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Abstract

Multimodal emotion recognition in conversa-
tion (MERC) and multimodal emotion-cause
pair extraction (MECPE) have recently gar-
nered significant attention. Emotions are the
expression of affect or feelings; responses
to specific events, or situations – known as
emotion causes. Both collectively explain
the causality between human emotion and in-
tents. However, existing works treat emotion
recognition and emotion cause extraction as
two individual problems, ignoring their natural
causality. In this paper, we propose a Unified
Multimodal Emotion recognition and Emotion-
Cause analysis framework (UniMEEC) to ex-
plore the causality between emotion and emo-
tion cause. Concretely, UniMEEC reformulates
the MERC and MECPE tasks as mask predic-
tion problems and unifies them with a causal
prompt template. To differentiate the modal ef-
fects, UniMEEC proposes a multimodal causal
prompt to probe the pre-trained knowledge
specified to modality and implements cross-
task and cross-modality interactions under task-
oriented settings. Experiment results on four
public benchmark datasets verify the model
performance on MERC and MECPE tasks
and achieve consistent improvements compared
with the previous state-of-the-art methods.

1 Introduction

Recently, multimodal emotion recognition in con-
versations (MERC) and multimodal emotion-cause
pair extraction (MECPE) have attracted increasing
attention (Zhang et al., 2021a,b; Hu et al., 2021a,b).
Both task play crucial roles in dialog systems, espe-
cially in empathetic response generation in a con-
versation (Fu et al., 2023; Qian et al., 2023; Tian
et al., 2022; Hu et al., 2024). MERC detects the
emotion category of each utterance in a conversa-
tion, while MECPE finds the reasons that trigger
a certain emotion for the utterance. Both tasks are
tightly related in practice and theory (Baumeister
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Figure 1: Illustration of the causal inference between
emotion and emotion cause, which unifies MECPE and
MERC tasks. “response” denotes the speaker’s reaction
to the event and “event” denotes the event that triggers
emotion.

and Cooper, 1981; Dirven, 1997; Russell, 1990;
Lee et al., 2019). However, the existing works
treat MERC and MECPE as two separate tasks
and ignore their causality. On the one hand, emo-
tions are responses to emotion causes (e.g., specific
events) (Marks, 1982; Cabanac, 2002). On the
other hand, emotion and its emotion causes are
interdependent and mutually influential (Russell,
1990; Lee et al., 2019). The two serve as reflections
for each other and together provide a causal story
of human behavior and intents. Figure 1 illustrates
the causal alignment between emotion category
and emotion cause (Baumeister and Cooper, 1981;
Dirven, 1997).

For example, the emotion causes of “happi-
ness” generally are positive events, such as “be-
ing praised”. Similarly, the emotion causes of
“sad” generally are negative events, such as “be-
ing criticized”. We view the mapping between the
specific events (e.g., emotion cause) and response
(e.g., emotion label) as the emotion-cause causal-
ity. From the causal perspective, Lyu et al. (2024)
proposes the idea of causal prompts, which are
prompts that describe the causal story behind the
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sentiment rating and reviews, further demonstrat-
ing that Pretrained Language Model (PLM) is able
to be aware of the underlying causality. A natural
question arises: How should we perform causal-
ity between emotions and their causes in a unified
architecture?

Recently, the unification of related but different
tasks into a framework has achieved significant
progress (Chen et al., 2022; Xie et al., 2022; Zhang
et al., 2022). For example, UniMSE (Hu et al.,
2022b) unifies emotion and sentiment into a single
architecture to share complementary knowledge
between them. Different from UniMSE which
focuses on the unification of emotion and senti-
ment in a generative way, we propose a multi-
modal causal prompt to unify MERC and MECPE
tasks, thereby capturing the causal nature between
emotion and emotion cause. In this paper, we
propose a Unified Multimodal Emotion recogni-
tion and Emotion-Cause pair extraction framework
(UniMEEC) to explore the causality between emo-
tion and emotion cause. As Lyu et al. (2024) il-
lustrated, PLM can capture the causal stories with
the causal prompts. Starting from this perspective,
UniMEEC reformulates MERC and MECPE as
two mask prediction tasks and unifies the two tasks
using a causal prompt, aiming to capture the un-
derstanding of PLM to emotion-cause causlity. In
order to differentiate the modal effects, UniMEEC
probes modal features from PLM using the multi-
modal causal prompt, and meanwhile, UniMEEC
captures the emotion-specific, cause-specific, and
utterance-specific contexts in a hierarchical way.
The main contributions are summarized as follows:

• We propose a Unified Multimodal Emotion
recognition and Emotion Cause pair extrac-
tion framework (UniMEEC)1, which uses
the causal prompt to unify the MERC and
MECPE tasks for causal relation between
emotion and emotion cause.

• UniMEEC formalizes MERC and MEEC
tasks into mask prediction problems and
constructs the multimodal causal prompt to
probe the knowledge from PLM. Meanwhile,
UniMEEC proposes task-specific context ag-
gregation to orderly capture the contexts ori-
ented to specific tasks.

• Experimental results demonstrate that
UniMEEC achieves a new state-of-the-art per-

1https://github.com/LeMei/causal-unimeec

formance on MELD, IEMOCAP, ConvECPE
and ECF datasets, further demonstrating the
effectiveness of a unified causal framework
for MERC and MECPE.

