ambiguity in public speech
are well-studied discourse phenomena, espe-
cially in political science and analysis of politi-
cal interviews. Inspired by the well-grounded
theory on equivocation, we aim to resolve the
closely related problem of response clarity in
questions extracted from political interviews,
leveraging the capabilities of Large Language
Models (LLMs) and human expertise. To this
end, we introduce a novel taxonomy that frames
the task of detecting and classifying response
clarity and a corresponding clarity classifica-
tion dataset which consists of question-answer
(QA) pairs drawn from political interviews and
annotated accordingly. Our proposed two-level
taxonomy addresses the clarity of a response in
terms of the information provided for a given
question (high-level) and also provides a fine-
grained taxonomy of evasion techniques that
relate to unclear, ambiguous responses (lower-
level). We combine ChatGPT and human an-
notators to collect, validate and annotate dis-
crete QA pairs from political interviews, to be
used for our newly introduced response clarity
task. We provide a detailed analysis and con-
duct several experiments with different model
architectures, sizes and adaptation methods to
gain insights and establish new baselines over
the proposed dataset and task. 1

1 Introduction

In the era of mass information dissemination,
question evasion and response ambiguity are
widespread phenomena in political interviews and
debates, rendering their detection an important as-
pect of political discourse studies. Bull (2003)
presents a meta-analysis of five studies on polit-
ical interview Q&As, concluding that politicians
gave clear responses to only 39-46% of questions
during televised interviews, while non-politicians

1Code and Data can be found here: https://github.
com/konstantinosftw/Question-Evasion.

Figure 1: An example from an interview from our
dataset with classification along with an analysis from
instruction-tuned Llama-70b.

Figure 2: Statistics on answer clarity in political inter-
views of the latest 4 US presidents.

had a significantly higher 70-89% reply rate. In
Figure 2 we present statistics derived from our hu-
man annotations regarding response clarity among
US presidents, revealing that politicians often avoid
providing clear responses to journalists’ questions.

This phenomenon is known as equivocation or
evasion in academic literature and describes a non-
straightforward type of communication, which is
characterised by lack of clarity and includes speech
acts such as contradictions, inconsistencies, subject
switches, incomplete sentences, misunderstand-
ings, obscure mannerisms of speech (Watzlawick
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et al., 1964; Bavelas et al., 1988; Rasiah, 2010), ren-
dering political speech susceptible to multiple inter-
pretations from the perspective of the public. Fig-
ure 1 presents an example of an interview featuring
various interpretations, generated labels, and corre-
sponding explanations using our proposed dataset.

While the topic has been studied extensively in
the field of linguistics, politics and communication,
with several typologies proposed for classifying
question responses (Harris, 1991; Bull and Mayer,
1993; Rasiah, 2010), there has been little attempt
to analyse whether such typologies are applicable
to larger scale data and consistent with varying
human perspectives and biases. In other words, the
possibility of automatically classifying response
clarity has not been explored in NLP, potentially
due to the complexity of the task itself, as well
as the underlying need to encode and reason over
long context. However, recent advancements in
language modelling boosted model performance
for long-context inputs (Dai et al., 2019; Wei et al.,
2022, 2023), paving the way for framing the task
of automatically measuring response clarity.

Related to this endeavour, there is related work
focusing on the responder’s intent interpretation
(Ferracane et al., 2021), or the answerability of
questions for question-answering (QA) tasks (Min
et al., 2020; BingningWang et al., 2020; Rogers
et al., 2020; Sun et al., 2022; Wang et al., 2022).
However, in both research directions, the focus
deviates from directly assessing the clarity of the
response, being obfuscated by perceptions of intent
or question clarity. We address this by proposing
the task of response clarity evaluation, focusing
exclusively on assessing the effect of the response,
building on relevant discourse typologies.

We carry out a detailed analysis of proposed ty-
pologies, considering their overlap and consistency,
the distribution of proposed classes in our collected
data, and the feasibility of using them in an au-
tomated task, resulting in our proposed two-level
response clarity detection taxonomy. Specifically,
the first level of the taxonomy accounts for a three-
way evaluation of response clarity in terms of the
number of interpretations the intended response
holds. The second and more fine-grained level cov-
ers eleven common evasion phenomena in political
literature, which explain in more detail the cate-
gorization of responses in the three-scale clarity
classes. We use this taxonomy to annotate a dataset
of political QA pairs and perform an analysis of
the perspective variability among human annota-

tors. We then evaluate different LLMs, exploring
various training and inference frameworks, show-
ing that simple prompting and instruction-tuning
techniques using our dataset are highly capable
of providing meaningful performance. Moreover,
we find that using the labels of the second level
(evasion labels) in a two-step classification strategy
helps boost performance for clarity classification.

We argue that being able to detect answer ambi-
guity automatically will facilitate political speech
discourse analysis, allowing for comparisons at
scale. Additionally, the proposed task can shed
light on LLM capabilities of reasoning over long
contexts and prove useful for other downstream
tasks in NLP such as question answering (see also
§2.1). To sum up, our contributions are threefold:

• We propose a new task, response clarity evalu-
ation, which aims to detect the alignment and
clarity of a given response with respect to its
respective question and provide an empirically
and theoretically established taxonomy for it.

• We introduce a human-labelled dataset on the
aforementioned task, comprising 3,445 QA
pairs from political interviews.

• We experiment with several language models
and methods to gain insights establish perfor-
mance baselines for the proposed task.

2 Related work

2.1 Equivocation in Social Sciences
Political equivocation, aptly generalised by Dillon
(1990) as “the routine strategy for responding to a
question without answering it”, provides a range of
frameworks to analyse evasive responses (Wilson,
1990; Bull, 2009; Bull and Strawson, 2019). Har-
ris (1991) makes a distinction between direct and
indirect answers while others focus on how com-
plete the information conveyed by the response is
(Bull, 1994, 2003). Wilson (1990); Harris (1991);
Bull (2003) provide criteria for the identification
of three main categories (Bull and Mayer, 1993):
1 Replies correspond to cases where the requested

information is given in full. 2 Non-Replies, where
none of the information requested is given in a clear
manner (Rasiah, 2010); non-Replies are broken
down into twelve further evasion sub-categories
(Table 1). Lastly, 3 Intermediate replies are those
utterances that fall somewhere between replies and
non-replies, i.e. responding completely but to one
part of a multi-part question while ignoring the rest;
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responding partially to a single-part question; an-
swering a question in a suggestive manner without
giving a straightforward answer.

Bull (2003) breaks the 12 evasion techniques of
Table 1 further into 28 more fine-grained micro-
categories; for example “Makes political point” in-
cludes the micro-categories “External attacks on
the opposition or other rival groups”, “Talks up
one’s own side”, “Presents policy”. Rasiah (2010)
separates the Replies into Direct and Indirect, keeps
the Intermediate Replies category as is, while also
breaking down the Non-reply category (which he
labels “Evasions”) into four degrees of evasiveness,
whether the evasion was overt or covert and what
types of ‘agenda shifts’ occurred.

1. Ignores the question. Makes no attempt to answer the
question, or even to acknowledge it has been asked.

2. Acknowledges the question. Acknowledges that a
question has been asked, but equivocates.

3. Questions the question. Requests clarification, or re-
flects the question back to the questioner.

4. Attacks the question.
5. Personalisation. Makes personal comments or attacks.

6. Declines to answer.
7. Makes political points.
8. Gives incomplete reply.
9. Repeats answer to the previous question.

10. States or implies has already answered the question.
11. Apologises.
12. Literalism. The literal aspect of a question which was

not intended to be taken literally is answered.

Table 1: Equiv. typology by Bull and Strawson (2019).

Tailoring these typologies into a response clarity
taxonomy suitable for an NLP dataset, it is impera-
tive to modify them considering the following:

• Our focus is slightly different: we target a tax-
onomy that classifies the clarity of responses
(hence an indirect response falls under a dif-
ferent category than a direct one).

• We seek a good per class representation in our
dataset to allow computational modelling us-
ing LLMs. It is thus necessary to condense
classes to avoid overly sparse categorisation
while retaining the essential per class charac-
teristics (i.e., we provide meaningful labels).

• Labelling of the responses is conducted by
non-expert human annotators so that our an-
notations also account for the perception and

reasoning of the general audience of political
interviews rather than a minority of experts.
The difficulty of the classification, and thus
the resulting error rate, increases as we in-
crease the set of labels they choose from.

• Most interviewers pose multi-barrelled ques-
tions. We break those multi-part questions
into singular QA pairs and label each one sep-
arately, to retain this fine-grained information.

Section 3 discusses the taxonomy we adopted,
aiming to optimise for the annotation task.

2.2 Equivocation in NLP

While equivocation has not been adequately stud-
ied in NLP, there are related areas, such as question
answerability, political discourse analysis and de-
ceptive intent detection.

2.2.1 Answerability in question answering
There have been several tasks proposed related to
QA both in open-ended and closed set answer se-
tups. The issue of the answerability of a given
question an in QA was highlighted in SQuAD 2.0
(Rajpurkar et al., 2018), which introduced adver-
sarially crafted unanswerable questions with re-
spect to a given text span. Lee et al. (2020) ex-
panded the SQuAD 2.0 dataset, also incorporating
the rationale for unanswerable questions. Extend-
ing to out-of-domain questions to address practical
use cases, Sulem et al. (2021) introduce competi-
tive and non-competitive unanswerable questions.
Relevant endeavours question the answerability of
information-seeking queries built independently of
the passage containing possible answers to those
queries (Asai and Choi, 2020). Scalability issues
are addressed via synthetic extensions of existing
datasets containing both answerable and unanswer-
able questions (Nikolenko and Kalehbasti, 2020).
To the same end, other works develop data augmen-
tation techniques to produce unanswerable queries
based on answerable SQuAD 2.0 queries (Zhu
et al., 2019; Du et al., 2022). Other datasets target-
ing answerability issues are ReCO (BingningWang
et al., 2020), which provides “yes”, “maybe” and
“no” labels for questions paired with passages in
Chinese, as well as QuAIL (Rogers et al., 2020),
which introduces questions of varying certainty ac-
cording to the accompanying passage.

While our task shares a connection with question
answerability, our focus is on annotating response
clarity in relation to a given question. This distinc-
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Figure 3: Our proposed taxonomy of response clarity classification.

tion shifts the goal from evaluating question clarity
leading to a unique task and reasoning process.

2.2.2 Discourse analysis of political speech

Beyond evasion, discourse phenomena in politi-
cal speech (including interview responses) have
been analysed in prior NLP works. Majumder et al.
(2020) construct a large-scale dataset of political
dialogues to study discourse patterns, upon which
they train a model that uses external knowledge.
Among the analysed discourse patterns they con-
sider modes of persuasion, entertainment, and in-
formation elicitation (the latter being the closest
to our target). Understanding political agendas
requires contextualization, depending on which
politician expresses a certain claim: Pujari and
Goldwasser (2021) propose the combined use of
transformer-based modules to obtain better repre-
sentations of political agendas based on politician
tweets. Finally, non-verbal aspects of political dis-
course, such as the usage of gestures have been
proven to be associated with individuals rather than
political parties, while contributing to emphasising
certain parts of speech (Trotta and Tonelli, 2021).

