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Abstract

Question-asking in collaborative dialogue has
long been established as key to knowledge con-
struction, both in internal and collaborative
problem solving. In this work, we examine
probing questions in collaborative dialogues:
questions that explicitly elicit responses from
the speaker’s interlocutors. Specifically, we
focus on modeling the causal relations that
lead directly from utterances earlier in the di-
alogue to the emergence of the probing ques-
tion. We model these relations using a novel
graph-based framework of deliberation chains,
and reframe the problem of constructing such
chains as a coreference-style clustering prob-
lem. Our framework jointly models probing
and causal utterances and the links between
them, and we evaluate on two challenging col-
laborative task datasets: the Weights Task and
DeliData. Our results demonstrate the effective-
ness of our theoretically-grounded approach
compared to both baselines and stronger coref-
erence approaches, and establish a standard of
performance in this novel task.

1 Introduction
Recent breakthroughs in generative AI have raised
the possibility of systems that follow and interact
with multiparty dialogue. Inherent in group dia-
logues are utterance sequences that deliberate on
the same information. Modeling these is partic-
ularly challenging; while such utterances have a
linear order and overlapping information, they may
be distantly separated in time and the same infor-
mation may be expressed very differently.

In this paper, we construct deliberation chains
in dialogue: turn sequences that surface pieces of
evidence or questions under discussion that culmi-
nate in a “probing utterance,” or explicit elicitation
of input that does not introduce new information.
We model deliberation chains as probing interven-
tions that are preceded somewhere in the discourse
by a number of causal interventions, each of which

contribute directly to the eventual emergence of
the utterance that serves as the probing interven-
tion. Without the causal counterpart(s), the probe
would not arise in the discourse (at least not in that
specific form or at that specific time).

Both probe and cause are linked to effective
group performance (Karadzhov et al., 2023). Track-
ing them requires an evolving understanding of
collaborative dynamics and enables disagreement
detection, prompting for deeper insights, or analy-
sis of deliberation’s influence on individual learn-
ing/understanding (Hunter et al., 2018; Atwell
et al., 2024; Khebour et al., 2024b).

Our novel approach takes inspiration from dis-
course coherence theory and joint modeling frame-
works traditionally applied to coreference resolu-
tion. The ability to link probing interventions to
their preceding causes in the dialogue is a critical
prerequisite for AI systems to support delibera-
tive/collaborative reasoning, which is of interest
in domains like education and workforce develop-
ment. Our novel contributions are:

• A novel task of automatically constructing
“deliberation chains” of probing questions in a
dialogue and with their causal utterances;

• A formal graphical framework for delibera-
tion chains derived from formal semantics of
situated conversation (Hunter et al., 2018);

• A unique adaptation of methods from corefer-
ence resolution to this new task;

• Baseline evaluation on two challenging collab-
orative dialogue datasets—DeliData and the
Weights Task Dataset—and a novel method of
jointly modeling probing and causal interven-
tions and the links between them.

Our code may be found at: https://github.
com/csu-signal/ProbingDelibration
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2 Related Work
Collaborative Dynamics Andrews-Todd and
Forsyth (2020), OECD (2017), and Sun et al.
(2020) have all identified the need for teams to con-
struct shared knowledge to function, often through
asking questions. Hesse et al. (2015) also points
out that collaboration requires teammates to initiate
interaction. Further, Fusaroli et al. (2017) identified
conversational repair as a necessary mechanism in
forming common ground for a group. Graesser
et al. (2018) describes the need for team members
to externalize their knowledge. Karadzhov et al.
(2022) explores how deliberation may lead to team
members changing their minds, which is critical for
building group common ground (Stalnaker, 1978).

Joint Modeling in Coreference Resolution In
the well-studied problem of coreference resolution,
many works (Lee et al., 2017; Zhang et al., 2018;
Cattan et al., 2021; Yu et al., 2022) have proposed
various joint modeling frameworks and cross-
encoding architectures that optimize on coreference
link assignments and building mention clusters,
including ideas to make such methods more scal-
able (Ahmed et al., 2023; Held et al., 2021) and gen-
eralizable (Bugert et al., 2021). In contrast to such
methods that often operate on a "span"-level and
require exhaustive cross-computations (Thirukoval-
luru et al., 2021), we generate deliberation chains
using utterances as distinct discourse units.

Free-Text Rationales With the advent of
instruction-tuned generative LLMs like Instruct-
GPT (Ouyang et al., 2022), recent works (Ahmed
et al., 2024; Wang et al., 2024; Radhakrishnan
et al., 2023; Zhao et al., 2023) have leveraged their
Chain-of-Thought (COT)-style reasoning capaci-
ties for various NLP tasks like argument extraction,
question-answering as well as coreference annota-
tions, often guiding the LLM’s reasoning process
using Free-Text Rationales (FTRs) that explicate
reasoning steps toward a decision (Wiegreffe et al.,
2021; West et al., 2022; Nath et al., 2024). Our
work uses such FTRs to guide the automatic annota-
tion of interventions in collaborative task datasets.

3 Problem Formulation
Segmented Discourse Representation Theory
(SDRT) posits that interpreting an utterance in-
volves supplementing its semantics with pragmatic
content based on the demands of discourse coher-
ence (Asher and Lascarides, 2003). The relation
between utterances and prior content required for

a full interpretation gives rise to structures which
in collaborative dialogues represent the evolution
of information that propels such dialogues towards
task-completion (Karadzhov et al., 2023). Let us
define the relevant structures below:

Definition 1. Based on Hunter et al. (2018),
let G = (V, E1, E2, λ) be a deliberation graph
in a collaborative dialogue, that in turn comprises
sets of individual deliberation chains. G is charac-
terized as a weakly-connected, weighted, acyclic
graph. Here, V represents vertices for probing (P)
and causal (C) interventions1; edges E1 denotes
connectivity between vertices; weights E2 indicate
causal influence from C to P , thereby establishing
a total order; and λ is a directed path induction
function over E2 and a vertex v ∈ V that emits the
root intervention C and terminal intervention P in
G, implicit in the discourse’s linear order.

Definition 2. Given a deliberation graph G =
(V, E1, E2, λ), a deliberation chain (or interven-
tion cluster2) is a subgraph G′ = (V ′, E ′1, E ′2, λ) of
G, such that {Pı̂, Cȷ̂} ⊆ V ′, where ȷ̂ = min{j |
λ(Cj) ∈ V ′} and ı̂ = max{i | λ(Pi) ∈ V ′} indi-
cate the initial and final occurrences respectively in
the traversal of G from Cȷ̂ to Pı̂. See Fig. 4.