2 Related Work

Multimodal Emotion Recognition in Conver-
sations (MERC) We categorize the works of
MERC into three main groups: multimodal fusion,
context-aware models, and external-knowledge
models. The first group focuses on the fusion rep-
resentation in which some works (Hu et al., 2022a,
2021c; Joshi et al., 2022) employed the graph neu-
ral networks to model the inter/intra dependencies
of utterances information, and some works pro-
posed cross-attention Transformer (Vaswani et al.,
2017) to model cross-modality interaction. Ad-
dressing context incorporation, Sun et al. (2021);
Li et al. (2021b); Ghosal et al. (2019) construct
graph structures to represent contexts and further
model inter-utterance dependencies, while Mao
et al. (2021) introduces the concept of emotion
dynamics to capture context. In the last group,
advanced MERC studies integrate external knowl-
edge, employing techniques such as transfer learn-
ing (Hazarika et al., 2019; Lee and Lee, 2021), com-
monsense knowledge (Ghosal et al., 2020), multi-
task learning (Akhtar et al., 2019), and external
information (Zhu et al., 2021) to introduce more
auxiliary information to help model understand
conversation.

Multimodal Emotion-Cause Pair Extraction
(MECPE) As more and more NLP tasks extend
to the multimodal paradigm (Zhu et al., 2024; Li
et al., 2024; ?), Wang et al. (2021) defined mul-
timodal emotion-cause pair extraction (MECPE)
and constructed Emotion-Cause-in-Friends (ECF)
dataset based on MELD (Poria et al., 2019). Li et al.
(2022a) built an English conversational emotion-
cause pair extraction multimodal dataset based on
IEMOCAP (Busso et al., 2008). With MECPE
only emerging for a relatively short time, there
are a few baseline methods in this field. Previous
studie (Wang et al., 2021; Li et al., 2022a) inte-
grated multimodal features to tackle the MECPE
task based on the baselines of ECPE (Xia and
Ding, 2019), overlooking the importance of inter-
utterance context and multimodal fusion in under-
standing emotion cause.

Prompt-tuning Prompt-tuning (Li and Liang,
2021; Liu et al., 2021; Su et al., 2021), inspired
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u1

…

Hey,..that sucks. Just…now?Chris says they are 
closing down the bar.

…

u3 u6

The emotion of [X] is [M1], and its emotion cause is [M2]
Just…now?

feature
extractor

X

[M1]

[M2]

…

…

text, visual, audio

Pre-trained LM

u6

text, visual, audio

concatenate  

emotion-specific

cause-specific

utterance-specific

disgust

u3

target utterance

u1

…

u3

Chris says they
are closing down 
the bar.

…emotion cause utterance

[M1]

[M2]

after context aggregation

emotion-specific feature

cause-specific feature

utterance-specific feature

Figure 2: The overview of UniMEEC. The outputs “disgust” and “u3” denote the emotion category and the emotion
cause utterance ID of target utterance u6, respectively.

by GPT-3 (Ding et al., 2023), is a new paradigm
to fine-tuning, particularly geared towards address-
ing few-shot scenarios. Recently, prompt-tuning
has been widely used in addressing NLP tasks and
achieved remarkable performances (Zheng et al.,
2022; Li et al., 2021a; Yang et al., 2023; Su et al.,
2021; Sun et al., 2022). The initial input X un-
dergoes modification through a template to form a
textual string prompt X ′ with unfilled slots. Subse-
quently, the language model is employed to proba-
bilistically fill in the missing information, resulting
in a final string X̂ from which the model outputs
y (Liu et al., 2023). The prompt template con-
tains manual template engineering and automated
template learning (Liu et al., 2023). The manual
template is to manually create intuitive templates
and the auto-prompt template (Li and Liang, 2021;
Liu et al., 2021; Su et al., 2021) includes discrete
prompts, represented by actual text strings, and
continuous prompts, described directly within the
embedding space of the underlying language model.
In this work, UniMEEC constructs causal prompts
to unify MERC and MECPE, where causal prompt
connects emotion and corresponding emotion cause
to ensure the causal coherence.

3 Methodology

3.1 Overall Architecture

As shown in Figure 2, UniMEEC is composed
of multimodal causal prompt (MCP) and task-
specific context aggregation (THC). Multimodal
causal prompt template contains modality informa-

tion [X], auxiliary prompt tokens P(·), and mask
tokens [M]1 and [M]2. We feed the causal tem-
plate into PLM to encode [X], [M]1 and [M]2 into
vectors. THC takes the emotion-specific, cause-
specific, and utterance-specific representations as
nodes and models their dependencies in the context
window. Finally, UniMEEC predicts the emotion
category and the position of cause utterance in a
conversation based on the representations of [M]1
and [M]2 respectively.