Another relevant dimension that has been ex-
plored in the context of automated discourse analy-
sis is detecting the intent of the responder. (Girlea,
2017) trained Relational Dynamic Bayesian Net-
works on psycholinguistic features of non-political
dialogues to identify linguistic cues associated with
deception. In a work lying closer to ours, (Ferra-
cane et al., 2021) crowdsourced annotators to la-
bel political interview answers, firstly as "answer",
"shift" or "didn’t answer" and ultimately whether
that act had honest or deceptive intent. They thus
aim to collect diverse, subjective opinions on the
(dis)honesty of responders providing a valuable
two-way view on the topic that involves both the
responder and the audience (annotator). We instead
opt for avoiding assumptions on speaker intent, and
focusing only on discourse techniques the speaker
used, since they are better defined in related liter-
ature, and allow us to directly evaluate the clarity
of a response. For example, an on-topic response

that is slightly open to interpretation would be la-
belled as "Implicit reply" under the "Ambivalent
reply" category by our typology. While for (Ferra-
cane et al., 2021), this would fall under the parent
category of "Answer", and either "direct" or "over-
answer", depending on whether the annotator felt
that the speaker was purposefully ambiguous or not.
This decision on the annotation focus allows us also
to annotate a more extensive dataset (≈ 3.4K pairs)
due to its less subjective nature, which considers
the level of clarity and completeness of responses.

3 Proposed Taxonomy

The typologies discussed in §2.1 are comprehen-
sive and well-researched, but often exhibit com-
patibility issues (Bull, 1994; Bull and Strawson,
2019; Rasiah, 2010) as distinctions between cate-
gories vary among experts and sub-domains. For
instance, a somewhat vague reply may be deemed
as evasive by some while indirect yet coherent by
others, especially since ambivalent responses are
particularly prone to confirmation bias (Nickerson,
1998). To enhance objectivity, we focus on the Clar-
ity/Ambiguity dimension, rather than a Reply/Non-
reply distinction. This approach shifts annotators’
attention from the bias-prone task of trying to deci-
pher if an answer is “valid” or “invalid”, to whether
a response can be interpreted unambiguously or
accepts a wider range of interpretations.

Extensive typologies such as Bull (2009) include
over 30 types of replies, resulting in a sparse dataset
with few examples per category that further com-
plicates the annotation task. We thus aimed to
consolidate these typologies into fewer essential
categories, while maintaining crucial distinctions.

Another necessary adjustment involved break-
ing down multi-part questions into their constituent
questions, which led to the elimination of the cat-
egory of “intermediate replies”. As discussed in
§2.1, most interviewers pose multi-barrelled ques-
tions and vagueness in a single answer towards a
multi-part question results in classifying the en-
tire response as an intermediate reply. To avoid
skewing the dataset towards intermediate replies,
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we broke multi-barrelled questions into separate
questions and asked the annotators to label each
sub-question and answer separately.

Taking all of the above into consideration, we
arrived at a two-level hierarchical taxonomy. The
higher level includes 3 main response categories,
namely 1 Clear reply, containing replies that ad-
mit only one interpretation; 2 Clear non-reply,
containing responses where the answerer openly
refuses to share information, and 3 Ambivalent re-
ply, where a response is given in the form of a valid
answer but allows for multiple interpretations. At
the second level these 3 categories further split into
9 sub-categories illustrated in Figure 3. As a brief
exemplification, “Q: Have you seen my chocolates?
A: The children were in your room this morning.”
would be considered an Implicit reply (under the
Ambivalent category) since there is a rather clear
implication on the culprit. Yet, the answer does not
commit to explicitly stating that “the kids ate it” -
which would have made for an Explicit reply - but
rather prompts for a reasoning step to reach the fi-
nal assumption. Instead, “A. I don’t know”, for the
same question, would be labelled as a Clear non-
reply and specifically Claims ignorance, since the
respondent explicitly refuses to provide informa-
tion; also, “A. You should not keep your chocolates
all around the house” would be considered a De-
flection, i.e. an Ambivalent answer, as it provides
none of the requested information, yet it leverages
the subject to pivot on a different point. For further
analysis and examples see Table 4 in App. A.2.

4 Dataset creation

As a first step, we collect presidential interviews of
US Presidents, provided by the official Whitehouse
website 2. This resulted in 287 unique interviews
spanning from 2006 until 2023 which we further
analyse in App. A.1. We extracted a total of 3,445
questions and responses from these interviews, as
described in the following sections.

We leverage ChatGPT to decompose the original
interviews into QA pairs, aiming to separate multi-
barrelled questions into separate sub-questions and
their respective response sub-parts. We use the
automatically generated list of (sub-)questions to
generate annotation instances, and then, upon vali-
dating the decomposition, annotators label the re-
sponse to each sub-question separately. Thus, for
a given interview question, we may have several

2Interviews from https://www.whitehouse.gov/.

QA instances in the final dataset corresponding to
distinct sub-questions, and the classification of the
respective sub-responses. We henceforth refer to
the generated sub-questions and sub-responses as
singular QA pairs, “sQAs” for short.

Human annotation process Upon the aforemen-
tioned preprocessing of the interview questions, we
specify the annotation task where the annotators
are provided both with the original QAs as well as
the decomposed sQAs, and asked to label the re-
sponse for each sub-question separately. We opted
for providing the sQAs alongside the full text to
reduce the effort of manually extracting distinct
sQAs from the original interviews, which would
significantly increase the annotation time per sam-
ple. We further introduce counterfactual sQAs to
measure the annotators’ potentially exclusive re-
liance on sQAs, as explained in App. A.3. We
were thus able to verify that all annotators followed
our instructions and the introduction of sQAs aids
instead of hindering the annotation process. The
prompt provided to ChatGPT to create the original
sQAs and counterfactual sQAs is shown in App. H.

We employ 3 human annotators alongside an
expert with a background in political science and
political discourse analysis who acts as a validator
of the outcome annotations. As a first “training”
stage, we provide the annotators with a tutorial
that includes annotated examples from each cate-
gory of the taxonomy to allow them to familiarise
themselves with the concepts introduced. Then,
the annotators are prompted to perform a series
of annotation tasks in the following order: they
have to 1 evaluate the sQAs produced by Chat-
GPT as valid or not, and then 2 label each of the
individual questions and answers, using the pro-
posed taxonomy or indicate an erroneous question
in sQAs. Finally, they should 3 add any missing
questions, as well as the corresponding label. On
average, each annotator evaluated 1150 samples.
More information is provided in App. A.3.

Validation set & inter-annotator agreement As
the proposed task is challenging and annotator per-
spectives may influence their decisions, we use
a subset of the data (317 common QA pairs) as
validation for which we collect overlapping an-
notations from all 3 non-expert annotators. We
calculate the inter-annotator agreement between
the non-experts, for both the fine-grained ‘evasion’
taxonomy categories (Figure 3, lower level classes)
and the higher-level ‘clarity’ categories. We thus
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aim to both confirm the validity of our annotations
and explore which labels draw more disagreements,
potentially being more dependent on diverging per-
spectives and biases of annotators or being inher-
ently harder to distinguish. Table 2 shows the anno-
tators’ agreement via Fleiss Kappa κ scores (Fleiss
et al., 1971) when given samples from two different
‘clarity’ classes (row, column). Similarly, Figure 4
concerns the ‘evasion’ level classification.

Clear R. Clear Non-R. Ambiv.

Clear R. 1 0.97 0.65

Clear Non-R. 0.97 1 0.71

Ambiv. 0.65 0.71 1

Table 2: Fleiss κ (higher values are better) between
annotators for the ‘clarity’ classification level.

For the ‘clarity’ category, the Fleiss Kappa κ
indicates moderate to high agreement among non-
expert annotators at 0.644, compared to 0.48 for
the more challenging ‘evasion’ classification, sig-
nifying moderate agreement. There is near perfect
agreement between annotators regarding Clear Re-
ply and Clear Non-Reply (κ=0.97), while, rather
intuitively, confusions occur when distinguishing
between Ambivalent category and any of the rest.
Figure 4 sheds more light on the confused labels:
it seems that annotators diverge more when dis-
criminating between General (Ambivalent) vs Ex-
plicit (Clear Reply) (κ=0.58) and Partial (Ambiva-
lent) vs Explicit (Clear Reply) (κ=0.68), or ‘De-
clining’ (Clear Non-reply) vs‘Dodging’ (Ambiva-
lent) (κ=0.77). On the contrary, there is a clear
distinction between ‘Claim ignorance’, ’Decline
to answer’ ‘Clarification’ categories and ’Explicit’
replies (κ ≥0.92). Moreover, there is also high
disagreement within Ambivalent labels, such as
’General’ vs ’Implicit’, ’General’ vs ’Deflection’,
and ‘General’ vs ‘Dodging’ categories.

Handling disagreements As we intend to use
the described validation set in the evaluation stage
(i.e. as our test set), we opt for resolving the dis-
agreements and obtaining a single gold label for
all these 317 validation samples. When a disagree-
ment between non-expert annotators occurs, a ma-
jority voting scheme is employed to decide the gold
label. If there is no majority label, the expert an-
notator resolves the conflict by assigning the final
gold label to the respective samples.

Notably, deviating annotations are not necessar-
ily invalid and can represent a variability of perspec-

Figure 4: Annotators’ agreement using Fleiss κ for
labels assigned to the ‘evasion’ classification level.

tives that could be useful to model instead of re-
solve. Recent work has highlighted the importance
of access to multiple perspectives for complex NLP
tasks, encouraged by the emergence of datasets
that maintain several annotations per instance to
motivate training models under uncertainty or an-
notation variation (Baan et al., 2022, 2023; Plank,
2022; Giulianelli et al., 2023). Hence, and while
capturing diverting perspectives is out of scope for
this work, we release the full annotations alongside
the single-label dataset, to allow for future research
into models that can address multi-label scenarios.

Exploratory data analysis revealed shifts in eva-
sion patterns, such as an increased reply rate at the
end of the presidential service for some presidents
(e.g. D. Trump), while the opposite behaviour is
derived for others (e.g. G. Bush). Additionally,
evasion correlates with the presence of multi-part
questions Interestingly, while in joint interviews,
presidents tend to alter their reply strategy com-
pared to when being interviewed on their own. We
provide more details in App. A.1.

5 Experiments

5.1 Experimental setup

We test various models on our disagreement-
resolved validation set to showcase the impact of
different modelling choices and establish baselines.
Details regarding experiments in App. B.

Modeling variants We compare (i) encoder mod-
els: DeBERTa (He et al., 2021), RoBERTa (Liu
et al., 2019), and XLNet (Yang et al., 2019);
(ii)LLMs: Llama2 (Touvron et al., 2023), Fal-
con (Almazrouei et al., 2023); and (iii) ChatGPT
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(gpt3.5_turbo) 3. Additionally, we compare vary-
ing adaptation strategies, namely inference via zero
(ZS) or few-shot (FS) and chain-of-thought (CoT)
prompting variants (prompts provided in App. H),
as well as instruction-tuning on the target labels
using LoRA tuning (more details in App. H.1).