We formulate deliberation chain construction as
a coreference resolution-style clustering problem
(Ng and Cardie, 2002; Lee et al., 2012), over a
dialogue, D, with N utterances, that the system
must cluster into probing interventions and their
linked causes, such that each cluster forms a unique
deliberation chain. Given the elements of a clus-
ter, λ reconstructs the chain by enforcing transitive
closure over the within-cluster links given the tem-
poral order inherent in the discourse, under Defini-
tion 1 above. This formulation motivates our joint
modeling approach, which is detailed in Sec. 5.

In Fig. 1, we provide a detailed example of a
deliberation chain from our dataset. The causal
interventions (e.g., “You have to at least select ei-
ther the letter A or card 4.”) and probing questions

1Past probing interventions (P<i) likely influence current
and future ones (Pi), ensuring weak connectivity, and any
P cannot be the cause of its own C, thereby guaranteeing
acyclicity. This structure reflects the linear progression typical
in turn-based dialogues. Potential non-linearities in multi-
modal contexts (Hunter et al., 2018) largely do not affect
the acyclic structure because multimodal channels tend to
overlap rather than invert the linear order of dialogue en-
tirely (Alahverdzhieva et al., 2017).

2We will use deliberation chain for the ordered sequence
of interventions in a dialogue, and intervention cluster for
the clusters output by our system. Both denote a chain of
sequential interventions linked by transitive closure, similar
to entity clusters in coreference literature.
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Figure 1: Example of a deliberation chain, showing
the flow of interventions and their causal relationships
within a collaborative task. This example is adapted
from our model’s output on the DeliData corpus.

(e.g., “Can you explain why?”) form a structured
sequence, where probing interventions are linked
to their causal antecedents. This transitive closure
forms the deliberation chain, which reflects how
participants navigate the problem-solving process.

4 Dataset Annotation
We evaluate intervention clustering on two recent,
challenging collaborative dialogue datasets: Deli-
Data and the Weights Task Dataset.

4.1 DeliData
The DeliData corpus (Karadzhov et al., 2023) is
a publicly-available dataset intended for studying
group deliberation in multiparty problem-solving.
It comprises 500 group dialogues, totaling 14,003
utterances, centered around the Wason card selec-
tion task, a well-established cognitive puzzle (Wa-
son, 1968). Each group contains 5 participants,
who are presented with 4 cards that have a number
or a letter on them. They must collectively decide
which cards to turn over to test the rule, “All cards
with vowels on one side have an even number on
the other?” The dataset includes both the dialogues
themselves, which denote cards by the symbols on
them (letters or numbers), and a measure of de-

cision correctness (task performance) before and
after the group discussion, and is annotated with de-
liberation cues, argumentation structures, and other
conversational dynamics. DeliData splits consist
of 300, 100, and 100 randomly-chosen groups for
training, development, and testing, respectively.

4.2 Weights Task Dataset

The Weights Task Dataset (WTD) (Khebour et al.,
2024a) is an anonymized publicly-available dataset
intended for studying small group collaboration. It
comprises 10 videos, where groups of three par-
ticipants must use a balance scale to identify the
weights of differently-colored weighted blocks and
the pattern that describes the weights. The task
unfolds in 3 stages, where users solve the prob-
lem with the scale, without the scale, and with
inferred knowledge of the pattern in weights. The
dataset includes multiple annotations, including
human gold-standard transcriptions of the partici-
pants’ dialogues. Utterances reference blocks by
color and deduced candidate weights, and can be
used to identify probing questions and their poten-
tial causal interventions. WTD splits consist of
7, 1, and 2 randomly-chosen groups for training,
development, and testing, respectively.

4.3 Data Augmentation of WTD
The WTD is a multimodal dataset, but as the focus
of this paper is establishing this novel task, our
current study does not incorporate non-verbal cues.
Instead, we employ dense paraphrasing (Tu et al.,
2023) as an augmentation technique to explicitly
define which blocks are being referred to in the
situated dialogue, so that probing and causal inter-
ventions can be modeled using just a textual signal.
The WTD annotations include dense paraphrased
utterances for the first stage but not the second two.
We followed the procedure from Khebour et al.
(2024b) to dense paraphrase the remainder of the
dataset (e.g., replacing “those” with “red block and
blue block” in cases where the video makes clear
that those blocks are the intended denotata). Ut-
terances were dually annotated (Cohen’s κ = 0.69)
and adjudicated by an expert.

4.4 GPT Annotations of Deliberation Chains
Like coreference cluster annotation, which often
requires exhaustive cross-comparisons across to-
kens (Bugert et al., 2020), human annotation of
deliberation chains is time-consuming and expen-
sive. Therefore, to create “gold” chains for fair
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You are a concise and expert annotator.
Extract [x] causal interventions of a probing intervention 
(marked with #) in the collaborative task dialogue below:

     Leopard: What do you guys think?
Puffin: I chose the card with 5 on it but not sure
Raven: I think you have to at least select either the card 
with the letter A or card 4.
Butterfly: You have to at least select the 4 
Raven: Thats true I guess lol

Probing Intervention:  #Puffin: Can you explain why?# 
     Think step-by-step
     Your answer: 

System

User

Solution

Reasoning

Moderation

Agree

Reasoning

Solution

Figure 2: Prompting framework for GPT to select causal
interventions given a probing intervention and a dia-
logue history (example from DeliData). Ground-truth
labels for probing and causal interventions are marked
in green and brown, respectively.

comparison, we draw on work in LLM-augmented
annotations with Chain-of-Thought (COT) reason-
ing (Radhakrishnan et al., 2023; Wei et al., 2023;
Nath et al., 2024) for “soft” gold labels.

We apply a two-pronged strategy. (1) We sequen-
tially prompt GPT-3.5-turbo-0125 using an argu-
ment-extraction framework (Ahmed et al., 2024)
(see Fig. 2) to extract causal interventions for all
probing interventions in the data3 with prior dia-
logue history4 and a system-based task-description
to guide its reasoning. We also explicitly ask the
LLM to generate free-text rationales (FTRs) corre-
sponding to every causal intervention extracted, to
augment its reasoning (Kunz et al., 2022; Ravi et al.,
2023). (2) We do an extensive human evaluation of
these LLM-generated annotations to validate qual-
ity of extracted clusters. FTRs were used as an ad-
ditional reference for human evaluators to validate
the GPT’s annotations and their alignment with
human reasoning. This evaluation demonstrated
high acceptability of GPT labels and reasoning to
humans (see 4.5 for details).

Since deliberation graphs are weakly-connected,
in each iteration we also apply a labeling algorithm
(see Algorithm 1 in the appendix) to assign the
correct preceding cluster for newly appearing inter-
ventions in the loop. Table 1 provides cluster-level
details of the two datasets.