3.2 Task Formalization
Given a multi-turn conversation U =
{u1, u2, · · · , u|U |}, U has |U | utterances and each
utterance ui = {Iti , Iai , Ivi } contains three modali-
ties, where Imi ,m ∈ {t, a, v} represent uni-modal
feature extracted from video fragment i, and
{t, a, v} denote the three types of modalities—text,
acoustic and visual, respectively. Multimodal
emotion recognition (MERC) predicts the emotion
category of ui, and multimodal emotion-cause
pair extraction (MECPE) aims to predict the
corresponding cause utterance ID (e.g., “u1”, “u2”)
for non-neutral utterance ui. To unify MERC and
MECPE, we formalize MERC and MECPE as two
mask prediction problems in the causal prompt and
leverage the language model to probabilistically
fill the unfilled slots, thereby predicting the results
of MERC and MECPE tasks respectively.

3.3 Multimodal Causal Prompt (MCP)
In order to differentiate the modal effects, we
set causal prompt for each modality to probe the
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modality-specific features from PLM. Multimodal
causal prompts share auxiliary prompt tokens in
the prompt template, which enables inter-modality
and inter-task semantic interaction in representa-
tion learning.

3.3.1 Causal Prompt Construction
We manually design the modality-specific prompt
template, and it consists of a modal input [X], the
emotion category slot [M]1, the cause slot [M]2
and auxiliary prompt part, where [X] is the slot
filled with modal feature of target utterance, [M]1
indicates the emotion category of target utterance,
e.g., “happy” or “sad”, and [M]2 indicates the cause
utterance ID of target utterance, e.g., “u1”, “u2”.
[M]1 and [M]2 are unfilled answer slots and are
separately predicted as the results of MERC and
MECPE. Given text modality Iti , i ∈ {1, · · · , |U |},
we designed the causal prompt template like “the
emotion of utterance Iti is [M]1, and its emotion
cause is [M]2” as text-specific prompt, where the
textual strings “For conversation”, “the emotion cat-
egory of”, “is”, and “the reason for this emotion is”
are auxiliary prompt parts. For audio-specific and
vision-specific prompts, we replace the [X] part of
the prompt with the acoustic and visual representa-
tions to construct audio-specific and vision-specific
prompts, respectively.

We use Xi,m, Xi,m ∈ Rlm×dm to represent the
modal representation after modal alignment (Tsai
et al., 2019), lm and dm are the sequence length
and the representation dimension of modality m,
respectively. Specifically, we obtain Xi,t with the
word embedding layer of the model and we pro-
cessed raw acoustic input into numerical sequential
vectors by librosa 2 to extract Mel-spectrogram as
Xi,a. For vision modality, we use effecientNet (Tan
and Le, 2019) pre-trained (supervised) on VGGface
3 and AFEW dataset to extract Xi,v.

3.3.2 Causal Prompt Encoder
We take Transformer-based model (e.g., BERT (De-
vlin et al., 2019)) as the backbone of the multi-
modal causal prompt. The stacked Transformer
contains multiple Transformer layers, and each
layer contains a self-attention module, FFN, and
layer normalization (Ba et al., 2016). We take the
former Nt Transformer layers as the text-specific
prompt encoder and take the latter Na and Nv

2https://github.com/librosa/librosa
3https://www.robots.ox.ac.uk/~vgg/software/

vgg_face/

Transformer layers as the visual- and acoustic
prompt encoders, respectively. First, text-specific
prompt is fed into the text-specific prompt encoder
to get the text-specific representations of [X], aux-
iliary prompt part, and [M]1 and [M]2, with the su-
pervision of real ground answers of slots. After that,
we obtain the text-specific prompt sequence, which
contains the hidden states of hP1,l1

, Xi,t, hPl2,l3
,

h[M]1 , hPl4,l5
and h[M]2 , where h(·) denotes the

representation of token or token sequence, hP1,l1
,

hPl2,l3
and hPl4,l5

denote the representations of
auxiliary prompt parts.

Due to the dimensions and sequence lengths of
audio and vision modalities being less than the
dimensions and sequence length of text modality,
we pad the audio and vision feature with zero to
achieve consistency with the representation of text
modality. We take X̂i,a and X̂i,v to represent au-
dio and vision representations after padding, re-
spectively. For audio-specific prompt, we replace
[X] part of the prompt representation with X̂i,a.
For vision-specific prompt, we replace [X] part
of the prompt representation with X̂i,v after Nt

Transformer layers. After that, we feed audio-
specific and vision-specific prompts into Na and
Nv Transformer layers respectively. For (n-1)-th
Transformer layer, the modality-specific prompt
learning is given by:

Pn−1
i,m = [hP1,l1

, Xn−1
i,m , hPl2,l3

, hm
[M]1 , hPl4,l5

, hm
[M]2 ]

Pn
i,m = Transformer(Pn−1

i,m , Pn−1
i,m , Pn−1

i,m )

Xn
i,m = Pn

i,m,m ∈ {t, a, v}
(1)

where Pn−1
i,m denotes the prompt representation

of utterance ui under the modality m. Specifically,
Pn−1
i,m is composed by the hidden states of [X], [M]1

[M]2, and auxiliary prompt strings. X0
i,t = Xi,t,

X0
i,a = X̂i,a, and X0

i,v = X̂i,v. [·, ·] denotes the
concatenation operation.