Our CoT approach employs a breakdown of in-
structions, as well as the “Let’s think step by step”
phrase (Kojima et al., 2022), asking the model
to first reason about QAs and then classify based
on the taxonomy. We compare two CoT flavors:
1 standalone CoT classifies only one sQA at a

time, and 2 multiple CoT attempts to classify all
sQAs pertaining to a multi-barrelled question in
one go. For the instruction-tuning part, we rely on
LoRA fine-tuning (Hu et al., 2021). The details of
the experiments are provided in App. B, while the
instruction format is outlined in App. H.1.

Classification variants We explore two different
classification variants to evaluate responses: 1
Direct clarity classification: we tune and prompt
models to directly predict one of the 3 labels of
the clarity level: Clear reply, Ambivalent Reply
and Clear non-reply. 2 Evasion-based clarity
classification: we infer the clarity labels in two
steps. First, we tune and prompt the models to
predict the 9 evasion sub-categories (leaves of the
taxonomy tree) and then we infer the 3 labels by
traversing the taxonomy hierarchy upwards.

5.2 Results and Discussion

Classification results for different training and in-
ference strategies are provided in Table 3. More
detailed analysis can be found in App.F 4.

For the ZS setup, we exclusively present results
for the larger models due to the very low perfor-
mance of the smaller ones (Llama 7B/13B and Fal-
con 7B), which frequently hallucinated and rarely
predicted labels within the taxonomy. ChatGPT sig-
nificantly outperforms the other two models across
metrics for both classification variants, and it is
positively influenced by the two-step evasion-based
strategy. While Falcon also benefits from generat-
ing fine-grained labels, Llama exhibits the opposite
behaviour, performing worse on the 9-way classi-
fication task and thus moving up in the hierarchy
leading to increased misclassifications. Instead,
Llama has a better representation of the high-level

3Specifically, we used version gpt-3.5-turbo-0613.
4Note that results for XxBERTa models are overestimated

due to constraint input token size.

Classification
variant

Model Acc. Prec. Recall F1

Prompting

direct
clarity

ZS Llama-70b 0.467 0.429 0.235 0.259
ZS Falcon-40b 0.240 0.252 0.247 0.144
ZS ChatGPT 0.649 0.476 0.413 0.413

FS Llama-7b 0.23 0.159 0.474 0.219
FS Llama-13b 0.211 0.105 0.302 0.156
FS Llama-70b 0.667 0.333 0.333 0.333
FS Falcon-7b 0.203 0.107 0.267 0.152
FS Falcon-40b 0.29 0.13 0.336 0.186

standalone CoT 0.628 0.414 0.376 0.368

evasion-
based
clarity

ZS Llama-70b 0.385 0.396 0.308 0.261
ZS Falcon-40b 0.618 0.365 0.387 0.375
ZS ChatGPT 0.640 0.507 0.497 0.482

FS Llama-7b 0.274 0.393 0.335 0.262
FS Llama-13b 0.291 0.452 0.363 0.259
FS Llama-70b 0.541 0.565 0.452 0.365
FS Falcon-7b 0.505 0.299 0.211 0.222
FS Falcon-40b 0.429 0.167 0.25 0.2

standalone CoT 0.688 0.611 0.514 0.510
multi CoT 0.549 0.459 0.500 0.462

Tuned models

direct
clarity

DeBERTa-base 0.58 0.521 0.453 0.441
RoBERTa-base 0.64 0.579 0.516 0.53

XLNet-base 0.694 0.52 0.523 0.518

Llama-7b 0.489 0.452 0.529 0.457
Llama-13b 0.587 0.579 0.7 0.58
Llama-70b 0.759 0.67 0.70 0.68
Falcon-7b 0.288 0.325 0.333 0.175
Falcon-40b 0.341 0.512 0.534 0.356

evasion-
based
clarity

DeBERTa-base 0.555 0.53 0.671 0.537
RoBERTa-base 0.577 0.501 0.534 0.495

XLNet-base 0.58 0.523 0.586 0.546

Llama-7b 0.666 0.618 0.616 0.616
Llama-13b 0.675 0.617 0.616 0.616
Llama-70b 0.713 0.67 0.71 0.682
Falcon-7b 0.533 0.429 0.386 0.397
Falcon-40b 0.621 0.616 0.532 0.558

Table 3: Results for ZS, FS & CoT prompting inference,
as well as for fine/instruction-tuned models. The best re-
sults for each prompting/training variant are underlined
and best results overall are also in bold.

labels, performing better on the direct clarity clas-
sification. For FS, due to the lengthy sQAs of our
dataset’s interviews, we employ shorter representa-
tive examples (Table 4). FS showcased advanced
results compared to ZS, with smaller models expe-
riencing a significant reduction in hallucinations.
Further analysis is provided in App. D.1.

CoT experiments exhibit a different behaviour
for each classification variant. Specifically, CoT
improves the performance for the evasion-based
strategy only, hinting that the “step-by-step” rea-
soning process is more meaningful when address-
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ing a task with higher dimensionality/complexity
of targeted labels. Interestingly, asking to address
all sQAs in one go (multi-CoT) harms performance
instead of improving, potentially because of the
impact on the amount of context that needs to be
taken into account for generation.

In general, LLMs mostly struggled with distin-
guishing between Clear vs Ambivalent replies, as
well as Partial vs General ones. This resembles
challenges (Figure 4) faced by human annotators
but interestingly holds even for ZS and CoT models
which were not trained on human annotations, sug-
gesting a generalised difficulty in discerning these
classes. Further insights are shown in App. E.

Turning to tuned models, we observe a differ-
ence in behaviour: for direct clarity, smaller LLM
models seem to struggle and are even outperformed
by encoder models such as XLNet or BERT vari-
ants, with only the 70b Llama outperforming them.
Instead, evasion-driven classification consistently
improves the performance of Llama variants. Ad-
ditionally, Llama models outperform Falcon even
with fewer parameters (e.g. the 13B Llama model
outperforms the 40B Falcon across metrics). This
aligns with other works where LLama-13b sur-
passes Falcon-40b in reading comprehension (Tou-
vron et al., 2023), while all LLama variants exhibit
better prior knowledge (Sun et al., 2023), a crucial
factor for our task as discussed below. We expand
our experiments to assess the generalisation capa-
bilities of the stronger Llama model (70B) using
the dataset of (Ferracane et al., 2021), which is
annotated with a different strategy, and provide an
analysis as detailed in App. G.

Overall, for both prompting and tuning strate-
gies, the evasion-based clarity classification vari-
ant leads to better performance compared to the
direct clarity one, indicating that the fine-grained
subcategories of the taxonomy assisted in guiding
the LLMs towards selecting the correct high-level
clarity category more frequently. In other words,
while the 9-way classification is more challenging
(see also App. E), disambiguation between the
finer-grained labels helps the models improve their
accuracy on the higher-level ones. Further analysis
of performance per class is provided in App. C.

Answer grounding We aim to separately assess
whether models are influenced by the difficulty of
identifying the relevant response snippets in the
text, i.e. grounding the answer, a task that can be
particularly challenging when a single reply ad-

dresses multiple questions. As a proxy to test this,
we consider single- vs multi-part question subsets
(35% vs 65% of the original test-set), assuming
that answer grounding is harder for the latter, and
we compare models and annotator performance.
While Fleiss κ showed minimal disparity between
humans across all models, metrics were notably
higher for single-part questions, regardless of the
method (ZS/FS, CoT, fine-tuning) or the classifica-
tion variant (evasion-based or direct clarity). Per-
formance improvements reached 0.16 for F-score,
indicating the impact of QA complexity on model
performance. More detailed results in App D.2.

Model knowledge We explore whether perfor-
mance in the proposed task is influenced by models’
“prior knowledge” of given entities. For instance, Q:
“Did the Federal Reserve make the right move?”, A:
“I think Bernanke is doing a great job” would be
correctly classified as Dodging by models unaware
that Bernanke is the chairman of the Federal Re-
serve. To explore the prior knowledge hypothesis,
we focus on person names and divide the test-set
into two parts: one containing person names in ei-
ther the question or the answer, and one excluding
any named person mentions (60% vs 40% of the
original test-set). All models performed better on
the latter, “no-person” subset, but smaller models
exhibited a much sharper improvement of up to
0.20 in F-score (Llama-7b) compared to larger and
presumably more “knowledgeable” ones, thus cor-
roborating the findings of Sun et al. (2023). We
provide more details in App D.3.

6 Conclusion

We introduce a novel task on response clarity classi-
fication focusing on political interviews. Driven by
studies of evasion techniques in political sciences,
we propose a two-level hierarchical taxonomy for
clarity classification that considers different eva-
sion strategies at the lower (leaf) level. We also
introduce a new dataset where question-answer
pairs are manually annotated with the proposed
taxonomy labels. We experiment with a range of
different model architectures, sizes and adaptation
strategies on our dataset, establishing several base-
lines. We empirically show that fine-grained labels
facilitate classification in response clarity, while
encoded model knowledge is strongly associated
with classification performance. We aspire for this
work to motivate future research in the topic, both
from the NLP and political sciences communities.
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Limitations

Due to the usage of Large Language Models (Chat-
GPT) in our pipeline, our annotation process is sus-
ceptible to hallucinations, which could affect the
quality of the sQA extraction and therefore the as-
signment of correct labels. However, we attempt to
mitigate this risk by asserting that our human anno-
tators are attentive and not influenced by injecting
counterfactual sQAs. Additionally, we manually in-
spected the quality of both the ChatGPT-generated
sQAs and the human annotations throughout the
annotation campaign to ensure high-quality annota-
tions. Further, despite being crucial for the quality
of the derived dataset, the need for human anno-
tators significantly limits the number of samples
that can be annotated, especially when considering
the complexity of the proposed task. Overall, our
dataset and respective analysis are limited to the En-
glish language and further work would be needed
to generalise the findings to other languages, es-
pecially low-resource ones. Finally, the inherently
missing vocal features present in speech, as well
as face movements and hand gestures limit the dis-
course analysis to purely textual cues, potentially
missing some evasion-related characteristics.

Potential risks

Potential risks associated with this work relate to
the possibility of misclassification of a part of po-
litical speech due to the usage of neural models
(LLMs) as classifiers. This fact may result in erro-
neously marking politicians’ claims as unclear and
evasive if our method is used in real-world scenar-
ios without human monitoring, especially since the
current state of LLMs under usage tends to halluci-
nate and produce unfaithful outputs. Hence, further
work to ensure the reliability and trustworthiness
of the underlying models would be crucial for their
deployment.
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A Dataset details

A.1 Exploratory data analysis

In this section, we describe some interesting pat-
terns present in our proposed dataset.

Label distribution We start our analysis from
the core of this work, which is the distribution of
the final labels of our dataset, which are presented
in Figure 5. Overall, Explicit Replies is the most
prevalent category, followed by evasion categories
with significantly lower frequency each. Specifi-
cally, Explicit Replies contribute to 1051 samples
in total, followed by Dodging (704 samples), Im-
plicit (488 samples), General (386 samples), De-
flection (381 samples), Declining to answer (145
samples), Claims ignorance (119 samples), Clarifi-
cation (92 samples) and finally Partial/half-answer
(79 samples).

Figure 5: Label distribution in the dataset.