3For the WTD, which does not already contain probing
labels, we use the dense paraphrased utterances to extract
probing labels before this step. See Appendix D.

4A probing intervention can cause another probing state-
ment within a dialogue (Sukmadewi, 2014; Behr et al., 2012).
As such, we do not omit probing labels from the previous
utterances given as context.

4.5 Human Evaluation of GPT-Annotated
Labels

We conducted a human evaluation to assess the
quality of the GPT-generated annotations on a ran-
dom representative subset of 25 samples from both
DeliData and WTD test sets. These samples were
evaluated across several dimensions: relevance,
presence in sequence, information sufficiency, ac-
ceptability, and rationale overlap.

The annotators consistently agreed that the anno-
tated utterances were indeed causal to the probing
utterance, as indicated by high agreement on the
first two questions concerning Relevance to Context
and Presence in Sequences. These are the most crit-
ical aspects of the evaluation, and the high level of
agreement demonstrates that the core annotations
were valid. The annotators’ answers to questions
concerning rationale alignment, however, showed
more variability, as expected and seen in Fig. 3.
While annotators may agree that an utterance is
causal, they may align less with the specifics of the
rationale behind why it is causal. This variation is
natural and does not impact the overall validity of
the annotations.

Figure 3: Average Scores for Causal Intervention Survey
Responses.

We calculated Krippendorff’s alpha to measure
inter-annotator agreement. Each unique qualita-
tive response was mapped to distinct numerical
categories (e.g., Yes, No, Not enough information,
Enough information) to capture the differences be-
tween responses more effectively. This calcula-
tion resulted in Krippendorff’s alpha values of 0.88
for DeliData and 0.92 for WTD, indicating strong
agreement between annotators on these samples.

Further details on the evaluation process, can be
found in Appendix G.

5 Joint Learning of Deliberation Chains
To automatically cluster interventions that form a
deliberation chain G′, a model must learn to assign,
for each possible Pi, the most suitable antecedent
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DeliData WTD

Train Dev Test Train Dev Test

# Probing 1005 317 358 115 15 64
# Causal 1975 637 700 247 37 134
# Total 2980 954 1058 362 52 198
Min Chain Length 2 2 2 2 3 2
Max Chain Length 21 15 14 14 12 13
Mean Chain Length 5.4 5.5 5.1 5.1 5.2 4.7
# Clusters 552 174 206 71 10 42
Avg. Dialogue Length 33 35.3 34.9 222 204 326
Tokens to Probing 227 241 214 293 367 276

Table 1: Descriptive statistics of true (gold) intervention
clusters/deliberation chains in DeliData and Weights
Task datasets across different splits. Note that there
are no singletons in either dataset. “Length” refers to
utterances. Last row denotes mean number of tokens
from start of a dialogue until a probing intervention.

utterance Cj , that forms a correct link in the chain.
Prior works in coreference resolution (Lee et al.,
2017; Zhang et al., 2018) typically addressed such
assignments using joint-learning frameworks that
exhaustively score antecedent “spans” and thereby
produce coreference chains. Our approach implic-
itly produces the correct chain since interventions
in a dialogue follow a linear order assuming transi-
tivity across links.

Standard joint-learning frameworks for corefer-
ence resolution typically operate at the span-level.
For our task, where the entire deliberative utter-
ance forms a distinct discourse unit (Hunter et al.,
2018), this is an incompatible approach. As such,
we propose a joint-learning framework that mod-
els the task as a conditional probability distribu-
tion Pr(P,C, L | D), partitioned into multinomial
probabilities, assuming that utterance spans are
conditionally independent given the dialogue D.
Mathematically,

Pr(P,C,L | D) =
∏N

i=1

∏N
j=1 Pr(pi | D)Pr(cj | D)Pr(lij | D),

(1)

where P refers to the probability of an utterance
being a Probing intervention, C refers to the proba-
bility of an utterance being a Causal intervention,
and L refers to the probability of a Link between
the two utterances. pi, cj and lij are treated as
random variables denoting the probabilities of an
utterance being probing, being causal, and of the
link between the two interventions, respectively; N
denotes the number of individual utterances within
a dialogue D.

5.1 Model
Intervention Pair Representation As the right-
hand side of Eq. 1 represents causal dynamics as

probabilities of links between pairs of utterances
in the discourse, we draw on a cross-encoding
strategy from coreference research (Humeau et al.,
2020; Cattan et al., 2021; Ahmed et al., 2023) to
score pairs of utterances. Since some dialogues,
especially in the Weights Task Dataset, can reach
up to ∼200 utterances, we use the Longformer
model (Beltagy et al., 2020) as the base encoder.
To construct an expressive representation for a pair
of interventions (Pi , Cj), we first demarcate their
start and end with special tokens (<m> and </m>).
For context around a probing intervention, we also
concatenate the k previous utterances5 along with
participant name or number as given in the dataset.
We extract the [CLS] token representation of this
concatenated input, the cross-attentional context
of Pi and Cj , as well as their Hadamard product,
Pi ⊙ Cj . This results in a combined vector repre-
sentation for pair (Pi, Cj):

V (Pi, Cj) = [VCLS , VPi , VCj , VPi ⊙ VCj ] (2)

Next, to maximize the log-likelihood in our joint-
learning framework (Eq. 1), we generate three sets
of scores from specific segments of Eq. 2 using
three feed-forward neural networks (FFNN): (1) a
linking score lij = FFNNl(V (Pi, Cj)), the proba-
bility of a pair of utterances forming a true link;
and (2) two intervention scores, si = FFNNp(VPi)
and sj = FFNNc(VCj ) of the candidate and the
antecedent, respectively, being valid interventions.

Thus, the model picks up on two types of learn-
ing signals: correctly assigning a true antecedent to
a candidate intervention while also learning what
constitutes a valid intervention. We directly opti-
mize the model with Ljoint:

Ljoint = αpLprobing + αcLcausal + αlLlink (3)

that consists of a weighted-combination of three
separate loss terms. Lprobing and Lcausal are each
defined as:

L[probing,causal](∗) = −
N∑

∗=1

y∗ log(σ(s∗)) (4)

where ∗ corresponds to i and j in Lprobing and
Lcausal, respectively, σ is the sigmoid function, and

5Setting k = 10 and max sequence length (probing in-
tervention with preceding utterances) to 512 was empirically
found to cross-encode both utterances in a pair, on average,
without losing expressive tokens or incurring inordinate com-
pute cost. See Table 1 for more details.
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Figure 4: Our joint-learning framework for deliberation chains, learning to assign correct antecedent utterances for
every valid intervention using a “probing” score, a “causal” score, and a “linking” score. Pairs of utterances are
encoded with global attention (in green between <m> and </m>), further contextualized by past utterances.

y is the predicted output. The final term is Llink:

Llink(i, j) = −
N∑

i=1

N∑

j=1

yij log(lij) + (1− yij) log(1− lij)

(5)

See Fig. 4 for further details. αp, αc and αl
are learned regularization parameters tuned on the
development sets of our data. Following Nath et al.
(2024), we fixed αl = 1 and αc, αp = 0.01 after
initial experiments.