After the multimodal causal prompt, we ob-
tain the modal fusion representations of mask to-
kens [M]1 and [M]2 via concatenation, respectively.
Similarly, we obtain the fusion representation of ui
via the concatenation of XNt

i,t , XNa
i,a and XNv

i,v :

hf
[M]1

= [ht
[M]1 , h

a
[M]1 , h

v
[M]1 ]

hf
[M]2

= [ht
[M]2 , h

a
[M]2 , h

v
[M]2 ]

hf
ui

= [XNt
i,t , X

Na
i,a , XNv

i,v ]

(2)

where XNt
i,t , XNa

i,a and XNv
i,v are text, audio and

video representations of ui encoded by Nt, Na and
Nv Transformer layers respectively.
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3.4 Task-specific Hierarchical Context (THC)
The learned representations of [M]1 (i.e., hf[M]1

)

and [M]2 (i.e., hf[M]2
) fail to capture the context

information in a conversation, which inspires us
to build a hierarchical context aggregation struc-
ture to control the direction of context aggregation
in a conversation. In order to avoid the noise in-
formation in representation learning, we set the
context windows for each utterance to incorporate
the information around target utterance.

3.4.1 Hierarchical Graph Construction
We construct a 3-level graph attention network
(GAT) (Velickovic et al., 2018) as the encoder of
contexts, which includes top, middle, and bottom
levels. Each level has a context window to focus on
the local context of utterance. Formally, we define
a graph G = (V,E), V and E denote the node
and edge sets respectively. We take the utterance-
level representation hu as the bottom node, cause-
specific token representation hf[M]2

as the middle
node, and the emotion-specific token representation
hf[M]1

as the top node. For the intra-level nodes, we
set undirected edges for any two adjacent nodes in
the context window of the same level. For the inter-
level nodes, we set the undirected edges between
the top nodes and middle nodes. In general, we set
the directed edges from the bottom to the middle
nodes in the context window, aiming to control the
direction of the information flow among nodes.

Considering that graph G contains multiple type
node representations, we set five edge types respec-
tively to model the dependency relations among
different nodes. The former three edges are con-
structed between the slot nodes to slot nodes, i.e.,
h[M]1 ↔ h[M]1 , h[M]1 ↔ h[M]2 and h[M]2 ↔ h[M]2 ,
which are represented with tee, tec and tcc respec-
tively. The fourth edge type is constructed from
utterance node to slot node, i.e., hu ↔ h[M]2 , rep-
resented by tuc. The last is from utterance node to
utterance node, i.e., hu ↔ hu, denoted by tuu. The
subscripts “e” and “c” in edge type represent [M]1
and [M]2, respectively, and “u” represents the utter-
ance. For one edge type t ∈ {tee, tec, tcc, tuc, tuu},
its adjacent matrix is given as:

ati,j =

{
1 j ∈ {i− |w|, i+ |w|}
0 otherwise

(3)

where ati,j ∈ A,A ∈ RV ∗V . V denotes the number
of utterances in a conversation. |w| denotes the
size of the context window. i and j represent the

indexes of utterances in a conversation, and they
are located on the same or adjacent levels of THC.

3.4.2 Task-specific Context Aggregation
We set a contextual window for each node at each
level to ensure that the model only aggregates
the node representations in its contextual window.
This operation reduces the computational cost and
avoids introducing noise to the representation learn-
ing. Given an utterance ui, the prediction slots of
emotion and emotion cause are [M]i,1 and [M]i,2
respectively. We aggregate the representation from
the bottom to top levels in the graph, and the rep-
resentations of bottom nodes are not updated by
aggregating the representations of the top or middle
nodes to them. For the bottom node ui, its repre-
sentation is aggregated by the bottom nodes in the
context window:

hn
ui

= ReLU


 ∑

j∈Nui

atuu
i,j Wuu,n−1hn−1

uj
+ bn−1


 (4)

where Nui denotes the neighbor nodes of utterance
ui and h0uj

= hfuj . When the model comes to the
middle node [M]i,2, the representations is aggre-
gated by the top and middle nodes in the context
window, which is given by:

hn
[M]i,2 = ReLU(

∑

j∈N[M]i,2

atcc
i,j W

cc,n−1hn−1
[M]j,2

+
∑

j∈N[M]i,1

atec
i,j W

mec,n−1hn−1
[M]j,1)

+
∑

j∈Nui

atuc
i,j Wuc,n−1hn−1

uj
+ bn−1)

(5)

where {N[M]i,1 ,N[M]i,2} denote the neighbor
nodes of tokens [M]1 and [M]2 respectively.
h0[M]j,1 = hf[M]j,1

, h0[M]j,2 = hf[M]j,2
. When the

model comes to the top node [M]i,1, its representa-
tion is aggregated by the top, and the middle nodes
in the context window, which is given by:

hn
[M]i,1 = ReLU(

∑

j∈N[M]i,1

atee
i,j W

ee,n−1hn−1
[M]j,1

+
∑

j∈N[M]i,2

atec
i,j W

ec,n−1hn−1
[M]j,2 + bn−1)

(6)

We stacked N task-specific context aggregation
modules and then use hN[M]i,1 and hN[M]i,2 as final
representations of slots [M]i,1 and [M]i,2 respec-
tively.
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Datasets Train Valid Test All

MELD 9989 1108 2610 13707
IEMOCAP 5354 528 1650 7532
ConvECPE 5303 486 1644 7433
ECF 9457 1351 2701 13509

Table 1: The statistics of MELD, IEMOCAP, Con-
vECPE, and ECF.