We also analyze the label distribution per pres-
ident in Figure 6, offering a more detailed insight
compared to Figure 2. According to the per presi-
dent distribution, we conclude that in our collected
interviews Donald J. Trump tends to provide more
Explicit Replies than the rest of the US presidents,
as indicated by the light-colored square of Figure
6.

Figure 6: Label distribution per president.

In the following paragraphs we will delve into
the insights behind these label distributions.

Temporal insights Moving on to temporal char-
acteristics, in Figure 7 we provide some temporal
statistics regarding the interview distribution.

Figure 7: Visualization of interview distribution across
months and years in the corpus

In Figure 8 we present the label distribution per
year in our dataset. We observe an elevated num-
ber of Explicit Replies in 2020, as indicated by
the light-colored cell. This observation can be
grounded to president-related information, as this
can be a strong characteristic in conjunction to la-
bel distribution.

Figure 8: Label distribution across years

So, in association with US presidents, in Figure
9 we demonstrate the timeframe associated with
each president’s service. We can now conclude that
the higher number of Explicit Replies of Figure 8
coincides with Trump’s service, which is related
to more Explicit Replies, as indicated in Figure 6.
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Consequently, temporal evasion characteristics are
highlighted in Figure 10.

Figure 9: Service timeline for each US president

To this end, some interesting patterns can be de-
rived from Figure 10, especially if we focus on
the start and the end of each president’s service
period. For example, George W. Bush and Joseph
R. Biden tend to significantly decrease their ratio
of Explicit Replies over implicit replies and eva-
sion strategies, while the opposite pattern occurs
for Donald J. Trump. Regarding Barack Obama,
his ratio is almost the same at the end of his ser-
vice in comparison to the beginning, even though
fluctuations are observed during his entire service
period.

Geographical insights Location-related patterns
are examined in Figure 11 in order to derive
whether evasion phenomena occur in conjunction
to certain locations. Specifically, the horizontal
axis represents the location where a presidential
speech took place, while the vertical axis corre-
sponds to the percentage of Clear Replies (left),
Ambivalent Replies and Clear Non-Replies (right)
and the ratio of these two cases (bottom). All per-
centages are normalized according to the total num-
ber of interviews given to each of those locations
according to our data. Focusing on the Explicit Re-
ply ratio over all other cases (bottom plot), the re-
sulting long-tailed distribution denotes that in most
cases there are few Explicit Replies compared to
evasion techniques or Implicit Replies. Overall,
we cannot extract a specific pattern location-wise,
meaning that the evasion rate is not strongly asso-
ciated with location.

QA decomposition We also analyze the distri-
bution of sQAs, so that we discover the impact
of the number of decomposed QA pairs on other
dataset characteristics. This distribution is show-
cased in Figure 12, where single QA instances dom-
inate the dataset (the highest bar corresponds to 1
sQA, which is equivalent to the initial question and
answer, and not decomposed by ChatGPT). As a
general tendency, longer QAs -and therefore larger
numbers of sQAs- are rare, as proven by the lower
bars of Figure 12. This observation eases the an-
notation process, since longer QA pairs are harder

to decompose by ChatGPT, and are consequently
evaluated and annotated by humans.

An interesting insight that can be derived from
the sQAs count per interview is the correspond-
ing label distribution. This analysis is presented in
Figure 13 (we only consider the more frequently
occurring sQA numbers as per Figure 13, i.e. in-
stances with 2, 3, 4 sQAs or no sQA as in the case
of non-decomposed QA pairs). Interestingly, the
top-5 frequent categories are the same for sQAs of
counts 2, 3, 4 (Dodging, Implicit, General, Deflec-
tion, and Declining to answer categories). More-
over, Explicit Replies are absent from sQAs of
count 2, 3, 4, even though they are frequent labels
in the dataset (Figure 5). This pattern differs for
QA pairs with no decomposition (upper left plot):
Explicit Replies are significantly more frequent,
followed by other frequently occurring evasion cat-
egories (Deflection, General, Dodging). This anal-
ysis also suggests an important insight: politicians
tend to provide clear replies in answers targeting
short, single-barrelled questions while concealing
evasion strategies within answers for multi-part
questions, where grounding the requested informa-
tion to the answer given is significantly harder.

Moving forward to a per-president analysis, de-
tails regarding the number of questions for all 4 US
presidents existing in the interviews under consid-
eration are provided in Figure 14.

We can then proceed by examining the per-
president decomposition of questions. The related
analysis is presented in Figure 15.

Barack Obama receives more multi-part ques-
tions, therefore scoring high in instances where
there are 3 or 4 sQAs (bottom plots of Figure 15).
This can be possibly related to the elevated num-
ber of Ambivalent Replies and low number of Ex-
plicit Replies (Figure 2) in association with the
connection between evasion frequency and number
of sQAs per instance (Figure 13). On the other
hand, Donald J. Trump scores higher in instances
where single QA pairs occur, or are broken down
into 2 parts (2 sQAs), as indicated by the top plots
of Figure 15. This could be related to the compara-
tively lower number of Donald J. Trump Ambiva-
lent replies (Figure 2) and the higher number of
Explicit Replies (Figure 6).

To this end, our QA decomposition is deemed as
an interesting initial tool towards the possibility of
evasions: in cases where many multi-part questions
occur, it is possible that evasion strategies may
also appear, while the opposite holds in cases with

5216



Figure 10: Percentages of Explicit Replies (left), Implicit/Non-Replies (right) and ratio of Replies over Implicit/Non-
Replies (bottom) for each US president during their service.

Figure 11: Percentages of Explicit Replies (left), Implicit/Non-Replies (right) and ratio of Replies over Implicit/Non-
Replies (bottom) per location.

Figure 12: Distribution of sQAs length frequency.

single QA pairs.

Political opponents In Figure 16 we present
the distribution of labels when a politician is in-
terviewed on their own versus when they are in-
terviewed with a political opponent. Politicians
are more or less consistent towards their Explicit
Replies and evasion percentages, as proven by the
similar bar height in both cases (with or without an
opponent).

Delving deeper into the opponent-related
analysis, in Figure 17 we present label percent-
ages with and without political opponent per
president. Different patterns arise for each of

them: for example, George Bush (Figure 17a)
tends to provide more Explicit Replies when being
interviewed together with a component than when
on his own. On the contrary, Barack Obama
(Figure 17b) provides more Explicit Replies when
being interviewed on his own. Similarly, Donald
J. Trump (Figure 17c) replies explicitly when
no opponent is participating in the interview.
Smaller differences in Explicit reply percentages
under the two interview scenarios are observed
for Joseph R. Biden(Figure 17d), even though he
tends to provide slightly more Explicit Replies in
interviews with a political opponent. Donald J.
Trump and Joseph R. Biden tend to employ evasion
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Figure 13: Label frequency per sQAs length.

Figure 14: Visualization of distribution of unique ques-
tions per President in the corpus

strategies in similar percentages with and without
political opponents; some notable exceptions can
be observed for Dodging categories, for which
the percentages for Biden are higher in presence
of a political opponent, while the opposite holds
for Trump. In total, the label distributions for
Barack Obama and Donald Trump are somewhat
similar (note the ranking of labels, as well as the
differences between bars with/without opponent),
indicating a common behavior in handling inter-
views with/without political opponents. George
Bush holds a diverging distribution, in terms of
presenting a larger gap between his top-1 category
(Explicit Replies) and the rest; especially when
being interviewed on his own, he tends to exploit

significantly less evasion techniques in comparison
to the rest of the presidents.

Overall, our presented dataset accompanied
by this exploratory analysis can be utilized by
political scientists, assisting them in extracting
interesting insights from political interviews.

A.2 Examples from the proposed taxonomy

In Table 4, we demonstrate some examples for all
the categories mentioned in our proposed taxon-
omy. We also provide explanations on why these
examples were classified in their respective classes.

These examples were used in the annotators’
"training" phase, during which they were famil-
iarized with the introduced problem, as well as the
proposed taxonomy. The same examples were used
as demonstrations for few-shot prompting, inserted
in the same order as in Table 4.

A.3 Annotation details

Annotators’ statistics All three non-expert an-
notators are of engineering background and partic-
ipated in this annotation process voluntarily. The
reason why we opted for non-expert annotators is
because they are more representative of the general
public, who are the receivers of political speech
and do not have adequate background to immedi-
ately capture possible evasions, and therefore can-
not fully evaluate the response clarity. The three
non-experts are females, while the expert annotator

5218



Figure 15: Distribution of per president interviews for different sQA counts.

Figure 16: Label percentages for interviews with and without the presence of a political opponent.

is male, and all of them are fluent or native English
speakers. We do not disclose geographical char-
acteristics to fully preserve anonymity. Moreover,
we did not collect any information regarding age
or race/ethnicity.

Quality of annotations was ensured via a well-
crafted process of designing and monitoring the
annotation process. First of all, we collect a de-
scriptive set of instructions: as an introduction, we
provided our annotators the examples of Table 4 to
familiarize with the nature of the categories. Then,
we released a short quiz to validate that they prop-
erly learned the fundamentals. After this stage,

we proceeded with real examples from our dataset,
demonstrating some examples of successful and
unsuccessful sQAs in comparison to the initial in-
terviews. Then, we also demonstrated examples
with their labels to allow annotators to learn the
distinguishing features between each category, es-
pecially the usually confused ones (as per Figure
4). Since this step is the most critical for the anno-
tation process, we conducted daily sessions for one
week, also distributing short quizzes after each ses-
sion. The expert monitored and graded the learning
process and the quizzes, verifying that the anno-
tators were ready to perform annotations on their
own, while also resolving any related questions in
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(a) Label distribution for G. Bush. (b) Label distribution for B. Obama.

(c) Label distribution for D. J. Trump. (d) Label distribution for J. R. Biden.

Figure 17: Label distribution with and without opponent for each US president of our dataset.

Figure 18: Visualization of distribution of evasion label
per annotator in the corpus

the meanwhile. Weekly checks on the annotation
quality were performed by comparing a subset of
the annotations with the annotations provided by
the expert. In these intermediate evaluations, no
annotator was significantly deviating from the ex-
pert. We denote that we consider a non-negligible
deviation when the Fleiss score between the expert
and any annotator was ≤ 0.7.

Label distribution per annotator Figure 18 de-
picts the distribution of evasion labels for each non-
expert annotator (note that interview samples were
randomly distributed to annotators). The analysis
reveals a generally consistent number of labels for
each category across annotators. Notably, a slight
disparity is observed for the explicit label, with an-
notator2 exhibiting a significantly different count
compared to the other annotators. However, it’s
important to note that this doesn’t necessarily im-
ply a higher likelihood of Annotator2 to annotate
instances with this label, as such behavior is not ev-
ident in the broader dataset analysis. The observed
variation may be attributed to factors such as dif-
fering annotation styles or a higher occurrence of
explicit responses within Annotator2’s set, which
is in accordance to the higher number of explicit
replies in general (Figure 5).