Training Pair Generation For training a pair-
wise scorer model, an efficient pair generation pro-
cess is crucial. A naive way to implement Eq. 1
compares each utterance ui to the set of all its
preceding antecedents U(i) = {ϵ, u1, . . . , ui−1}
to generate pairwise scores.6 This results in ∼
O(N2) complexity for a dialogue of N utterances.
Discourse-coherence theory (Grosz and Sidner,
1986; Held et al., 2021) suggests that the most
pertinent information to a specific utterance remain
within an “attentional state”, i.e., the point of focus

6Our training method is generalizable to all utterances,
since the ground truth label on any candidate can be causal,
probing, or neither (a non-intervention dummy variable, ϵ).
Generated pairs may have true labels that are any combination
of probing and causal, since two causal interventions may
be linked to the same probing intervention, or two probing
interventions may share a cause, which results in these pairs
themselves being linked under transitive closure. This follows
standard practice in pairwise approaches to coreference across
long documents.

of participants within a dialogue. As such, given a
dialogue of N utterances, for each target ui, we de-
fine a window W of previous utterances considered
for training. Because of the long tail of true nega-
tive samples (non-links), this value is tuned over the
dev split of each dataset to make the ratio of posi-
tive to negative samples more balanced (cf. Ahmed
et al. (2023) for optimal training.). Given a true in-
tervention cluster after annotation and labeling, all
pairs within it are considered positive pairs. Nega-
tives comprise all other pairs under consideration
(which may be limited by window W ).

During training, the model is forced to learn
discourse-relevant signals from the positive pairs
drawn from true intervention clusters. Applying
Longformer’s global attention to all tokens in the
pair (Fig. 4) allows us to encode relevant global fea-
tures within W . Utterances in the preceding neigh-
borhood W typically display lexical overlap for
items with similar semantic roles, or task-specific
phrases.7 When such pairs are sourced from sepa-
rate intervention clusters that occur within W , they
naturally form difficult samples for encoder-only
LLMs like Longformer due to misleading lexical
overlap (Ravi et al., 2023; Ahmed et al., 2023).

7For instance, in the Weights Task, neighboring utterances
contain overlapping arguments like “red block” when the
group is solving a particular subtask relevant to that block.
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Inference We evaluate two inference strategies.
For our naive approach, we relax W and generate
all candidate antecedent utterances within D, score
them using using the intervention scores (mean of
si and sj), and only keep the remaining pairs based
on a threshold τ (details in Appendix B). This re-
duces cross-comparisons in building the interven-
tion clusters as we only use the pairwise scorer to
score the remaining utterances. We also consider
all scores generated without relaxing W . While
the naive approach tests the system’s recall under
a long-tail of true-negatives, this method enforces
a more balanced distribution, resulting in a “soft”
upper-bound on model precision. Pairwise scoring
generates an adjacency matrix of links between ut-
terances. Inducing transitivity between links using
a connected-components based clustering method
with a threshold of 0.5 generates the final inter-
vention clusters. Under temporal ordering, these
expand to deliberation chains within a dialogue.

6 Experiments
We evaluated our joint modeling method against 3
similarity baselines and two cross-encoder methods
adapted from coreference research.

6.1 Similarity Baselines
For simple similarity baselines, we assessed:

• Simple token overlap between utterances.
This may indicate correspondence between
a probing intervention and its cause(s), as the
utterances may share terms. To assess lexical
similarity between utterance pairs, we calcu-
lated the Levenshtein distance ratio (0–100)
between the two strings.

• The overlap of salient entities within the ut-
terances. We computed an Intersection over
Union (IoU) of entity counts score based on
categorical features derived from task-relevant
categories referenced in each utterance (i.e.,
vowels, consonants, even and odd numbers in
DeliData, and colors and weights in WTD).

• Cosine similarities between embeddings of
the two utterances, extracted from BERT-
base-uncased, following the intuition that
probing utterances should share some seman-
tic, not just token or entity similarity (Jawahar
et al., 2019) with their causal counterparts.

For each, we set a threshold value for each
dataset, equal to the average of the relevant metric
over the dev set. If the relevant metric for a test pair
exceeded this calculated threshold for the dataset,

we linked that pair. More details on these baselines
and the threshold values are given in Appendix C.

6.2 Cross-Encoder Baselines
For trainable baselines, we specifically chose recent
coreference resolution frameworks that operate on
an “utterance” level (instead of a span-level) for
a valid comparison (see Sec. 5). For fairness, we
used the base encoders from these frameworks as
well as with their cross-encoding strategies, but
not their fine-tuned weights, since fine-tuning on a
separate task can likely tilt the model out of distri-
bution (Kumar et al., 2022).

We used Caciularu et al. (2021)’s Cross-
Document Language Model (CDLM). with a con-
text length of 1,024 preceding tokens along with
their cross-encoding setup.8 We also employed
Ahmed et al. (2023)’s “bidirectional” BCE loss-
based learning method. This generates a mean of
the BCE losses over the forward pass of utterances
paired in both directions: (ui, uj and uj , ui). Like
our joint modeling approach, the context window
here is 512 tokens.

6.3 Joint Modeling Hyperparameters
For joint modeling, we use the Adam (Kingma and
Ba, 2014) optimizer with batch size 24, with learn-
ing rates of 1e−6 for the encoder fine-tuning, 1e−4
for the pairwise scorers, and 1e−5 for the interven-
tion scorers. Each training epoch on an NVIDIA
A100 took ∼20 and ∼40 minutes for DeliData and
WTD, respectively. Each model was evaluated af-
ter a single training run for 16 epochs after robust
hyperparameter tuning on the validation sets.

7 Results
We evaluate against coreference methodology us-
ing cluster metrics computed using the CoVal coref-
erence scorer (Moosavi et al., 2019), specifically
B3 and CoNLL F1 metrics, as presented for both
datasets in Table 2.9 We also present zero-shot
results from LLaMA 2-7B-chat. The prompt-
ing framework for this is given in Appendix E.
Appendix F presents results according to other

8CDLM (https://huggingface.co/biu-nlp/cdlm) is
trained on documents with overlapping information and is
suitable for handling long inputs, which are both traits of our
dialogues (Sec. 5.1). For compute reasons, we truncate pairs at
a maximum sequence length of 1,024 tokens after tokenization
since the token-length of utterance pairs in training is ∼220
tokens for both datasets, on average.