3.5 Grounding Mask Predictions to MERC
and MECPE

We use hN[M]i,1 to predict MERC task, i.e., the
answers of slot [M]1, and use hN[M]i,2 to predict
MECPE task, i.e., the answers of slot [M]2. The
predictions of [M]1 (i.e., ŷei ) and [M]1 (i.e., ŷci ) are
given as respectively:

ŷei = f(W ehN[M]i,1 + be)

ŷci = f(W chN[M]i,2 + bc)
(7)

where {ŷei , ŷci } denote the prediction results for
MERC and MECPE tasks, respectively. Based on
the predictions, we use the sum of the cross-entropy
losses of MERC and MECPE tasks as the objective
loss of UniMEEC.

4 Experiments

4.1 Datasets

We conduct experiments on four publicly available
benchmark datasets of MERC and MECPE. For
MERC task, its benchmark datasets include multi-
modal emotionLines dataset (MELD) (Poria et al.,
2019), interactive emotional dyadic motion cap-
ture database (IEMOCAP) (Busso et al., 2008).
IEMOCAP consists of 7532 samples, and each
sample is labeled with six emotions for emotion
recognition, including happiness, sadness, anger,
neutral, excitement, and frustration. MELD con-
tains 13,707 video clips of multi-party conversa-
tions, with labels following Ekman’s six universal
emotions, including joy, sadness, fear, angry, sur-
prise and disgust. For MECPE task, its benchmark
datasets include ConvECPE (Li et al., 2022a),
and emotion-cause-in-friends (ECF) (Wang et al.,
2021). ConvECPE is a multimodal emotion cause
dataset constructed based on IEMOCAP, in which
each non-neutral utterance is labeled with the emo-
tion cause. It contains 151 dialogues with 7,433
utterances. Similarly, (Wang et al., 2021) annotated
the emotion cause of each sample in MELD and

then constructed multimodal emotion cause dataset
ECF. ECF contains 1,344 conversations and 13,509
utterances. The detailed statistics of four datasets
are shown in Table 1. For datasets IEMOCAP and
MELD, we follow previous works (Li et al., 2021c;
Lu et al., 2020), and we use accuracy (ACC) and
weighted F1 (WF1) as the evaluation metric for the
MERC task. For datasets ECF and ConvECPE, we
use precision (P), recall (R), and F1 as the evalua-
tion metric for the MECPE task.

4.2 Baselines
For MERC, the baselines can be grouped into three
categories: 1)the methods focusing on emotion
cues like EmoCaps (Li et al., 2022b), FacialMMT-
RoBERTa (Zheng et al., 2023), MVN (Li et al.,
2021c). These works aim to improve model perfor-
mance by tracking emotional states in a conversa-
tion, and 2)the methods fusing multimodal infor-
mation like QMNN (Li et al., 2021c), GA2MIF
(Li et al., 2023),MALN(Ren et al., 2023), Multi-
EMO (Shi and Huang, 2023), and UniMSE (Hu
et al., 2022b). These works focus on better multi-
modal fusion, and 3)the methods incorporating con-
text information like DialogueGCN (Ghosal et al.,
2019), MMGCN (Hu et al., 2021c), MM-DFN
(Hu et al., 2022a), BC-LSTM (Poria et al., 2017),
DialogueRNN (Majumder et al., 2019) and Itera-
tiveERC (Lu et al., 2020). These works aggregate
the context to understand the whole conversation.

MECPE has a few baselines due to MECPE
only emerging for a relatively short time. Most
baselines address MECPE tasks based on two-
step frameworks of emotion-cause pair extrac-
tion in text, like Joint-GCN (Li et al., 2022a),
Joint-Xatt(Li et al., 2022a) and Inter-EC(Li et al.,
2022a). CMulti-Bernoulli(Wang et al., 2021) carries
out a binary decision for each relative position to
determine the cause utterance. CMultinomial (Wang
et al., 2021) randomly selects a relative position
from all relative positions as the feature to extract
emotion-cause pair. We produce some typical mul-
timodal methods based on their open source codes,
including MuLT (Tsai et al., 2019), MMGCN
(Hu et al., 2021c), MMDFN (Hu et al., 2022a),
UniMSE (Hu et al., 2022b) and GA2MIF (Li et al.,
2023).

4.3 Experimental Settings
We use pre-trained BERT as the encoder of mul-
timodal causal prompt. ConvECPE and ECF are
constructed based on IEMOCAP and MELD re-

5253



Methods
IEMOCAP MELD

Happiness Sadness Neutral Anger Excitement Frustration WF1 Neutral Surprise Fear Sadness Joy Disgust Angry WF1