Average annotation time per annotator The
average time taken by each annotator to complete
the annotation of a segment of an interview was
144.33 seconds (2.4 minutes), excluding instances
with exceptionally large durations. This metric
directly reflects the inherent complexity of the an-
notation task. Notably, this average annotation time
remained consistent across all annotators.
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taxonomy Description Example
C

le
ar

R
. Explicit The information requested is explicitly

stated (in the requested form)
Q: er you have your own views about PR at Westminster
don’t you? A: I do.
Why? - directly gives the info requested

A
m

bi
va

le
nt

R
ep

ly

Implicit The information requested is given, but
without being explicitly stated (not in the
expected form)

Q: Are you going to watch television? A: What else is
there to do?
Why? - they suggest planning to watch TV, despite not
explicitly stating it

General The information provided is too gen-
eral/lacks the requested specificity

Q: What’s your favourite film? A: Fight Club, Filth and
Hereditary
Why? - the reply gives three movies instead of one, which
makes the desired information unclear

Partial Offers only a specific component of the
requested information

Q: Did you enjoy the film? A: The directing was great
Why? - Directing is only part of what constitutes a film

Dodging Ignoring the question altogether Q: Do you like my new dress? A: We are late.
Why? - does not even acknowledge the question and goes
straight to another topic

Deflection Starts on topic but shifts the focus and
makes a different point than what is asked

Q: Did you eat the last piece of pie? A: I have to admit
that this was a great recipe, I always like it when there are
chocolate chips in the dough.
Why? - acknowledges the question but goes on a tangent
about the chips, without answering

C
le

ar
N

on
-R

ep
ly

Declining to
answer

Acknowledge the question but directly or
indirectly refusing to answer at the mo-
ment

Q: The hypothesis I was discussing, wouldn’t you regard
that as a defeat? A: I am not going to prophesy what will
happen.
Why? - directly stating they won’t answer

Claims igno-
rance

The answerer claims/admits not to know
the answer themselves

Q: On what precise date did the government order the
refit of the HMAS Kanimbla in preparation for its forward
deployment to a possible war against Iraq? A: I do not
know that date. I will find out and let the House know.
Why? - claims/admits they don’t have the information

Clarification Does not provide the requested informa-
tion and asks for clarification

Q: Was it your decision to release the fund? A: You mean
the public fund?
Why? - gives no data, asks for clarification

Table 4: Descriptions and examples of political evasion techniques based on the proposed taxonomy

Labelling platform Our labelling process was
conducted in the open source Label Studio5 plat-
form. We provide some screenshots of the labelling
pages in Figures 19, 20 (they both belong to the
same labelling page). Before the labelling process
commenced, we provided detailed guidance to an-
notators on how to use the platform properly, so
that any erroneous annotations because of limited
familiarization with the platform are eliminated.

Annotators have to first evaluate the decompo-
sition quality of sQAs (Figure 19) as provided by
ChatGPT. In case of erroneous decomposition, they
have to add the corresponding multi-parts miss-
ing (“Any Additional Missed Questions?“), among
with their taxonomy label. If extraneous multi-parts

5https://labelstud.io/

are generated by ChatGPT, they can be reported
(annotators can click the Error button denoting that
“Question does not exist in the original text!“), so
that this multi-part pair is disabled from the anno-
tation process.

Annotations on presidential speech Extending
the findings presented in Figure 2, Table 5 demon-
strates more thorough results regarding the clar-
ity of responses, as well as the evasion schemas
leveraged by US politicians, as a result of our an-
notations. All of them tend to provide Ambivalent
Replies more often than not, as denoted with red
color. Especially Barack Obama utilizes Ambiva-
lent responses more frequently than the rest of the
presidents. Blue color denotes the most frequently
used evasion technique, which in this case corre-

5221

https://labelstud.io/


Figure 19: Screenshot from labelling platform: The sQAs for the provided QAs are given to the annotators. They
have to highlight each of the enumerated responses and assign one of the labels of the taxonomy (as presented in
Figure 20) to each of them.

Figure 20: Screenshot from labelling platform: annotators have to read the original Question and Answer as
provided. The classes corresponding to our proposed taxonomy are demonstrated as well.

sponds to ‘Explicit Replies‘; nevertheless, Explicit
Replies only account for about the 1/3rd of the
responses for all presidents, leaving much space
for evasion schemas to appear. In comparison, Joe
Biden tends to provide more Explicit Replies, as
resulting from our annotations.

Dialogue separation The annotators were tasked
with identifying potential errors generated by Chat-
GPT. In Figure 19, they were presented with the

option: ‘Error, Question does not exist in the origi-
nal text.’ Additionally, if any multi-part pairs were
missing, annotators were encouraged to provide
them, as shown in Figure 20 with the prompt ‘Any
additional missing questions?’ During the analy-
sis of dialogue separation performed by GPT-3.5-
turbo, it was found that 88.6% of the segmented
sections were accurately separated, with no errors
detected in the sub-questions within the two in-
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Response G. W.
Bush

B.
Obama

D. J.
Trump

J. R.
Biden

Clear Reply 34.31 22.38 32.6 37.34
Clear Non-Reply 8.68 9.5 11.77 10.53

Ambivalent 57.0 68.12 55.62 52.13

Explicit 34.31 22.38 32.6 37.34
Implicit 14.43 18.02 12.08 10.78
Dodging 19.05 23.17 20.08 17.54

Deflection 12.32 10.3 11.02 10.78
Partial/half-answer 1.4 2.28 1.96 5.01

General 9.8 14.36 10.49 8.02
Declining to answer 3.64 4.55 4.08 4.76

Claims ignorance 2.52 2.18 4.91 3.51
Clarification 2.52 2.77 2.79 2.26

Table 5: Statistics of answer clarity and evasion tech-
niques in political interviews per president.

correct segments. Conversely, only 11.4% of the
segments contained at least one error in the dia-
logue separation process. Specifically, 91.41% of
the sub-questions were deemed accurate, 7.31%
were labelled as ‘Error, Question does not exist in
the original text,’ and 1.27% were initially missing
questions that were later provided by the annota-
tors.

Counterfactual Singular QAs (sQAs) Consid-
ering that annotators should consult the initial in-
terview text instead of exclusively relying on the
more easily readable QA ChatGPT sQAs, we test
their cautiousness by inserting 31 additional sam-
ples containing counterfactual sQAs in place of the
original ones –without them knowing. Those sQAs
are purposely unfaithful to the original QAs, guid-
ing an annotator towards believing the responses
belong to a different category compared to the ac-
tual one. We prompt ChatGPT to select an incorrect
(counterfactual) label in order to generate a suit-
able sQA, which is shown to users instead of the
original (the class label is not shown). 6 We man-
ually verify the suitability of each counterfactual
sQA. The sQA should be marked as erroneous, and
the annotator should write down the decomposed
answers occurring, together with their labels.

SQAs insights We computed for each annotator
the ratio of selecting the counterfactual label in-
stead of the correct one and found it to be ≤ 0.08.
We thus assert that annotators do not solely rely on
ChatGPT sQAs and confirm the validity of the pro-
cess, since they were not significantly influenced
by the counterfactual sQAs.

6We provide the counterfactual sQA prompt at §H

B Experimental Details

In our experiments, we utilized three distinct
datasets: training, development, and validation sets.
The original dataset was divided into two parts,
allocating 2700 samples to the training set and re-
serving approximately 750 samples for the develop-
ment set. For a realistic evaluation, we employed
a separate validation dataset comprising 274 sam-
ples, which were meticulously annotated by a team
of annotators. Any inconsistencies were resolved
by a domain expert. This method ensures a robust
assessment of the models using ground truth labels
validated by an expert. The distribution of each
category across these datasets is depicted in Table
6 for clarity labels and Table 7 for evasion labels.

Label Train Development Validation

Clear Reply 796 255 86
Ambivalent Reply 1617 421 207
Clear Non-Reply 284 72 24

Table 6: Distribution of Instances Across Clarity Labels
in Training, Development, and Validation Sets.

Label Train Validation Test

Explicit 796 255 90
Implicit 381 107 59
General 313 73 50

Partial/half-answer 69 10 3
Dodging 563 141 61

Deflection 291 90 27
Clarification 69 23 4

Declining to answer 117 28 11
Claims ignorance 98 21 10

Table 7: Distribution of Instances Across Evasion La-
bels in Training, Validation, and Testing Sets.

B.1 Evaluation

Throughout our paper, we utilize classification met-
rics for evaluation. Specifically, accuracy, preci-
sion, and recall are employed, as well as F1 scores.
Regarding F1, we use both the macro and the
weighted average strategies. The macro F1 score is
calculated as the average of the F1 scores for each
class (see Eq. 1), without considering the class dis-
tribution, whereas the weighted F1 score accounts
for class frequency, giving more weight to larger
classes (see Eq. 2).

F1macro =
1

N

N∑

i=1

F1i (1)
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Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

Llama-7b 0.489 0.581 0.489 0.504
Llama-13b 0.587 0.719 0.587 0.594
Llama-70b 0.75 0.757 0.75 0.752
Falcon-7b 0.294 0.537 0.294 0.186

Falcon-40b 0.341 0.656 0.341 0.244

evasion-
based
clarity

Llama-7b 0.662 0.669 0.662 0.665
Llama-13b 0.675 0.68 0.675 0.677
Llama-70b 0.713 0.743 0.713 0.72
Falcon-7b 0.533 0.537 0.533 0.533

Falcon-40b 0.618 0.633 0.618 0.622

Table 8: Classification results using a weighted strategy,
which averages F1 scores, weighted by class size. The
best results for each strategy are underlined and the best
results overall are also in bold.

F1weighted =
N∑

i=1

(
ni

N
× F1i

)
, (2)

where ni is the number of instances in each class.

C Performance Analysis for Each Class

In this section, the performance of the instruction-
tuned models, which have shown the best perfor-
mance compared to other strategies, is presented by
class. Table 8 illustrates the performance of these
models using a weighted strategy.

Using the weighted strategy, the conclusions re-
main the same, although the numerical results are
slightly improved. Further analysis of the model’s
performance for each class can be found in Table
17, which showcases the classification report of the
tuned Llama-2-70b model with evasion-based clar-
ity for each class, which has shown the best results
among the other strategies.

Prec. Recall F1 Sup.

Clear Reply 0.54 0.74 0.62 84
Ambivalent 0.84 0.71 0.77 208

Clear Non-Reply 0.63 0.68 0.65 25

Acc. 0.71 317
Macro avg 0.67 0.71 0.68 317

Weighted avg 0.74 0.71 0.72 317

Table 9: Classification report of the tuned Llama-2-70b
model, for each class, demonstrating precision, recall,
F1 score, and support.

Notably, the model demonstrates its highest pre-
cision with the Ambivalent category at suggesting
strong accuracy in identifying relevant instances,
albeit with a moderate recall. This is followed by

a decent performance in the Clear Non-Reply cat-
egory, with a balanced precision and recall. The
category Clear Reply, while having a high recall,
indicating effective identification of most relevant
cases, shows the lowest precision, which may in-
dicate a higher rate of false positives. This issue
particularly arises from confusion between Clear
Replies and Ambiguous responses, and between
Clear and General responses, as further analyzed
in App. E.

Overall, the model achieves a general accuracy
of and similarly balanced macro and weighted aver-
age scores. These results indicate a reasonably
good model performance, particularly in distin-
guishing the more frequently occurring Ambivalent
category.