9Since we are using the gold intervention labels for our
experiments, using B3 is more reliable compared to other
metrics (Moosavi and Strube, 2016; Held et al., 2021).
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DeliData WTD

B3 CoNLL B3 CoNLL

R P F1 F1 R P F1 F1

Lexical Overlap 26.6 81.3 40.0 28.6 41.6 50.0 45.4 36.6
Entity Overlap 34.9 71.7 46.9 40.6 27.2 70.0 39.2 26.7
BERT-Cosine 98.6 49.9 66.3 69.2 100.0 7.1 13.2 35.3
LongContext 84.7 60.7 70.7 68.2 72.1 23.8 35.8 45.5
Bidirectional 90.8 59.2 71.7 70.9 64.5 31.5 42.4 44.3
LLaMA 2-7B-chat 99.9 49.7 66.4 69.7 100.0 7.1 13.2 35.3
— Ours (Joint - W ) 92.3 60.5 73.1 73.6 54.4 75.0 63.0 50.3
— Ours (Joint + W ) 87.8 72.6 79.5 76.4 67.9 61.7 64.7 58.1

Table 2: B3 and CoNLL F1 metrics on DeliData and WTD test set results. “LongContext” denotes Caciularu et al.
(2021)’s coreference methodology applied to deliberation chain clustering. “Bidirectional” denotes Ahmed et al.
(2023)’s methodology.

Figure 5: Cluster-level distribution of correctly assigned
intervention links for the best-performing cross-encoder
baseline compared to Joint - W on both datasets.

common coreference metrics. Results empiri-
cally demonstrate the strength of our theoretically-
grounded method on this challenging task and data.

The multimodal nature of the WTD likely makes
it more challenging than DeliData due to cues that
may be missed in even the dense paraphrased lan-
guage. The use of the windowed approach results
in a small performance improvement due to the
exclusion of false positive links outside W . The
BERT-Cosine and LLaMA 2 zero-shot baselines
perform extremely similarly (returning identical
metric values on WTD) and achieve perfect or near-
perfect recall. This is likely due to these methods
returning a very high proportion of false positive
links and transitive closure subsequently clustering
(almost) all interventions in a dialogue.

8 Discussion

Quantitative Analysis Fig. 5 shows the count
of correct links between interventions assigned by
the bidirectional baseline and our (non-windowed)

joint model for each cluster size.10 DeliData has
much longer chains on average with a wider dis-
tribution at every chain-size, and the joint model
consistently links more pairs correctly in frequent
medium cluster sizes, while at larger cluster sizes
joint modeling and the bidirectional baseline are
competitive. The joint model may be learning a
more global representation of deliberation chains,
as from a discourse-coherence perspective mid-
sized chains better reflect the true distribution in
collaborative dialogues.

In WTD, the distribution of cluster sizes is nar-
rower, while dialogues are much longer. Our joint
model links interventions more conservatively, but
also more correctly, than the bidirectional model.
This is most evident in the joint model’s ∼45-point
increase in B3 precision compared to the bidirec-
tional baseline. The latter’s aggressive linking,
while boosting recall for mid-sized clusters, does
so at a higher cost to precision. This suggests that
when the cluster distribution is skewed (smaller
chains, longer dialogues), the joint model is better
at avoiding impure clusters.

Qualitative Analysis Table 3 presents two test
pairs from each dataset that our non-windowed
model classified successfully that all other methods
did not. Utterances are numbered and labeled as
“C” (causal) or “P” (probing). For space reasons,
examples given at the link level, not the full cluster
level, but we include some other utterances that
are clustered into the same chain, as well as the
FTR generated by GPT during the COT-guided
intervention labeling process, for context and to
illustrate the kind of information our method is
able to leverage for its decisions that others cannot:

10Only the non-windowed model results in a full compari-
son to all other baselines because Joint + W does not consider
all gold pairs.
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Dialogue Free-Text Rationale(s)

(a) [C1] Emu: I picked the card with the vowel A on it, because the rule said all
cards with vowels on one side will have an even number on the other

[C1] "Emu’s statement directly relates to the reasoning behind
choosing the card with the vowel A, which is crucial in the

[C2] Koala: I think it is A and 2 decision-making process."
[C3] Hamster: I agree
...
[P4] Bee: So are we ready to final submit

(b) [C1] Narwhal: What card did you think needed to be turned? [C3] "This statement hints at the strategy of testing a card that
... would break the rule to confirm its validity, indicating a shift in
[C2] Guinea pig: I picked 6 and U the participant’s thought process during the discussion."
...
[C3] Kiwi: We need to pick one that wouldn’t fit the rule to test it. Maybe?
...
[P4] Kiwi: 7 and U?

(c) [C1] Participant 2: Oh maybe I’ll try holding it here [C2] "This utterance indicates the participant’s initial attempts
... to compare the weights of various blocks using their fingers,
[C2] Participant 2: Mystery block, blue block, red block, green block, purple
block, yellow block kinda feels the same

setting the groundwork for exploring different measurement tech-
niques."

...
[C3] Participant 1: So how about purple block, green block two, I had eh purple
block, yellow block two

[C3] "This utterance directly led to the probing question as it
involved a new approach of grouping blocks on fingers to

... measure their weights."
[P4] Participant 2: Is there a better way to measure mystery block?

Table 3: Test samples from DeliData (a & b) and WTD (c). Bolded utterances indicate (P, C) pairs that our method
(Joint - W ) linked correctly and all other methods failed to. FTRs are given for the annotation of the indicated
utterance as causal. These are not included in the input for inference, but are provided as indicators of the kinds of
information our framework is likely to learn from the labels that were created using this COT-guided process.

(a) Our model links P4 to C1, which references
the letter A, vowels, and even numbers, which
are also referenced in C2, which states what
the participants agree on. P4 elicits confirma-
tion of all that aggregate information.

(b) We see in the FTR that C3 and P4 indicate a
shift in Kiwi’s thought process, and our sys-
tem picks up the link between the causal and
probing utterances made by the same partici-
pant, which others miss.

(c) In this example from the WTD, our model
makes two links (between P4 and C2 and C3).
Both C2 and C3 pertain to measurement tech-
niques but this is not immediately apparent
from the text. The FTR makes apparent that
the GPT labels are based on the probing utter-
ance’s mention of measuring blocks.

We note that our model tends to successfully
make links much further back in the dialogue his-
tory than even the longer-context CDLM model. In
the examples presented, we show only the causal
and probing interventions that form the response
cluster, omitting utterances that are neither (indi-
cated by ellipses). It is notable that these utterances
alone still form complete exchanges.