BC-LSTM(Poria et al., 2017) 34.43 60.87 51.81 56.73 57.95 58.92 54.95 73.80 47.70 5.40 25.1 51.30 5.20 38.40 55.90
DialogueRNN(Majumder et al., 2019) 33.18 78.80 59.21 65.28 71.86 58.91 62.75 76.23 49.59 0.00 26.33 54.55 0.81 46.76 58.73
DialogueGCN(Ghosal et al., 2019) 51.87 76.76 56.76 62.26 72.71 58.04 63.16 76.02 46.37 0.98 24.32 53.62 1.22 43.03 57.52
IterativeERC(Lu et al., 2020) 53.17 77.19 61.31 61.45 69.23 60.92 64.37 77.52 53.65 3.31 23.62 56.63 19.38 48.88 60.72
QMNN(Li et al., 2021c) 39.71 68.30 55.29 62.58 66.71 62.19 59.88 77.00 49.76 0.00 16.50 52.08 0.00 43.17 58.00
MMGCN(Hu et al., 2021c) 42.34 78.67 61.73 69.00 74.33 62.32 66.22 - - - - - - - 58.65
MM-DFN(Hu et al., 2022a) 42.22 78.98 66.42 69.77 75.56 66.33 68.18 77.76 50.69 - 22.93 54.78 - 47.82 58.65
MVN(Ma et al., 2022) 55.75 73.30 61.88 65.96 69.50 64.21 65.44 76.65 53.18 11.70 21.82 53.62 21.86 42.55 59.03
UniMSE(Hu et al., 2022b) - - - - - - 70.66 - - - - - - - 65.51
EmoCaps(Li et al., 2022b) 71.91 85.06 64.48 68.99 78.41 66.76 71.77 77.12 63.19 3.03 42.52 57.50 7.69 57.54 64.00
GA2MIF(Zheng et al., 2023) 46.15 84.50 68.38 70.29 75.99 66.49 70.00 76.92 49.08 - 27.18 51.87 - 48.52 58.94
FacialMMT-RoBERTa(Zheng et al., 2023) - - - - - - - 80.13 59.63 19.18 41.99 64.88 18.18 56.00 66.58
MALN(Ren et al., 2023) 55.50 81.80 64.10 69.10 78.00 71.40 70.80 82.00 58.60 21.20 43.00 64.30 17.60 52.40 66.90
MultiEMO(Shi and Huang, 2023) 65.77 85.49 67.08 69.88 77.31 70.98 72.84 79.95 60.98 29.67 41.51 62.82 36.75 54.41 66.74
UniMEEC (Ours) 69.52 88.51 69.74 72.63 78.80 72.98 74.83 82.75 64.28 31.78 43.31 66.91 37.72 58.46 68.96

Table 2: Results on IEMOCAP and MELD datasets. The best results are highlighted in bold. The results with
underline denote the previous SOTA performance.

IEMOCAP MELD
ACC WF1 ACC WF1

BART 73.59 74.46 74.69 68.84
T5 74.32 75.09 74.93 69.06

LLaMA 74.67 75.16 75.02 69.15

Table 3: Experimental results on IEMOCAP and MELD
datasets with BART, T5 and LLaMA as backbone.

spectively, so we integrate the emotion and cause
labels of IEMOCAP, MELD, ConvECPE and ECF
to train the model. The batch size is 64, the learn-
ing rate for BERT fine-tuning is set at 3e-4, and the
learning rate for UniMEEC is set to 0.0001. The
hidden dimension of acoustic and visual represen-
tation is 64, the BERT embedding size is 768, and
the fusion vector size is 768. We use the former
9 Transformer layers of BERT as the text-specific
prompt encoder, the following 10th and 11th as the
audio-specific prompt encoder, and the last Trans-
former layer of BERT as the video-specific prompt
encoder. The THC module stacks two graph net-
work layers, where the first layer has one attention
head and the second layer has four attention heads.

4.4 Experimental Environment

All experiments are conducted in the NVIDIA RTX
A100. We take BERT as the Transformer-based
model, which has 110M parameters, including 12
layers, 768 hidden dimensions, and 12 heads. We
use the former Nt = 9 Transformer layers as the
text-specific encoder, use the following Na = 2
and Nv = 1 Transformer layers as the audio-
specific and video-specific encoders respectively.
The value of Nt, Na and Nv are determined by the
model performance on valid test. Furthermore, we
employ a linear decay learning rate schedule with
a warm-up strategy.

4.5 Results of Emotion Recognition

We compare UniMEEC with the baselines of
MERC on IEMOCAP and MELD datasets, and
the comparative results are shown in Table 2.
UniMEEC significantly outperforms SOTA in all
metrics on IEMOCAP, and MELD, and improves
WF1 scores of IEMOCAP and MELD by 1.99%
and 2.06%, respectively.

Recent methods like MultiEMO, MALN, and
GA2MF achieve low performance in recognizing
the label “Happiness” for the IEMOCAP dataset
and recognizing the label “Fear” for the MELD
dataset. The low performance is caused by the
label imbalance of the benchmark. UniMEEC sig-
nificantly improves the emotion recognition perfor-
mance on most emotion categories for two datasets.
On the one hand, the unified framework offers
model auxiliary information, enhancing the interac-
tion between emotion and emotion cause, thereby
alleviating the label imbalance of the benchmark.
On the other hand, UniMEEC unifies the annotated
labels of MERC and MECPE tasks with a causal
prompt, which probes the causal story between re-
sponse (emotion) and event (emotion cause). In
summary, UniMEEC consistently surpasses the
state-of-the-art (SOTA) in most emotion category
recognition on both datasets. These results indicate
the superiority of UniMEEC to MERC and MECPE
and illustrate the unified framework of modeling
emotion-cause causality brings improvements to
emotion recognition.