D Additional Experiments

D.1 Few-Shot prompting

In the few-shot setup, we showcase the model re-
sults irrespective of their size. Unlike in the ZS
setup, smaller models demonstrated better adher-
ence to the output template and exhibited fewer
hallucinations overall. Since the examples in our
dataset are quite lengthy, we opt to select one ex-
ample for each label to present to the model, along
with the corresponding explanation provided in Ta-
ble 10. This methodology mirrors what the human
annotators saw before commencing the annotation
procedure. We noticed that Falcon struggled more
to respond within the given template compared to
the zero-shot approach. Nevertheless, examples
in the few-shot setup seemed to aid the Llama-
70b model in understanding the task, along with
the smaller models. In the FS setup, the Llama-
7b model exhibited comparable results to a model
ten times larger in the ZS setup. In evasion-based
clarity models, examples in the middle are often
ignored. Instead, responses tend to align with the la-
bels of the first or last examples. This phenomenon
is well-documented in literature (Dong et al., 2022).
For example in Llamma-70b, 60% of responses
matched the labels of the final four examples, com-
pared to less than 10% in the ground truth.

D.2 Answer Grounding

In this section, we outline the distinctions in model
performance between single and multi-part ques-
tions. Specifically, we divided the test set into two
distinct parts: one consisting of segments of the
interview containing only single questions (112 out
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Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

Llama-7b 0.23 0.159 0.474 0.219

Llama-13b 0.211 0.105 0.302 0.156

Llama-70b 0.667 0.333 0.333 0.333

Falcon-7b 0.203 0.107 0.267 0.152

Falcon-40b 0.29 0.13 0.336 0.186

evasion-
based
clarity

Llama-7b 0.274 0.393 0.335 0.262

Llama-13b 0.291 0.452 0.363 0.259

Llama-70b 0.541 0.565 0.452 0.365
Falcon-7b 0.505 0.299 0.211 0.222

Falcon-40b 0.429 0.167 0.25 0.2

Table 10: Classification results for few-shot (FS) infer-
ence. The best results for each strategy are underlined
and best results overall are also in bold.

of 317 questions), and the other containing only
segments with multi-part questions (205 out of 317
questions). We then compared the performance of
each method. Using this methodology, we discov-
ered that regardless of the method employed, every
model exhibited lower performance on multi-part
questions compared to single ones. The results for
instruction-tuned models are shown in Table 11,
while those for the prompting techniques applied
to the model with the best results are presented
in Table 12. For each model or method, there are
two lines: the first represents performance on the
multi-part question set, and the second represents
performance on the single question set.

To further investigate whether this difficulty is
also encountered by humans, we compared the
Fleiss score of the annotators between these two
subsets. We found that the difference was only
0.03, indicating that there was no significant dif-
ference in the performance of annotators between
single and multi-part questions. This suggests that
the challenge of grounding answers to multi-part
questions is unique to LLMs.

D.3 Connection to encoded knowledge

We further delve into the integral relationship be-
tween clarity classification and the knowledge per-
taining to a specific named entity. Named entities
frequently have properties that are considered com-
mon knowledge and that is why they are not ex-
plicitly mentioned in a response. As a result, the
systems that try to define the clarity of a response
would need to be aware of these properties of the
name entities. In our dataset the most occurring

Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

Llama-7b 0.47 0.403 0.48 0.402
0.53 0.537 0.588 0.538

Llama-13b 0.59 0.547 0.711 0.548
0.59 0.625 0.694 0.621

Llama-70b 0.74 0.594 0.648 0.612
0.78 0.705 0.742 0.72

Falcon-7b 0.25 0.319 0.337 0.158
0.37 0.341 0.329 0.21

Falcon-40b 0.29 0.432 0.468 0.284
0.44 0.67 0.629 0.459

evasion-
based
clarity

Llama-7b 0.67 0.593 0.59 0.591
0.64 0.602 0.622 0.608

Llama-13b 0.69 0.592 0.581 0.586
0.64 0.635 0.679 0.654

Llama-70b 0.7 0.601 0.656 0.62
0.73 0.75 0.785 0.761

Falcon-7b 0.54 0.442 0.372 0.384
0.52 0.429 0.413 0.418

Falcon-40b 0.64 0.62 0.47 0.493
0.58 0.578 0.598 0.586

Table 11: Classification results for instruction-tuned
models. The best results overall are in bold. The first
line of each model shows the results for the set con-
taining only multi-part questions, while the second line
shows the results for single-part questions.

Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

zero-shot 0.668 0.418 0.37 0.37
0.625 0.559 0.483 0.461

standalone
CoT

0.649 0.347 0.34 0.332
0.607 0.537 0.441 0.418

evasion
based
clarity

zero-shot 0.639 0.443 0.442 0.436
0.661 0.683 0.603 0.56

standalone
CoT

0.712 0.568 0.483 0.489
0.643 0.657 0.558 0.536

Table 12: Classification results for ChatGPT using zero-
shot and chain-of-thought inference for the two subsets
(single- and multi-part questions). The best results for
each subset are in bold. The first line of each model
shows the results for the set containing only multi-part
questions, while the second line shows the results for
single-part questions.

named entities are persons’ names, that why we
focused the experimental analysis on these terms.
Specifically, we split our dataset into two distinct
parts, one containing only parts of the interview
that include at least one person’s name either in
the interview question or the answer and a second
one which contains no person names. The first
set consists of 189 questions and the second of
128 questions. The differences between the per-
formances for instruction-tuned models are shown
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Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

Llama-7b 0.434 0.375 0.439 0.369
0.57 0.56 0.621 0.565

Llama-13b 0.55 0.527 0.663 0.52
0.639 0.631 0.731 0.638

Llama-70b 0.752 0.65 0.777 0.69
0.768 0.7 0.686 0.692

Falcon-7b 0.266 0.255 0.319 0.148
0.32 0.348 0.355 0.213

Falcon-40b 0.328 0.489 0.504 0.331
0.359 0.533 0.55 0.374

evasion
based
clarity

Llama-7b 0.635 0.57 0.557 0.563
0.711 0.67 0.678 0.673

Llama-13b 0.651 0.573 0.611 0.589
0.711 0.674 0.636 0.653

Llama-70b 0.709 0.637 0.706 0.661
0.719 0.701 0.718 0.702

Falcon-7b 0.497 0.387 0.319 0.332
0.586 0.488 0.473 0.473

Falcon-40b 0.598 0.531 0.45 0.468
0.656 0.665 0.601 0.622

Table 13: Classification results for instruction-tuned
models. The best results overall are in bold. The first
line of each model shows the results for the subset con-
sisting exclusively of instances that contain named en-
tities, while the second line shows the results for the
subset without named entities.

in Table 13, while those for the prompting tech-
niques applied to the model with the best results
are presented in Table 14.

The results show that across all models and meth-
ods, the performance on the set without named en-
tities is increased compared with the performance
on the set with named entities. Notably, there was a
steep improvement in the smaller, less knowledge-
able models compared to the others, corroborating
the findings of (Sun et al., 2023). In this case, if we
apply the same comparison for the human-curated
annotations, we can see that there was a difference
of 0.1 in Fleiss score between the two subsets, im-
plying that it was slightly more difficult for humans
also to annotate the set with named entities com-
pared to the other one.

E Evasion classification

In this section, we present the results of the eva-
sion (low-level) classification problem. Table 15
illustrates the performance of the instruction-tuned
model on the evasion classification problem, while
Table 16 showcases the performance using zero-
shot and chain-of-thought prompting on the Chat-
GPT which is the best-performing model. The
performance of the models on the evasion classi-

Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

zero-shot 0.651 0.416 0.371 0.354
0.641 0.53 0.449 0.463

standalone
CoT

0.614 0.333 0.326 0.311
0.648 0.518 0.429 0.434

evasion
based
clarity

zero-shot 0.635 0.457 0.44 0.42
0.648 0.559 0.532 0.536

standalone
CoT

0.712 0.568 0.483 0.489
0.677 0.657 0.535 0.551

Table 14: Knowledge-related classification results for
ChatGPT using zero-shot and chain-of-thought infer-
ence for the two subset. The best results for each subset
are in bold. The first line of each model shows the re-
sults for the subset consisting exclusively of instances
that contain named entities, while the second line shows
the results for the subset without named entities.

fication task is lower compared to the clarity clas-
sification. Among the instruction-tuned models,
Llama-70b exhibits the best performance across all
metrics, similar to the evasion classification model.

In ChatGPT, a higher level of performance is
observed in the zero-shot setup compared to the
chain-of-thought (CoT) for evasion classification,
contrary to the evasion-based classification method.
Further investigation reveals that employing CoT
ChatGPT leads to greater confusion between the
classes General and Implicit, as well as Implicit
and Partial/half-answer, compared to the zero-shot
setup, where the primary confusion lies between
Partial/half-answer and Explicit. However, the con-
fusion stemming from the zero-shot setup results
in different clarity labels, unlike CoT, which elu-
cidates the performance disparity between the two
tasks. It is noteworthy that the challenge of dis-
criminating between these classes persists even for
humans, as evidenced by the lowest agreement be-
tween annotators for these labels, as indicated in
Figure 4. This underscores a general difficulty in
distinguishing between these two evasion strategies.
This analysis is particularly intriguing, especially
given the context where the model has not been
exposed to the annotated data of the users.

In order to evaluate the performance of the mod-
els at the evasion level, Table 17 displays the classi-
fication report of the best performing model, Llama-
70b.

The results indicate varying performance across
different response types in the model’s classifica-
tion capabilities. For example, the “Explicit” cat-
egory shows strong performance, resulting in a
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Model Acc. Prec. Recall F1

LLama-7b 0.454 0.498 0.458 0.444
LLama-13b 0.464 0.429 0.49 0.423
LLama-70b 0.571 0.571 0.558 0.545
Falcon-7b 0.363 0.226 0.216 0.212
Falcon-40b 0.476 0.558 0.475 0.492

Table 15: Classification results for instruction-tuned
models for the evasion classification. The best results
are in bold.

Model Acc. Prec. Recall F1

zero-shot 0.315 0.266 0.284 0.244
standalone CoT 0.259 0.293 0.279 0.229

Table 16: Classification results for evasion classifica-
tion using zero-shot and chain-of-thought for prompting
chatGPT which is best performing model using only
prompting techniques. The best results are in bold.

relatively high F1-score, which suggests the model
is quite effective at identifying and correctly classi-
fying explicit responses. In contrast, the “Implicit”
and “Deflection” categories exhibit lower preci-
sion and recall, indicating challenges in accurately
detecting and classifying these subtler forms of re-
sponses, similar to human annotators, as depicted
in Table 4. Notably, the “Clarification” category
achieved perfect precision but lower recall, high-
lighting that while the model is highly accurate
when it identifies these responses, it consistently
fails to detect them.

F Encoder models

In this section, to evaluate the performance of
smaller models on the proposed task, we trained
three different architectures: DeBERTa (He et al.,
2021), RoBERTa (Liu et al., 2019), and XLNet
(Yang et al., 2019), and assessed their performance
on the same test set. Specifically, we selected two
different sizes for each model: base and large, to
examine the impact of size variation on model per-
formance. The primary challenge we encountered
was truncation, as the maximum input size for De-
BERTa and RoBERTa is 512 tokens. To ensure a
fair comparison, we also utilized XLNet, which
does not have inherent input size limits. We fine-
tuned these models using only non-truncated inputs
to reduce noise during training. Specifically, out
of the total 2700 samples in the training set, only
1713 (63%) had fewer than 512 tokens. We trained
the models for five epochs with a constant learn-
ing rate of 10−5. Evaluation of the models was

Prec. Recall F1 Sup.