9 Conclusion and Future Work
In this paper, we established a novel task of deliber-
ation chain construction in collaborative dialogues.
We developed a formal graphical model of delibera-
tion chains grounded in discourse coherence theory,

and applied coreference resolution techniques to
two challenging datasets. Our joint modeling ap-
proach emerged as the best model on both datasets,
setting a performance standard in this novel task.

Our joint model predicts the probability of an ut-
terance being probing or causal and uses only prior
context—a next logical step is to adapt our method
to a live interaction, doing intervention detection,
and predicting when a probing utterance will (or
should) occur. This would represent a significant
step forward for AI systems that can mediate real-
time collaboration.

The WTD’s multimodal aspect represents a rich
opportunity to investigate multimodality’s role in
deliberation. For instance, a gesture or action
might itself be a probing or causal intervention,
and Asher et al. (2020) provide a compatible multi-
modal framework in which to pursue this.

Finally, deliberation chains construction is adapt-
able to interactions with particular characteristics,
like argumentation (Afantenos and Asher, 2014),
and computational understanding these distinctions
will open new horizons in human-AI interaction.

Limitations
We used GPT-3.5-turbo-0125 to annotate utter-
ances as causal interventions given a corresponding
probing intervention. While machine-assisted an-
notation is an accepted method in the field (Vossen
et al., 2018; Ahmed et al., 2024) and we validated
the annotations with human judgments (see Ap-
pendix G), there is always a risk that annotations
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provided by AI are noisy or unreliable. Therefore,
one limitation that could be addressed in future
work is the lack of true gold-standard human anno-
tations for probing and causal interventions in the
two datasets. Additionally, we believe future work
should directly compare human vs. automated an-
notations of things like speech transcriptions in
datasets like the WTD in order to further validate
the use of automated annotations on these datasets.
Finally, we noted that utterances which prompted
actions—such as a participant instructing another
to move a block—were marked as probing when
we used GPT to annotate probing utterances in the
WTD. This created a type of probing label that
was not present in the DeliData, which entails no
physical actions. This may be an indication of the
type of noise introduced by automated labeling,
but we also speculate that this type of probing is a
potential avenue for investigating dialogue driven
tasks that require action—future work will need to
investigate the validity of such annotations.

Since we adapt coreference techniques to delib-
eration chain construction, we also use coreference
metrics. Moosavi and Strube (2016) note the dif-
ferent pitfalls of all common coreference metrics—
however, future work should examine the specific
limitations of these metrics in the context of the
task; some of these metrics may not be a good fit
for this and new metrics may need to be developed.
See Appendix F for a more detailed look into our
current thoughts on this limitation.

Ethical Statement
Perhaps the largest risk inherent in systems that
model deliberation and probing is how they are
deployed. Consider, for example, a classroom con-
text: modeling deliberation in a normative fashion
may risk disadvantaging persons whose modes of
collaboration are non-normative. In the worst case,
a system could identify these persons as lacking
engagement or having poor collaboration skills, re-
sulting in undue punitive measures.

These models are designed to monitor and aid in-
teraction; however, we do not believe such systems
should exist in isolation—explicitly, in a classroom
context, we believe such systems should augment
teachers, not replace them.

Especially for multimodal use cases, like the
Weights Task Dataset (WTD) (Khebour et al.,
2024a), there is a risk of such technologies be-
ing used for tracking and surveillance, as modeling
how individuals collaborate also involves model-

ing their linguistic and reasoning patterns, which
may be sensitive. In this paper, we use publicly-
available anonymized datasets that were collected
under protocols reviewed by institutional review
boards for ethical research, and were conducted
with subjects who consented to the release of the
data. However, collaboration modeling technol-
ogy should be treated cautiously when it comes to
ingesting multiple modal channels about specific
people.

Finally, extending the model of deliberation to
an agent that actually intervenes in dialogues could
be exploited by bad actors who create bad agents,
that bring dialogue to a halt through excessive intro-
duction of “friction,” thus impeding the reasoning
and productive benefits that collaboration brings.

These risks are inherent in the deployment of
systems that perform the task we have developed
herein as a precondition for other actions in the
world, not the formal or computational model of
deliberation itself.
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A Performance of Linking vs. Turns
Between Interventions

Figure 6: Ablations of our Joint + W model on DeliData
by number of turns between interventions, when run on
all possible intervention pairs.

Figure 7: Ablations of our Joint + W model on the
Weights Task Dataset by number of turns between inter-
ventions, when run on all possible intervention pairs.

For both training and inference for the Joint + W
model, we fix the value of W , the window of pre-
vious utterances considered during pair generation,
after tuning on the development set (18 for Deli-
Data and 9 for WTD). This establishes a soft-upper
limit on the model’s performance since the model
only learns from a balanced distribution of pairs
likely representing an “attentional state” (Grosz,
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1977; Held et al., 2021). To specifically evaluate
this model on pairs that appear are widely separated
in the discourse, we conduct ablations considering
a range of turn-lengths. We bin all pairs based on
their relative distance in the dialogue and report
linking performance of the Joint + W model at a
pair-level within the bins to provide further insights
into its behavior.

As seen in Fig. 6 for DeliData, we find that over-
all precision dips slightly as turn-length increases
and reaches a maximum within pairs binned be-
tween 30 and 40, after which it declines until all
pairs are exhausted. Similar peaks for precision are
also seen on WTD (Fig. 7), albeit at a shorter turn-
length of 10 utterances. This suggests that our joint
learning framework is likely helping the model pick
up signals of the “validity” of interventions per se,
without having to solely rely on previous context
as in its encoding strategy (since we restrict k to
be 10). On the other hand, the much smaller size
of the WTD corpus with a narrower distribution of
clusters and much longer dialogues makes it more
challenging for our model to assign correct links to
widely separated interventions in the discourse.

B Pruning Pairs for Naive Approach

Since our naive approach while relaxing W
(Sec. 5.1) still operates within an utterance-level
pairing of interventions, unlike “span”-level prun-
ing strategies, our threshold τ directly prunes at the
utterance-pair level instead of using a token-based
filtering to improve recall (Cattan et al., 2021).
Specifically, once all antecedents have been scored
using the two intervention FFNNs (mean of si and
sj), we retain the top τ = G× C highest-scoring
pairs, where G represents the total number of inter-
ventions and C denotes the chain size, as detailed in
Table 1. For DeliData, we use the mean chain size
while for WTD, where dialogues are much longer
(∼200) utterances, we use the maximum chain size.
Since we only prune pairs for the naive approach,
this strategy lets us reduce cross-comparisons at in-
ference while also reducing the impurity of chains
by improving recall.