Furthermore, we explore the impact of different
PLMs, i.e., BART (Lewis et al., 2020), T5 (Raffel
et al., 2020) and LLaMa (Touvron et al., 2023)
on UniMEEC performance. We report the result
on IEMOCAP and MELD datasets when we take
BART, T5 and LLaMA as the PLM of UniMEEC.
The experimental results are shown in Table 3.
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Methods
Cause Recognition Pair Extraction
P R F1 P R F1 WF1

ETrue + CMulti-Bernoulli(Wang et al., 2021) 55.69 57.20 55.47 49.40 25.22 33.39 -
ETrue +CMultinomial(Wang et al., 2021) 57.21 56.38 56.85 49.33 25.18 33.34 -
MC-ECPE-2steps(Wang et al., 2021) 57.76 56.71 57.09 49.43 53.76 51.32 30.00
MuLT*(Tsai et al., 2019) 55.19 53.43 54.79 30.48 37.85 39.02 -
MMGCN*(Hu et al., 2021c) 56.51 54.82 55.30 35.43 38.19 37.48 54.65
MM-DFN*(Hu et al., 2022a) 54.28 56.35 55.17 37.90 39.08 38.10 54.86
UniMSE*(Hu et al., 2022b) 56.55 57.09 56.73 44.48 54.25 49.08 56.37
GA2MIF*(Zheng et al., 2023) 56.48 58.33 56.67 46.15 54.26 50.16 57.33
UniMEEC(Ours) 59.87 58.85 59.18 49.88 59.29 54.61 63.67

Table 4: Results on ECF dataset. Cause recognition is to predict the location of cause utterance and pair extraction
is to match the emotion utterance and cause utterance, and WF1 denotes the performance of emotion recognition.
The baselines with * are reproduced with their open sources.

Methods Cause Recognition Pair Extraction
P R F1 P R F1 WF1

Joint-GCN(Joint-EC)(Li et al., 2022a) 71.47 86.35 78.21 38.23 37.08 37.65 -
Joint-Xatt(Joint-EC)(Li et al., 2022a) 69.68 89.42 78.33 38.23 37.08 37.65 -
Inter-EC(Li et al., 2022a) 68.55 85.55 76.11 30.91 37.34 33.82 -
MuLT*(Tsai et al., 2019) 75.15 71.43 73.05 44.61 52.59 48.74 -
MMGCN*(Hu et al., 2021c) 78.57 74.52 76.07 42.18 42.67 42.11 63.28
MM-DFN*(Hu et al., 2022a) 79.84 74.11 76.90 46.79 50.36 48.50 65.51
UniMSE*(Hu et al., 2022b) 80.37 73.09 75.58 44.24 49.33 46.69 67.36
GA2MIF*(Zheng et al., 2023) 81.42 75.36 78.71 46.54 48.59 47.40 -
UniMEEC(Ours) 87.21 92.95 89.88 50.61 50.41 50.83 69.48

Table 5: Results on ConvECPE dataset. The baselines with italics indicate it only uses textual modality.

4.6 Results of Emotion-Cause Pair Extraction

The results of cause recognition, pair extraction,
and emotion recognition on ECF and ConvECPE
datasets are shown in Table 4 and Table 5, respec-
tively. UniMEEC significantly outperforms SOTA
in all metrics on ECF and most metrics on Con-
vECPE datasets. For the ECF dataset, UniMEEC
improves metrics P, R, and F of cause recognition
by 2.11%, 0.52%, and 2.09%, respectively, and
P, R, and F of pair recognition by 0.45%, 5.03%,
and 3.29% respectively. For the ConvECPE dataset,
multimodal methods perform better than text-based
ones. UniMEEC improves by at least 2% on most
metrics for cause recognition and pair extraction.
Furthermore, we report the UniMEEC performance
of the emotion recognition task on two datasets (see
WF1 in Table 4 and Table 5), outperforming at least
5.34% and 2.12% improvements by the competitive
baselines on ECF and ConvECPE, respectively.

We summarize the improvements into two as-
pects: 1) UniMEEC achieves SOTA on emotion

recognition, cause recognition, and emotion-cause
pair extraction on the benchmarks of MERC and
MECPE, and 2)UniMEEC significantly outper-
forms SOTA in most cases. The improvements il-
lustrate jointly training emotion and emotion cause
can benefit the two tasks, and the unified frame-
work in modeling causality between emotion and
emotion cause can bring prior knowledge to MERC
and MECPE training.