Explicit 0.68 0.84 0.75 94
Implicit 0.50 0.29 0.36 64
Dodging 0.53 0.68 0.59 60

Deflection 0.33 0.45 0.38 20
Partial/half-answer 0.00 0.00 0.00 6

General 0.55 0.37 0.44 49
Declining to answer 0.46 0.60 0.52 10

Claims ignorance 0.67 0.80 0.73 10
Clarification 1.00 0.50 0.67 4

Acc. 0.57 317
Macro avg 0.57 0.50 0.51 317

Weighted avg 0.56 0.57 0.55 317

Table 17: Classification report of the tuned Llama-2-70b
model, for each class, demonstrating precision, recall,
F1 score, and support.

conducted using the same test set, without remov-
ing 173 out of 317 samples with more than 512
tokens. The evaluation results are presented in Ta-
ble 20, while Table 21 displays the results of the
same models on the subset of 173 samples with
non-truncated inputs. For comparison, the results
of the instruction-tuned LLama models on this sub-
set are also included. As shown in Table 22, the
performance of the models on the subset with trun-
cated inputs is close to random chance.

Another noteworthy finding is that the base
models consistently outperformed their respective
larger counterparts. Specifically, the output of ev-
ery large model collapsed to a single label. For
instance, RoBERTa-large with evasion-based clar-
ity returned the label "Explicit" for every sample.
Similar behaviour was observed for every large
variant of the three different models.

To further evaluate the behaviour of encoder
models and to explain their performance, we again
check the differences in performance between the
set of entities with named entities and without. The
results are shown in Table 18. The first line of each
model displays the results for the set containing
only interview parts with named entities, while the
second line shows the results for the parts with-
out named entities. The ‘large’ variations of the
models were omitted as they returned only a sin-
gle class regardless of their input. This shows that
the performance of encoders in the subset with-
out named entities was improved for every model,
regarding the classification strategy. Again, we
evaluate the performance of the encoder in the sub-
set and single-part questions, and the results are
depicted in Table 19. The results show that the per-
formance of the models in the subset that contains
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Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

DebERTa-base 0.562 0.521 0.467 0.465
0.593 0.512 0.439 0.416

RoBERTa-base 0.625 0.614 0.593 0.592
0.651 0.383 0.405 0.392

XLNet-base 0.68 0.557 0.571 0.56
0.704 0.481 0.468 0.472

evasion
based
clarity

DebERTa-base 0.57 0.576 0.645 0.568
0.545 0.498 0.715 0.509

RoBERTa-base 0.539 0.55 0.581 0.543
0.603 0.401 0.439 0.397

XLNet-base 0.594 0.552 0.617 0.574
0.571 0.49 0.541 0.51

Table 18: Classification results for encoders. The best
results overall are in bold. The first line of each model
shows the results for the set containing only interview
parts that contains named entities, while the second line
shows the results for the parts withouts named entities.

Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

DebERTa-base 0.615 0.508 0.469 0.44
0.518 0.538 0.438 0.429

RoBERTa-base 0.629 0.482 0.437 0.438
0.661 0.649 0.595 0.612

XLNet-base 0.702 0.45 0.453 0.442
0.679 0.626 0.588 0.604

evasion
based
clarity

DebERTa-base 0.576 0.492 0.685 0.51
0.518 0.624 0.64 0.563

RoBERTa-base 0.561 0.369 0.4 0.361
0.607 0.618 0.651 0.613

XLNet-base 0.527 0.413 0.479 0.43
0.679 0.707 0.706 0.706

Table 19: Classification results for encoders. The best
results overall are in bold. The first line of each model
shows the results for the set containing only multi-part
questions, while the second line shows the results for
single-part questions.

multipart questions is near to random chance, prob-
ably due to increased input size which increases
the probability of truncation. This behaviour is
consistent even for the XLNet model, where there
is no length restriction in their input, so truncation
does not occur. However, an interesting observa-
tion is that for single-part questions, the models,
especially RoBERTa and XLNet, have compara-
ble performance with generative models such as
Llama-70b.

G Comparison with Relevant Tasks

In this section, we compare the focus of our work to
the closely related work of Ferracane et al. (2021).
The relevance of this analysis stems from the gen-
eral similarity between our analysis and theirs, de-

Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

DeBERTa-base 0.58 0.521 0.453 0.441
DeBERTa-large 0.691 0.23 0.333 0.272
RoBERTa-base 0.64 0.579 0.516 0.53
RoBERTa-large 0.593 0.198 0.333 0.248

XLNet-base 0.694 0.52 0.523 0.518
XLNet-large 0.565 0.188 0.333 0.241

evasion
based
clarity

DeBERTa-base 0.555 0.53 0.671 0.537
DeBERTa-large 0.249 0.083 0.333 0.133
RoBERTa-base 0.577 0.501 0.534 0.495
RoBERTa-large 0.278 0.093 0.333 0.145

XLNet-base 0.58 0.523 0.586 0.546
XLNet-large 0.385 0.128 0.333 0.185

Table 20: Classification results for fine-tuned encoder
models on the test set. The best results for each strategy
are underlined and best results overall are also in bold.

Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

DeBERTa-base 0.572 0.548 0.469 0.469
DeBERTa-large 0.647 0.216 0.333 0.262
RoBERTa-base 0.595 0.569 0.524 0.524
RoBERTa-large 0.566 0.189 0.333 0.241

Llama-7b 0.506 0.49 0.529 0.495
Llama-13b 0.673 0.657 0.74 0.67
Llama-70b 0.775 0.743 0.724 0.732

evasion
based
clarity

DeBERTa-base 0.561 0.568 0.664 0.569
DeBERTa-large 0.254 0.085 0.333 0.135
RoBERTa-base 0.555 0.538 0.548 0.512
RoBERTa-large 0.277 0.092 0.333 0.145

Llama-7b 0.678 0.651 0.624 0.633
Llama-13b 0.707 0.692 0.646 0.665
Llama-70b 0.724 0.695 0.702 0.698

Table 21: Classification results for fine-tuned encoder
models on the 173 samples of the test set that the input
was not truncated. For comparison reasons the table is
also depicted the performance of the instruction tuned
LLama for this subset. The best results for each strategy
are underlined and best results overall are also in bold.

Classification
variant

Model Acc. Prec. Recall F1

direct
clarity

DeBERTa-base 0.59 0.381 0.343 0.309
DeBERTa-large 0.743 0.248 0.333 0.284
RoBERTa-base 0.694 0.403 0.41 0.406
RoBERTa-large 0.625 0.208 0.333 0.256

evasion
based
clarity

DeBERTa-base 0.549 0.44 0.734 0.424
DeBERTa-large 0.243 0.081 0.333 0.13
RoBERTa-base 0.604 0.392 0.404 0.383
RoBERTa-large 0.278 0.093 0.333 0.145

Table 22: Classification results for fine-tuned encoder
models on the 144 samples of the test set that the input
was truncated. The best results for each strategy are
underlined and best results overall are also in bold.

spite the diverging task objectives: in our work,
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we detach our analysis from intents or factuality of
question, providing a strict formulation of evasion
strategies. To this end, unanswered false presuppo-
sitions are not necessarily connected to the intent to
deceive. We made this selection not only in order
to differentiate from Ferracane et al. (2021), but
also to restrict the large set of possible interpreta-
tions arising under varying intents. For example, a
question containing a false premise, such as "Why
is the earth flat?" accompanied with a response
"The earth is not flat." does not receive the infor-
mation requested -the reason why the earth is flat-
but rather utilizes a factual statement -the earth is
scientifically proven not to be flat- to form the re-
sponse, which can be classified as an Ambivalent
Reply. In case the question contained a valid state-
ment (e.g. "Why is the earth round?") a similarly
formatted reply ("The earth is not round") would
be again classified as Ambivalent Reply in terms
of the information provided, even though it reflects
reduced factual knowledge or an intent to deceive
from the interviewer’s side. However, recognizing
intents can be subjective and highly variable, while
measuring the degree and the type of information
provided, as in our work, formulates a more deter-
ministic and strict framework. At the same time,
we do not require detailed knowledge of the facts
contained in the question, which may be unavail-
able even to audience with related background; a
separate factuality analysis would reveal potential
knowledge gaps highlighting possible interpreta-
tions of the question at hand. Overall, our anno-
tated responses contain a specific label regardless
the intent and the factuality of the question.

We will further analyze the performance of our
models using the dataset referenced in (Ferracane
et al., 2021). By applying our models to their
dataset, we aim to assess their generalizability
across varied contexts. It is important to note that
while both datasets predominantly cover the politi-
cal domain and include press conferences of U.S.
Presidents, their formulations are markedly distinct.
Specifically, the dataset in (Ferracane et al., 2021)
is defined by its goal to determine not only if re-
spondents intend to answer questions but also if
their responses are truthful. This subjective ap-
proach necessitates a multi-label problem frame-
work where instances might receive conflicting la-
bels, such as “Can’t answer Sincere” and “Can’t
answer Lying.” This complexity arises when one
annotator perceives deception, while another be-
lieves in the sincerity of the response. However,

more complex situations may arise, such as when
one annotator labels an instance as “Answer” and
another labels it as “Can’t Answer - Lying.” This
variation indicates that differences in perceived in-
tent and truthfulness can completely alter the label
concerning the answerability of the response, con-
trary to expectations.

Contrastingly, our model’s framework does not
consider the intent or truthfulness of responses, fo-
cusing solely on whether the response addresses the
question. Discrepancies in labeling by annotators
are resolved by an expert, streamlining the process
and ensuring each instance maintains a singular,
clear label. This approach aligns with our primary
objective: determining the direct answerability of
responses, irrespective of underlying intentions or
truthfulness.

Further, we seek to evaluate the efficacy of our
top-performing model, trained on our dataset, on
the dataset proposed in (Ferracane et al., 2021).
Initially, we eliminate all duplicate entries, then
process the remaining data through the Llama-70b
model, which was trained using evasion-based di-
rect clarity strategies. Figures 21 and 22 illustrate
the comparison between the ground truth and our
predicted labels across the training and develop-
ment sets. This comparison is crucial, especially
considering the development set’s relatively small
size—it comprises fewer than 200 instances across
27 labels, with some labels lacking adequate repre-
sentation.

Firstly, it is evident that this dataset is also highly
unbalanced, with ’Answer’ being the most fre-
quently occurring label, similar to our own dataset.
Additionally, there is a clear alignment between
the predicted labels using our taxonomy and the
ground truth labels. For instance, instances labeled
with “shift-dodge & can’t answer lying” are pre-
dominantly classified under one of the correspond-
ing labels from our taxonomy, such as “Declin-
ing to answer,” “Claims ignorance,” or “Dodging.”
To provide a quantifiable measure of the model’s
performance across both tasks, we evaluate the
model’s effectiveness solely on instances that have
a single ground truth label in both sets, as shown in
Table 23, employing a weighted average strategy.