C Further Details on Similarity Baselines

C.1 Token Similarity baseline
Simple token overlap may indicate correspondence
between a probing intervention and its cause(s),
as the utterances may share terms. We used the
FuzzyWuzzy library (Mouselimis, 2021), to assess

lexical similarity between utterances, using the Lev-
enshtein distance ratio (0–100) between two strings.
We computed the token overlap percentage for each
probing question and its preceding utterances in
both the dev and test sets. Using an empirically-
derived threshold from the dev set, based on the
average token overlap percentage, if a test pair’s
token overlap exceeded this threshold, we linked
that pair. The computed thresholds for DeliData
and WTD were 0.247 and 0.263, respectively.

C.2 Entity Similarity baseline
Rather than consider all tokens, which may include
semantically irrelevant words, we considered an
overlap of salient entities between utterances. We
computed an Intersection over Union (IoU) of en-
tity counts score based on categorical features de-
rived from task-relevant categories referenced in
each utterance. For the DeliData, these categories
included vowels, consonants, even digits, and odd
digits. For the Weights Task Data, these categories
included the five block colors, and their weights,
as in Venkatesha et al. (2024). Analogously to the
token similarity baseline, we calculated the average
IoU between probing interventions and their causal
counterparts in the dev set. If a test pair’s entity
overlap exceeded this threshold, we linked that pair.
The computed thresholds for DeliData and WTD
were 0.287 and 0.173, respectively.

C.3 Cosine Similarity Baseline
Our final non-trained baseline leveraged BERT
(base-uncased) to generate contextualized sen-
tence embeddings for probing interventions and
candidate causal counterparts. This followed the
intuition that linked utterances should share some
semantic similarity beyond the token or entity level.
As with the previous two baselines, we calculated
an empirical threshold (average cosine similarity
between pairs) from the dev set, being the average
of all cosine similarities. If a test pair’s cosine sim-
ilarity exceeded this threshold, we linked that pair.
The computed thresholds for DeliData and WTD
were 0.597 and 0.644, respectively.

D Further Details on Label Generation
with GPT

Since the Weights Task Dataset does not contain
annotations for probing utterances like DeliData
does, we also used GPT to label these. Fig. 8
gives the prompting framework used for this. The
probing annotations were also validated by humans
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Figure 8: Prompting framework for labeling WTD utterances as probing or non-probing deliberation with GPT.

(see Appendix G).
Algorithm 1 provides the iterative labeling al-

gorithm that is used during GPT label generation
to assign newly-tagged interventions to the correct
preceding cluster.

E Zero-Shot Prompt Design and Details
For zero-shot evaluation with LLaMA 2-7B-chat,
we designed three prompts, depending on if the
paired sentences were gold-labeled as causal and
probing, causal and causal, or probing and probing.
These prompts were designed to lead the model
to a better chance at the correct conclusion, given
that the relation between a causal and probing inter-
vention is qualitatively different from that of two
causals to a probing intervention that occurs else-
where, or two probing interventions that share a
cause. The prompts are given below.

LLAMA-2-7B-CHAT ZERO-SHOT PROMPT FOR-

MAT: CAUSAL-PROBING

SYSTEM_PROMPT: Think step by step. You
need to identify if one utterance in a dia-
logue is going to cause the other utterance
to emerge later in the dialogue. Answer in
one word: yes or no.
USER_PROMPT: sentence_1: {sentence_1}
sentence_2: {sentence_2}

LLAMA-2-7B-CHAT ZERO-SHOT PROMPT FOR-

MAT: CAUSAL-CAUSAL

SYSTEM_PROMPT: Think step by step. You
need to identify if these two utterances in a
dialogue are going to cause a probing ques-
tion to emerge later in the dialogue. Answer
in one word: yes or no.
USER_PROMPT: sentence_1: {sentence_1}
sentence_2: {sentence_2}

LLAMA-2-7B-CHAT ZERO-SHOT PROMPT FOR-

MAT: PROBING-PROBING

SYSTEM_PROMPT: Think step by step. You
need to identify if these two utterances in a
dialogue have been caused to emerge by the
same preceding utterance in the dialogue.
Answer in one word: yes or no.
USER_PROMPT: sentence_1: {sentence_1}
sentence_2: {sentence_2}

For a small number of samples (DeliData: 21 out
of 7,079, or ∼0.297%; WTD: 232 out of 10,761,
or ∼2.156%), LLaMA 2 would not directly pro-
vide an answer to the question before reaching the
maximum generation length. These were discarded
from evaluation.

Due to profanity in a single utterance in the
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WTD (“So ten plus ten is twenty, twenty plus ten is
thirty, thirty plus twenty is fifty, so mystery block’s
eighty, so I was fucking right”), LLaMA 2, which
is known for its guardrails, would not process 7
pairs (out of 7,079 ≈ 0.099%) containing this utter-
ance, citing offensive language or ethical or moral
standards. These samples were discarded. The
limitations inherent in evaluating LLMs on such a
PG-13 dataset should be noted.

F Additional Results Tables

In coreference tasks, choice of metric bears heavily
on the results. Tables 4 and 5 present results on our
two test sets according to the MUC, B3, CEAFe,
and CoNLL F1 cluster metrics.

Our method performs well on all metrics, includ-
ing restrictive ones like CEAFe. We underperform
some competing baselines on MUC, but this can
largely be attributed to the permissiveness of the
MUC metric. We observe that, given the threshold
mechanism for the BERT-Cosine baseline, ∼40%
of pairs in both test sets are labeled as positives
by default. Given that the resulting false positives
link to interventions that have true links to a larger
chain, the transitive closure mechanism tends to
link most or all utterances into a single intervention
cluster. This is reflected in the 100% or near-100%
recall achieved by BERT-Cosine and LLaMA 2
zero-shot in both MUC and B3, and the extremely
low CEAFe recall due to CEAFe’s assumption
that each key entity should only be mapped to a
single reference entity. This indicates that while
MUC especially is foundational in coreference, it
may be a less useful metric in deliberation chain
construction.

We currently exclude the LEA metric from our
evaluation metrics for two reasons. First, we use
gold intervention labels since the current work only
considers link assignment to pairs in building de-
liberation chains and not intervention detection.
Moreover, assigning an “importance” measure to
various interventions at a linguistic level is beyond
the scope of the paper. As such, for a fair eval-
uation between commonly used metrics, we fo-
cus on CoNLL F1 as the average of the MUC,
B3 and CEAFe F1 scores. By contrast, LEA
specifically re-weighs evaluations to mitigate the
“mention identification effect” and would apply a
task-irrelevant importance measure to interventions
(Moosavi and Strube, 2016). We leave determina-
tion of optimal metrics for this task to future work.