4.7 Ablation Study

We conducted extensive ablation studies on IEMO-
CAP and MELD datasets and experimental re-
sults are shown in Table 6. First, we remove the
MECPE part in the prompt template, and then
train UniMEEC just using the emotion label as
the supervision signal. The removal of MECPE
from UniMEEC results in a performance drop
by 3.57% and 1.96% on IEMOCAP and MELD
respectively, demonstrating that jointly training
MERC and MECPE can bring improvements for
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MERC tasks.
Then we remove one or two modalities from

MCP by replacing MCP with unimodal and bi-
modal prompt templates, where unimodal and bi-
modal prompt templates denote the prompt tem-
plate containing one and two modalities, respec-
tively. We feed the unimodal and bimodal prompts
into PLM and their performances significantly de-
cline on two datasets. We can find that remov-
ing acoustic, visual, and textual modalities or one
of them all leads to performance degradation, fur-
ther demonstrating the effectiveness and necessity
of multimodal prompt learning to model perfor-
mance. For example, we eliminate acoustic, vi-
sual, and both modalities from the multimodal
prompt template, resulting in performance degra-
dation by 2.75%, 1.96%, and 3.56%, respectively,
on WF1 for IEMOCAP. Similarly, the performance
also drops for the MELD dataset after removing
acoustic, visual, and both. For the context aggrega-
tion module, we first remove THC from the model,
which leads to 1.99% and 3.54% drops on two
datasets respectively. Next, we disorder the po-
sitions of utterance-specific, cause-specific, and
emotion-specific nodes in the THC module, dis-
rupting the hierarchical structure of context aggre-
gation, which results in 1.79% and 1.94% drops on
IEMOCAP and MELD respectively. Additionally,
It can be found that removing the restriction of the
context window when we construct the edges be-
tween nodes leads to the drop in ACC and WF1 on
two datasets. Overall, MCP and THC are necessary
to improve model performance, and introducing
MERC and MECPE into a unified framework can
bring improvements.

5 Conclusion

This paper presents a unified multimodal emotion
recognition and emotion-cause analysis framework,
which aims to explore the emotion-cause causality
by jointly modeling multimodal emotion recogni-
tion and emotion-cause pair extraction. UniMEEC
reformulates MERC and MECPE tasks as two
mask prediction problems, tunes PLM via mul-
timodal causal prompts specific to uni-modality,
and aggregates task-specific context in a conver-
sation. Experiments on IEMOCAP, MELD, Con-
vECPE, and ECF consistently gain significant im-
provements on most metrics compared to the previ-
ous SOTA, further demonstrating the effectiveness
of UniMEEC in addressing MERC and MEPCE.

IEMOCAP MELD
ACC WF1 ACC WF1

Task - w/o MECPE 68.55 71.26 71.41 66.79

- w/o MCP 68.04 72.70 71.52 65.32

UPL
- w/o A, T 68.02 71.19 69.74 62.96
- w/o A, V 69.37 72.84 70.65 65.05
- w/o T, V 68.59 71.88 69.86 63.24

BPL
- w/o A 70.19 72.08 73.42 65.66
- w/o V 71.02 72.87 73.65 66.89
- w/o T 67.75 71.23 69.76 65.47

Context - w/o THC 69.16 72.84 71.09 65.28
- w/o hierarchy 69.97 73.04 71.76 66.81
- w/o |w| 57.38 59.14 58.62 56.30

UniMEEC (Ours) 73.67 74.83 74.85 68.75

Table 6: Ablation study of UniMEEC on IEMOCAP
and MELD datasets. T, V and A represent textual, vi-
sual and acoustic modalities, respectively. UPL and
BPL denotes unimodal and bimodal causal prompts, re-
spectively. Hierarchy denotes the hierarchical structure
of THC.

Limitations

Due to the dimensions and sequence lengths of
audio and vision modalities being less than the
dimensions and sequence length of text modality,
UniMEEC pads the audio and vision feature with
zero to achieve consistency with the representation
of text modality. This operation might introduce
some unnecessary information in fusion represen-
tation learning. Furthermore, UniMEEC is set up
to detect emotion and emotion cause in multimodal
scenarios, fails to effectively address MERC and
MECPE in text, which will also be solved in our
future work.
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The data used in this study are all open-source data
for research purposes. While making machines
understand human emotions and behaviors sounds
appealing, it could be applied to emotional compan-
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even in simple multi-class emotion recognition , the
proposed method can achieve only 74% and 68%
in accuracy on IEMOCAP and MELD respectively,
which is far from usable in real-world application.
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Cause Recognition Pair Extraction
P R F1 P R F1 WF1

Task - w/o MECPE 56.16 54.39 54.64 48.35 58.68 52.41 60.78
-w/o MCP 56.24 56.28 56.75 46.16 56.57 53.45 61.63

UPL
-w/o A,T 56.25 56.41 56.09 46.09 56.47 53.72 61.41
-w/o A,V 58.39 58.54 58.51 48.47 58.36 53.09 62.53
-w/o T,V 56.43 56.77 56.25 46.14 56.54 53.82 61.29

BPL
-w/o A 59.21 59.47 59.61 48.38 59.06 54.64 63.57
-w/o V 59.46 59.63 59.62 48.54 58.32 54.07 63.75
-w/o T 56.57 56.68 56.42 46.22 56.10 53.44 61.63

Context
-w/o THC 57.32 56.36 55.19 47.41 57.26 53.43 62.94
-w/o hierarchy 58.16 58.33 58.37 47.65 57.48 54.52 62.52
-w/o |w| 56.61 56.63 56.56 46.63 56.41 52.47 62.43

Table 7: Ablation study of UniMEEC on ECF dataset on cause recognition and pair extraction. T, V and A represent
textual, visual and acoustic modalities, respectively. UPL and BPL denotes unimodal and bimodal causal prompts,
respectively. Hierarchy denotes the hierarchical structure of THC.
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