The results indicate that our model can gener-
alize effectively, performing well on a dataset an-
notated with a different strategy. However, it is
important to note that the improved outcomes on
this dataset, compared to our own, might be at-
tributed to instances having clear and consistent
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Figure 21: Results of Llama-70b trained using the eva-
sion based clarity for dev set of (Ferracane et al., 2021).

Figure 22: Results of Llama-70b trained using the eva-
sion based clarity for the training set of (Ferracane et al.,
2021).

Acc. Prec. Recall F1

Dev 0.85 0.89 0.85 0.87
Train 0.81 0.85 0.81 0.82

Table 23: The performance of the Llama-70b trained
using the evasion based clarity, on development and
training sets.

answers across different annotators, suggesting a
higher clarity in these instances. Finally, Figures
23 and 24 display the confusion matrices compar-
ing the ground truth with our results for instances
with single labels.

H Prompting details

Prompt for generating sQAs The following
prompt was provided to ChatGPT to obtain the
sQAs of the multi-part pairs, as well as to request
the appropriate label based on the proposed taxon-
omy.

message_0 = “““
Point out what is this question Q asking. Stating of facts are

not considered as questions, but only requests of information
do. If it’s a multi-part question, break down it the separate
components that it asks. Use the following template to show
the questions and the questions only.

The question consists of N parts: [add the correct N de-
pending on the question] [Enumerate the question parts and
give each part a short title in the beginning of the line] “““

“““
message_1 = “““
Now analyse the information that this answer provides, es-

pecially regarding the points being asked, filling the following
template.

Template — The response provides the following infor-
mation regarding these points: [Enumerate the question parts
along with their title, followed by the relevant information
given per part in the response] — Answer:

“““
message_2 = “““
For each part of the question, and the questions only, use the

following taxonomy to describe what type of a reply did the
answer provide to it, along with a brief clarification for each
choice. Note that if the question does not request elaboration,
you should not consider the lack of elaboration in the answer
as a lack of information. — Template:

Question part: [number and title]
Verdict: [taxonomy code and title]
Explanation:
—
<taxonomy>
“““

Prompt for generating counter-sQAs In addi-
tion to this prompt, we create some “counter-sQAs“
to assess the annotators’ reliance on the extracted
sQAs rather than the original multi-part pairs as
provided in the interviews. The following prompt
was appended to the previous one:

message_3 = “““
Now, try to create an QAs of the response to intentionally

mislead someone into thinking that the answer corresponds to
a different category than the one you initially predicted. For
instance, if your prediction is ’Explicit,” generate an sQA that
could make someone believe it is a “General” response or any
other label of your choice. The sQA should be at the same
length as the original one. Start by selecting the counterlabel
and then write the sQs using the following template:

Template
—
The response provides the following information regarding

these points:
[Enumerate the question parts along with:
- title
- original label
- counterfactual label
- fake information for each part in the response supporting

the counterfactual label.]
—
Answer:
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Figure 23: Confusion matrix of Llama-70b trained using
the evasion based clarity for dev set of (Ferracane et al.,
2021) for the single labelled instances.

Figure 24: Results of Llama-70b trained using the eva-
sion based clarity for the training set of (Ferracane et al.,
2021) for the single labelled instances.

“““

Zero-shot prompt for classification The follow-
ing prompt was used for addressing the evasion
problem in the zero-shot scenario.

message_0 = “““ Based on a segment of the interview in
which the interviewer poses a series of questions, classify the
type of response provided by the interviewee for the following
question using the following taxonomy and then provide a
chain of thought explanation for your decision:

<Taxonomy>

You are required to respond with a single term corre-
sponding to the Taxonomy code and only.

### Part of the interview ###
<Part of the interview>
### Question ###
<Question>
Taxonomy code: “““

The following prompt was used for addressing
the clarity problem in the zero-shot scenario.

message_0 = “““ Based on a segment of the interview in
which the interviewer poses a series of questions, classify the
type of response provided by the interviewee for the following
question using the following taxonomy and then provide a
chain of thought explanation for your decision:

1. Clear Reply - The information requested is explic-
itly stated (in the requested form)
2. Clear Non-Reply - The information requested is not given
at all due to ignorance, need for clarification or declining to
answer
3. Ambiguous - The information requested is given in
an incomplete way e.g. the answer is too general, partial,
implicit, dodging or deflection.

You are required to respond with a single term corre-
sponding to the Taxonomy code and only.

### Part of the interview ###
<Part of the interview>
### Question ###
<Question>
Taxonomy code: “““

Chain-of-Thought (CoT) prompt for classifica-
tion The following prompt was used for address-
ing the evasion problem in the CoT scenario.

message_0 = “““ Based on a segment of the interview in
which the interviewer poses a series of questions, classify the
type of response provided by the interviewee for the following
question using the following taxonomy and then provide a
chain of thought explanation for your decision:

<Taxonomy>

You are required to respond with a single term corre-
sponding to the Taxonomy code as well as the chain of
thought explanation.

Let’s think step by step.
### Part of the interview ###
<Part of the interview>
### Question ###
<Question>
Taxonomy code: “““

The following prompt was used for addressing
the clarity problem in the CoT scenario.

message_0 = “““ Based on a segment of the interview in
which the interviewer poses a series of questions, classify the
type of response provided by the interviewee for the following
question using the following taxonomy and then provide a
chain of thought explanation for your decision:
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1. Clear Reply - The information requested is explic-
itly stated (in the requested form)
2. Clear Non-Reply - The information requested is not given
at all due to ignorance, need for clarification or declining to
answer
3. Ambivalent - The information requested is given in
an incomplete way e.g. the answer is too general, partial,
implicit, dodging or deflection

You are required to respond with a single term correspond-
ing to the Taxonomy code as well as the chain of thought
explanation.

Let’s think step by step.
### Part of the interview ###
<Part of the interview>
### Question ###
<Question>
Taxonomy code: “““

Few-Shot (FS) prompt for classification The
following prompt was used for addressing the eva-
sion problem in the FS scenario.

message_0 = “““ Based on a segment of the interview in
which the interviewer poses a series of questions, classify the
type of response provided by the interviewee for the following
question using the following taxonomy:

<Taxonomy>

Here is one small example for each term of the tax-
onony:

Question:
Do you have your own views about PR at Westminster don’t
you?
Answer:
I do.
Label: Explicit
Explanation: The answer directly gives the info requested.

Question: Are you going to watch television?
Answer: What else is there to do?
Label: Implicit
Explanation: They suggest planning to watch TV, despite not
explicitly stating it.

Question: Do you like my new dress?
Answer: We are late.
Label: Dodging
Explanation: Does not even acknowledge the question and
goes straight to another topic.

Question: Did you eat the last piece of pie?
Answer: I have to admit that this was a great recipe, I always
like it when there are chocolate chips in the dough.
Label: Deflection
Explanation: Acknowledges the question but goes on a tangent
about the chips, without answering.

Question: Did you enjoy the film?
Answer: The directing was great.
Label: Partial/half-answer
Explanation: Directing is only part of what constitutes a film.

Question: What’s your favorite film?
Answer: Fight Club, Filth, and Hereditary.
Label: General
Explanation: The reply gives three movies instead of one,
which makes the desired information unclear.

Question: The hypothesis I was discussing, wouldn’t you
regard that as a defeat?
Answer: I am not going to prophesy what will happen.

Label: Declining to answer
Explanation: Directly stating they won’t answer.

Question: On what precise date did the government order
the refit of the HMAS Kanimbla in preparation for its forward
deployment to a possible war against Iraq?
Answer: I do not know that date. I will find out and let the
House know.
Label: Claims ignorance
Explanation: Claims/admits they don’t have the information.

Question: Was it your decision to release the fund?
Answer: You mean the public fund?
Label: Clarification
Explanation: Gives no data, asks for clarification.

### Part of the interview ###
<Part of the interview>
### Question ###
<Question>
Taxonomy code: “““

The following prompt was used for addressing
the clarity problem in the FS scenario.

message_0 = “““
Based on a segment of the interview in which the inter-

viewer poses a series of questions, classify the type of response
provided by the interviewee for the following question using
the following taxonomy:

1. Clear Reply - The information requested is explicitly
stated (in the requested form)
2. Clear Non-Reply - The information requested is not given
at all due to ignorance, need for clarification or declining to
answer
3. Ambivalent - The information requested is given in
an incomplete way e.g. the answer is too general, partial,
implicit, dodging or deflection

Here is one small example for each term of the taxonony:
Question:

Do you have your own views about PR at Westminster don’t
you?
Answer: I do.
Label: Clear Reply
Explanation: The answer directly gives the info requested.

Question: Are you going to watch television?
Answer: What else is there to do?
Label: Ambivalent
Explanation: They suggest planning to watch TV, despite not
explicitly stating it.

Question: Do you like my new dress?
Answer: We are late.
Label: Ambivalent
Explanation: Does not even acknowledge the question and
goes straight to another topic.

Question: Did you eat the last piece of pie?
Answer: I have to admit that this was a great recipe, I always
like it when there are chocolate chips in the dough.
Label: Ambivalent
Explanation: Acknowledges the question but goes on a tangent
about the chips, without answering.

Question: Did you enjoy the film?
Answer: The directing was great.
Label: Ambivalent
Explanation: Directing is only part of what constitutes a film.

Question: What’s your favorite film?
Answer: Fight Club, Filth, and Hereditary.
Label: Ambivalent
Explanation: The reply gives three movies instead of one,
which makes the desired information unclear.
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Question: The hypothesis I was discussing, wouldn’t you
regard that as a defeat?
Answer: I am not going to prophesy what will happen.
Label: Clear Non-Reply
Explanation: Directly stating they won’t answer.

Question: On what precise date did the government order
the refit of the HMAS Kanimbla in preparation for its forward
deployment to a possible war against Iraq?
Answer: I do not know that date. I will find out and let the
House know.
Label: Clear Non-Reply
Explanation: Claims/admits they don’t have the information.

Question: Was it your decision to release the fund?
Answer: You mean the public fund?
Label: Clear Non-Reply
Explanation: Gives no data, asks for clarification.

### Part of the interview ###
<Part of the interview>
### Question ###
<Question>
Taxonomy code: “““

H.1 Prompt for LoRA fine-tuning
For the instruction-tuning part, we rely on LoRA
fine-tuning (Hu et al., 2021) with r = 16, alpha =
32 and dropout = 0.05 using a subset of 2700
annotated samples as training set and the rest 750
as validation set. The following prompt was used
for instruction-tuning, and it remained consistent
across all models and the two methodologies (di-
rect clarity and evasion-based clarity). The only
distinction between the two different setups in the
prompt was the specific label that the model should
generate. Inference proceeded without sampling,
though we did experiment with sampling, which
resulted in slightly lower performance.

message_0 = “““Based on a part of the interview where the
interviewer asks a set of questions, classify the type of answer
the interviewee provided for the following question
### Part of the interview ###
<Interview Part>

### Question ###
<Question>
Label: <Label>
“““

I Computational Resources

All the experiments were conducted on a clus-
ter with 4 NVIDIA A100-SXM4-40GB. The total
hours of experimentation for training and inference
(both for zero-shot and fine-tuned models) were
230 GPU hours and 440 CPU hours.
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