G Human Evaluation of GPT-Annotated
Labels

Four evaluators (all adult English speakers) took a
survey containing probing interventions and candi-
date causal interventions (25 sets each drawn from
the WTD and DeliData corpora), the ground truth
label (which was also given to GPT 3.5-turbo for
generation), and the generated inner monologue
FTR (see Fig. 9). They were asked to answer
seven multiple choice questions for each sample,
designed to explore various aspects of the dialogue
explanation.

Figure 9: Causal intervention sample presented to eval-
uators.

The questions included:

• Relevance to Context: Are the Causal Inter-
vention(s) relevant to the context? (Yes/No)

• Presence in Sequences: Are the Causal Inter-
ventions(s) present in the sequences of utter-
ances? (yes/no/not enough information)

• Information Sufficiency: How much infor-
mation do the Causal Interventions(s) have, to
justify them being actual causal interventions?
(enough/not enough/more than enough/can’t
say)

• Acceptability/Plausibility: Are the Causal
Interventions acceptable or plausible consid-
ering the context? (yes/no/can’t say)

• Overlap with Own Explanations: If you
were to use your own explanations for select-
ing the causal interventions, how much of an
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MUC B3 CEAFe CoNLL

R P F1 R P F1 R P F1 F1

Lexical Overlap 18.2 56.4 27.5 26.6 81.3 40.0 43.9 11.6 18.3 28.6
Entity Overlap 38.6 64.0 48.2 34.9 71.7 46.9 48.8 18.5 26.8 40.6
BERT-Cosine 98.9 88.4 93.4 98.6 49.9 66.3 36.0 71.3 47.8 69.2
LongContext 85.9 87.5 86.7 84.7 60.7 70.7 48.9 45.6 47.2 68.2
Bidirectional 90.7 88.3 89.5 90.8 59.2 71.7 48.6 54.7 51.4 70.9
LLaMA 2-7B-chat 99.9 88.5 93.8 99.9 49.7 66.4 35.9 77.1 49.0 69.7
— Ours (Joint - W ) 92.7 89.2 90.9 92.3 60.5 73.1 52.1 62.4 56.8 73.6
— Ours (Joint + W ) 88.1 91.5 89.8 87.8 72.6 79.5 64.4 55.9 59.9 76.4

Table 4: DeliData test set results. “LongContext” denotes Caciularu et al. (2021)’s coreference methodology applied
to deliberation chain clustering. “Bidirectional” denotes Ahmed et al. (2023)’s methodology.

MUC B3 CEAFe CoNLL

R P F1 R P F1 R P F1 F1

Lexical Overlap 38.6 55.1 45.4 41.6 50.0 45.4 30.3 13.8 18.9 36.6
Entity Overlap 17.1 42.2 24.4 27.2 70.0 39.2 36.1 10.7 16.5 26.7
BERT-Cosine 100.0 80.9 89.5 100.0 7.1 13.2 1.7 30.3 3.3 35.3
LongContext 76.4 74.8 75.6 72.1 23.8 35.8 24.0 26.2 25.0 45.5
Bidirectional 65.7 73.0 69.2 64.5 31.5 42.4 25.4 18.2 21.2 44.3
LLaMA 2-7B-chat 100.0 80.9 89.5 100.0 7.1 13.2 1.7 30.3 3.3 35.3
— Ours (Joint - W ) 50.0 83.3 62.5 54.4 75.0 63.0 45.6 17.5 25.3 50.3
— Ours (Joint + W ) 67.9 81.9 74.2 67.9 61.7 64.7 47.5 28.2 35.4 58.1

Table 5: WTD test set results with all methods. “LongContext” denotes Caciularu et al. (2021)’s coreference
methodology applied to deliberation chain clustering. “Bidirectional” denotes Ahmed et al. (2023)’s methodology..

overlap does your thought-pattern have with
the given rationales? (high overlap/some over-
lap/minimal overlap/no overlap)

The statistics for the chain lengths of the drawn
samples are as follows:

Chain Length Statistics

DeliData WTD

Min Chain Length 3 3
Max Chain Length 8 10
Mean Chain Length 5.65 5.3

Table 6: Chain length statistics of the human evaluation
samples.

These chain lengths indicate that the sampled
probing interventions are representative of the re-
spective test sets, as their mean chain lengths align
with the dataset averages, and the distributions are
within the expected ranges.

Annotations were performed by members of the
authors’ research lab in the course of their normal
duties. A different pair of annotators was used to
assess samples from each corpus. Three annota-
tors were male and one, female. Annotators had

no prior experience in the task. The survey was
determined to be Not Human Subjects Research by
the institutional review board.

The survey response results shown in Fig. 3 show
that the causal interventions, for both the WTD and
DeliData, have positive valences when evaluated
for relevance to the context, presence in sequence,
and acceptability/plausibility. These positive scores
show high association between causal interventions
and their respective probing questions, given the
context of the utterance history. DeliData informa-
tion sufficiency is rated higher than WTD’s, which
shows that the DeliData contained more informa-
tion to support the justification of classifying ut-
terances as causal interventions. This could be a
reflection of the use of different cards for the Wason
Selection Task between groups in the DeliData ex-
periment; where the WTD experiments utilized the
same task items across all experiments, resulting in
more repetitive phrases.
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Algorithm 1 Gold Cluster Mapping via GPT

Require: D: Sequence of dialogues, P : Probing interventions, GPT (·): LLM Prompting Operator
1: G← {}, R← [] ▷ Gold labels and all GPT responses
2: for i = 1 to |P | do
3: ctx← D[0 : P [i].index()) ▷ Prior context until probing index
4: r ← GPT (P [i], ctx) ▷ Generate responses
5: R.append(r)
6: if i = 1 then
7: for resp in r do
8: G[resp]← new unique label
9: end for

10: G[P [i]]← G[r[0]]
11: else
12: found← False
13: for resp in r do
14: if resp in G then
15: G[P [i]]← G[resp]
16: found← True
17: break
18: end if
19: end for
20: if not found then
21: if r contains element from P [1 : i− 1] then
22: idx← index of match in P
23: G[P [i]]← G[P [idx]]
24: for resp in r do
25: G[resp]← G[P [idx]]
26: end for
27: else
28: for resp in r do
29: G[resp]← new unique label
30: end for
31: G[P [i]]← G[r[0]]
32: end if
33: end if
34: end if
35: end for
36: return G

Our Gold Cluster Mapping Algorithm iteratively prompts an LLM (GPT ) to extract causal interven-
tions and rationales. Note that we do not show the rationales generated for each iteration of the loop
for space reasons. These generated intervention clusters along with the rationales are then further
validated with an exhaustive human evaluation component (see Appendix G).
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